Nussbaum RL, Ellis CE. Alzheimer’s disease and Parkinson’s disease. N Engl J Med. 2003;348:1356–64.
Article
CAS
PubMed
Google Scholar
Del Rey NL, Quiroga-Varela A, Garbayo E, Carballo-Carbajal I, Fernández-Santiago R, Monje MHG, et al. Advances in Parkinson’s disease: 200 years later. Front Neuroanat. 2018; Dec 14;12:113. https://doi.org/10.3389/fnana.2018.00113.
Ascherio A, Schwarzschild MA. The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol. 2016;15:1257–72.
Article
PubMed
Google Scholar
Tanner CM, Goldman SM. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14:317–35.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bennett DA, Beckett LA, Murray AM, Shannon KM, Goetz CG, Pilgrim DM, et al. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N Engl J Med. 1996;334:71–6.
Article
CAS
PubMed
Google Scholar
Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systemic review and meta-analysis. Mov Disord. 2014;29:1583–90.
Article
PubMed
Google Scholar
Hirsch L, Jette N, Frolkis A, Steeves T, Pringsheim T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46:292–300.
Article
PubMed
Google Scholar
Collier TJ, Kanaan NM, Kordower JH. Aging and Parkinson’s disease: different sides of the same coin? Mov Disord. 2017;32:983–90.
Article
PubMed
PubMed Central
Google Scholar
Vanni S, Haldeschi AC, Zattoni M, Legname G. Brain aging: a lanus-faced player between health and neurodegeneration. J Neuro Res. 2019; Jan 11. https://doi.org/10.1002/jnr.24379.
Stark AK, Pakkenberg B. Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res. 2004;318:81–92.
Article
CAS
PubMed
Google Scholar
Chu Y, Kompoliti K, Cochran EJ, Mufson EJ, Kordower JH. Age-related decreases in Nurr1 immunoreactivity in the human substantia nigra. J Comp Neurol. 2002;450:203–14.
Article
CAS
PubMed
Google Scholar
Chen EY, Kallwitz E, Leff SE, Cochran EJ, Mufson EJ, Kordower JH, Mandel RJ. Age-related decreases in GTP-cyclohydrolase-1 immunoreactive neurons in the monkey and human substantia nigra. J Comp Neurol. 2000;426:534–8.
Article
CAS
PubMed
Google Scholar
McGeer PL, McGeer EG, Suzuki JS. Aging and extrapyramidal function. Arch Neurol. 1977;34:33–5.
Article
CAS
PubMed
Google Scholar
Ma SY, Roytt M, Collan Y, Rinne JO. Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol. 1999;25:394–9.
Article
CAS
PubMed
Google Scholar
Kanaan NM, Kordower JH, Collier TJ. Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: relevance to selective neuronal vulnerability. J Comp Neurol. 2007;502:683–700.
Article
PubMed
Google Scholar
Chu Y, Kordower JH. Age-related increases of α-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease? Neurobiol Dis. 2007;25:134–49.
Article
CAS
PubMed
Google Scholar
Copper JF, Dues DJ, Spielbauer KK, Machiela E, Senchuk MM, Van Raamsdonk JM. Delaying aging is neuroprotective in Parkinson’s disease: a genetic analysis in C elegans models. NJL Parkinson’s Dis. 2015;1:15022.
Article
Google Scholar
Kanaan NM, Kordower JH, Collier TJ. Age-related changes in dopamine transporters and accumulation of 3-nitrotyroxine in rhesus monkey midbrain dopamine neurons: relevance in selective neuronal vulnerability to degeneration. Eur J Neurosci. 2008;27:3205–15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, et al. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76:1766–73.
Article
CAS
PubMed
Google Scholar
Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, et al. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci U S A. 2004;101:9843–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kanaan NM, Kordower JH, Collier TJ. Age and region-specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure in monkeys. Glia. 2008;56:1199–214.
Article
PubMed
PubMed Central
Google Scholar
Sugama S, Yang L, Cho BP, DeGiorgio LA, Lorenzl S, Albers DS, et al. Age-related microglial activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurodegeneration in C57BL/6 mice. Brain Res. 2003;964:288–94.
Article
CAS
PubMed
Google Scholar
Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, et al. Human iPSC-based modelling of late-onset disease via progerin-induced aging. Cell Stem Cell. 2013;13:691–705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Matsui H, Kenmochi N, Namikawa K. Age- and α-synuclein-dependent degeneration of dopamine and noradrenaline neurons in the annual killifish Nothobranchius furzeri. Cell Rep. 2019;26:1727–33.
Article
CAS
PubMed
Google Scholar
Parkinson J. An essay on the shaking palsy. J Neuropsychiatry Clin Neurosci. 1817;14:223–36.
Article
Google Scholar
Langston JW, Ballard P, Tetrud JW, Irwin I. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–80.
Article
CAS
PubMed
Google Scholar
Tanner CM, Ross GW, Jewell SA, Hauser RA, Jankovic J, Factor SA, et al. Occupation and risk of parkinsonism: a multicenter case-control study. Arch Neurol. 2009;66:1106–13.
Article
PubMed
Google Scholar
Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat and Parkinson’s disease. Environ Health Perspect. 2011;119:866–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellou V, Belbasis L, Tzoulaki I, Evangelou E, Ioannidis JP. Environmental risk factors and Parkinson’s disease: an umbrella review of meta-analyses. Parkinsonism Relat Disord. 2016;23:1–9. https://doi.org/10.1016/j.parkreldis.2015.12.008.
Article
PubMed
Google Scholar
Quik M, Perez XA, Bordia T. Nicotine as a potential neuroprotective agent for Parkinson’s disease. Mov Disord. 2012;27:947–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Green HJ, Fraser IG. Differential effects of exercise intensity on serum uric acid concentration. Med Sci Sports Exerc. 1988;20:55–9.
Article
CAS
PubMed
Google Scholar
Zigmond MJ, Smeyne RJ. Exercise: is it a neuroprotective and if so, how does it work? Parkinsonism Relat Disord. 2014;20:S123–7.
Article
PubMed
Google Scholar
Bakshi R, Zhang H, Logan R, Joshi I, Xu Y, Chen X, Schwarzschild MA. Neuroprotective effects of urate are mediated by augmenting astrocytic glutathione synthesis and release. Neurobiol Dis. 2015;82:574–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsuji T, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N. Reduction of nuclear peroxisome proliferator-activated receptor gamma expression in methamphetamine-induced neurotoxicity and neuroprotective effects of ibuprofen. Neurochem Res. 2009;34:764–74.
Article
CAS
PubMed
Google Scholar
Surmeier DJ. Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol. 2007;6:933–8.
Article
CAS
PubMed
Google Scholar
Kachroo A, Irizarry MC, Schwarzschild MA. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration. Exp Neurol. 2010;223:657–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Choi HK, Liu S, Curhan G. Purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid: the third National Health and nutrition examination survey. Arthritis Rheum. 2005;52:283–9.
Article
PubMed
Google Scholar
Marras C, Hincapie CA, Kristman VL, Cancelliere C, Soklaridis S, Li A, et al. Systematic review of the risk of Parkinson’s disease after mild traumatic brain injury: results of the international