Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm Springer Vienna. 2017;124(8):901–5. https://doi.org/10.1007/s00702-017-1686-y.
Article
Google Scholar
Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60. https://doi.org/10.1126/science.1096284.
Article
CAS
PubMed
Google Scholar
Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392(6676):605–8. https://doi.org/10.1038/33416.
Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, et al. VPS35 mutations in parkinson disease. Am J Hum Genet. 2011;89(1):162–7. https://doi.org/10.1016/j.ajhg.2011.06.001.
Zimprich A, Benet-Pages A, Struhal W, Graf E, Eck SH, Offman MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89(1):168–75. https://doi.org/10.1016/j.ajhg.2011.06.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams ET, Chen X, Moore DJ. VPS35, the retromer complex and Parkinson’s disease. J Parkinsons Dis. 2017;7(2):219–33.
Article
CAS
Google Scholar
Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, et al. Functional architecture of the retromer cargo-recognition complex. Nature. 2007;449(7165):1063–7. https://doi.org/10.1038/nature06216.
Burd C, Cullen PJ. Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol. 2014;6(2). https://doi.org/10.1101/cshperspect.a016774.
Zavodszky E, Seaman MN, Rubinsztein DC. VPS35 Parkinson mutation impairs autophagy via WASH. Cell Cycle. 2014;13(14):2155–6. https://doi.org/10.4161/cc.29734.
Article
CAS
PubMed
PubMed Central
Google Scholar
McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease-linked VPS35(D620N) mutation. Curr Biol. 2014;24(14):1670–6. https://doi.org/10.1016/j.cub.2014.06.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Munsie LN, Milnerwood AJ, Seibler P, Beccano-Kelly DA, Tatarnikov I, Khinda J, et al. Retromer-dependent neurotransmitter receptor trafficking to synapses is altered by the Parkinson’s disease VPS35 mutation p.D620N. Hum Mol Genet. 2015;24:1691–703.
Article
CAS
Google Scholar
Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, et al. The Vps35 D620N mutation linked to Parkinson’s disease disrupts the cargo sorting function of retromer. Traffic. 2014;15(2):230–44. https://doi.org/10.1111/tra.12136.
Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr Biol. 2010;20(14):1310–5. https://doi.org/10.1016/j.cub.2010.05.066.
Article
CAS
PubMed
Google Scholar
Wang W, Wang X, Fujioka H, Hoppel C, Whone AL, Caldwell MA, et al. Parkinson’s disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes. Nat Med. 2016;22(1):54–63. https://doi.org/10.1038/nm.3983.
Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochondrial fusion and function. Cell Rep. 2015;12(10):1631–43.
Wang W, Ma X, Zhou L, Liu J, Zhu X. A conserved retromer sorting motif is essential for mitochondrial DLP1 recycling by VPS35 in Parkinson’s disease model. Hum Mol Genet. 2016;26:ddw430.
Article
Google Scholar
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139:216–31. https://doi.org/10.1111/jnc.13731.
Article
CAS
PubMed
Google Scholar
Abou-Sleiman PM, Muqit MMK, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 2006;7(3):207–19. https://doi.org/10.1038/nrn1868.
Article
CAS
PubMed
Google Scholar
Ryan BJ, Hoek S, Fon EA, Wade-Martins R. Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem Sci. 2015;40(4):200–10. https://doi.org/10.1016/j.tibs.2015.02.003.
Article
CAS
PubMed
Google Scholar
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, et al. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 2010;189(2):211–21. https://doi.org/10.1083/jcb.200910140.
Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8(1):e1000298. https://doi.org/10.1371/journal.pbio.1000298.
Geisler S, Holmström KM, Treis A, Skujat D, Weber SS, Fiesel FC, et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy. 2010;6(7):871–8. https://doi.org/10.4161/auto.6.7.13286.
Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R, Haque ME, et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012;13(4):378–85. https://doi.org/10.1038/embor.2012.14.
Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. 2008;183(5):795–803. https://doi.org/10.1083/jcb.200809125.
Article
PubMed
PubMed Central
Google Scholar
Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, et al. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun. 2008;377(3):975–80. https://doi.org/10.1016/j.bbrc.2008.10.104.
Lazarou M, Sliter DA, Kane LA, Sarraf SA, Wang C, Burman JL, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565):309–14. https://doi.org/10.1038/nature14893.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scarffe LA, Stevens DA, Dawson VL, Dawson TM. Parkin and PINK1: much more than mitophagy. Trends Neurosci. 2014;37(6):315–24. https://doi.org/10.1016/j.tins.2014.03.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geisler S, Holmström KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. 2010;12(2):119–31. https://doi.org/10.1038/ncb2012.
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14. https://doi.org/10.1038/nrm3028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palikaras K, Lionaki E, Tavernarakis N. Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol. 2018;20(9):1013–22. https://doi.org/10.1038/s41556-018-0176-2.
Article
CAS
PubMed
Google Scholar
McWilliams TG, Prescott AR, Allen GFG, Tamjar J, Munson MJ, Thomson C, et al. Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol. 2016;214(3):333–45. https://doi.org/10.1083/jcb.201603039.
Article
CAS
PubMed
PubMed Central
Google Scholar
McWilliams TG, Prescott AR, Montava-Garriga L, Ball G, Singh F, Barini E, et al. Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab. 2018;27:439–449.e5.
Article
CAS
Google Scholar
Lee JJ, Sanchez-Martinez A, Zarate AM, Benincá C, Mayor U, Clague MJ, et al. Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol. 2018;217(5):1613–22. https://doi.org/10.1083/jcb.201801044.
Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, et al. Endogenous Parkin preserves dopaminergic substantia nigral neurons following mitochondrial DNA mutagenic stress. Neuron. 2015;87(2):371–81. https://doi.org/10.1016/j.neuron.2015.06.034.
Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468(7324):696–700. https://doi.org/10.1038/nature09536.
Trempe JF, Sauvé V, Grenier K, Seirafi M, Tang MY, Meńade M, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013;340(6139):1451–5. https://doi.org/10.1126/science.1237908.
Article
CAS
PubMed
Google Scholar
In HL, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, et al. A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A. 2008;105:3374–9.
Article
Google Scholar
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rojansky R, Cha MY, Chan DC. Elimination of paternal mitochondria in mouse embryos occurs through autophagic degradation dependent on PARKIN and MUL1. Elife. 2016;5:e17896. https://doi.org/10.7554/eLife.17896.
Article
CAS
PubMed
PubMed Central
Google Scholar
Almeida A, Medina JM. A rapid method for the isolation of metabolically active mitochondria from rat neurons and astrocytes in primary culture. Brain Res Protocol. 1998;2(3):209–14. https://doi.org/10.1016/S1385-299X(97)00044-5.
Article
CAS
Google Scholar
Costes SV, Daelemans D, Cho EH, Dobbin Z, Pavlakis G, Lockett S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys J. 2004;86(6):3993–4003. https://doi.org/10.1529/biophysj.103.038422.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 2007;8(10):939–44. https://doi.org/10.1038/sj.embor.7401062.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verheije MH, Raaben M, Mari M, te Lintelo EG, Reggiori F, van Kuppeveld FJM, et al. Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. Baric RS, editor. PLoS Pathog. 2008;4:e1000088.
Article
Google Scholar
Xicoy H, Wieringa B, Martens GJM. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol Neurodegener. 2017;12:1–11.
Article
Google Scholar
Rakovic A, Shurkewitsch K, Seibler P, Grünewald A, Zanon A, Hagenah J, et al. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous parkin attenuates mitophagy: study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 2013;288(4):2223–37. https://doi.org/10.1074/jbc.M112.391680.
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016;12(1):1–222. https://doi.org/10.1080/15548627.2015.1100356.
Vives-Bauza C, Zhou C, Huang Y, Cui M, De Vries RLA, Kim J, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107(1):378–83. https://doi.org/10.1073/pnas.0911187107.
Article
PubMed
Google Scholar
Park WH, Han YW, Kim SH, Kim SZ. An ROS generator, antimycin a, inhibits the growth of HeLa cells via apoptosis. J Cell Biochem. 2007;102(1):98–109. https://doi.org/10.1002/jcb.21280.
Article
CAS
PubMed
Google Scholar
Wang Y, Nartiss Y, Steipe B, McQuibban GA, Kim PK. ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy. Autophagy. 2012;8(10):1462–76. https://doi.org/10.4161/auto.21211.
Article
CAS
PubMed
Google Scholar
McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA. Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J. 2014;33(4):282–95. https://doi.org/10.1002/embj.201385902.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lefebvre V, Du Q, Baird S, Cheuk-Him Ng A, Nascimento M, Campanella M, et al. Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy. Autophagy. 2013;9(11):1770–9. https://doi.org/10.4161/auto.25413.
Article
CAS
PubMed
Google Scholar
Chen WW, Birsoy K, Mihaylova MM, Snitkin H, Stasinski I, Yucel B, et al. Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep. 2014;7(1):27–34. https://doi.org/10.1016/j.celrep.2014.02.046.
Klingenberg M, Rottenberg H. Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Eur J Biochem. 1977;73(1):125–30. https://doi.org/10.1111/j.1432-1033.1977.tb11298.x.
Article
CAS
PubMed
Google Scholar
Gunter TE, Pfeiffer DR. Mechanisms by which mitochondria transport calcium. Am J Phys. 1990;258(5 Pt 1):C755–86. https://doi.org/10.1152/ajpcell.1990.258.5.C755.
Article
CAS
Google Scholar
Shariff K, Ghosal S, Matouschek A. The force exerted by the membrane potential during protein import into the mitochondrial matrix. Biophys J. 2004;86(6):3647–52. https://doi.org/10.1529/biophysj.104.040865.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krayl M, Lim JH, Martin F, Guiard B, Voos W. A cooperative action of the ATP-dependent import motor complex and the inner membrane potential drives mitochondrial preprotein import. Mol Cell Biol. 2007;27(2):411–25. https://doi.org/10.1128/MCB.01391-06.
Article
CAS
PubMed
Google Scholar
Ishihara N, Jofuku A, Eura Y, Mihara K. Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun. 2003;301(4):891–8. https://doi.org/10.1016/S0006-291X(03)00050-0.
Article
CAS
PubMed
Google Scholar
Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4):R170–85. https://doi.org/10.1016/j.cub.2018.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang HL, Chou AH, Wu AS, Chen SY, Weng YH, Kao YC, et al. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim Biophys Acta. 1812;2011:674–84.
Google Scholar
Yu W, Sun Y, Guo S, Lu B. The PINK1/Parkin pathway regulates mitochondrial dynamics and function in mammalian hippocampal and dopaminergic neurons. Hum Mol Genet. 2011;20(16):3227–40. https://doi.org/10.1093/hmg/ddr235.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanss Z, Larsen SB, Antony P, Mencke P, Massart F, Jarazo J, et al. Mitochondrial and clearance impairment in p. D620N VPS35 patient-derived neurons. Mov Disord. 2021;36(3):704–15. https://doi.org/10.1002/mds.28365.
Bornhö C, Vogel F, Neupert W, Reichert AS. Mitochondrial membrane potential is dependent on the oligomeric state of F1F0-ATP synthase supracomplexes. J Biol Chem. 2006 May 19;281(20):13990–8. https://doi.org/10.1074/jbc.M512334200.
Article
CAS
Google Scholar
Gao F, Zhang Y, Hou X, Tao Z, Ren H, Wang G. Dependence of PINK1 accumulation on mitochondrial redox system. Aging Cell. 2020;19:e13211.
Article
CAS
Google Scholar
Orvedahl A, Sumpter R, Xiao G, Ng A, Zou Z, Tang Y, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature. 2011;480(7375):113–7. https://doi.org/10.1038/nature10546.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu M, St-Pierre P, Shankar J, Wang PTC, Joshi B, Nabi IR. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase. Mol Biol Cell. 2013;24(8):1153–62. https://doi.org/10.1091/mbc.e12-08-0607.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Feng D, Chen G, Chen M, Zheng Q, Song P, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2):177–85. https://doi.org/10.1038/ncb2422.
Liu L, Sakakibara K, Chen Q, Okamoto K. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 2014;24(7):787–95. https://doi.org/10.1038/cr.2014.75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roberts RF, Bayne AN, Goiran T, Lévesque D, Boisvert FM, Trempe JF, et al. Proteomic profiling of mitochondrial-derived vesicles in brain reveals enrichment of respiratory complex sub-assemblies and small TIM chaperones. J Proteome Res. 2021;20(1):506–17. https://doi.org/10.1021/acs.jproteome.0c00506.
Zorova LD, Popkov VA, Plotnikov EY, Silachev DN, Pevzner IB, Jankauskas SS, et al. Mitochondrial membrane potential. Anal Biochem. 2018;552:50–9. https://doi.org/10.1016/j.ab.2017.07.009.
Roberts RF, Bayne AN, Goiran T, Lévesque D, Boisvert FM, Trempe JF, et al. Proteomic profiling of mitochondrial-derived vesicles in brain reveals enrichment of respiratory complex sub-assemblies and small TIM chaperones. J Proteome Res. 2021;20(1):506–17. https://doi.org/10.1021/acs.jproteome.0c00506.
Williams ET, Glauser L, Tsika E, Jiang H, Islam S, Moore DJ. Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting. Hum Mol Genet. 2018;27(18):3189–205. https://doi.org/10.1093/hmg/ddy224.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLelland GL, Fon EA. Principles of mitochondrial vesicle transport. Curr Opin Physiol. 2018;3:25–33. https://doi.org/10.1016/j.cophys.2018.02.005.
Article
Google Scholar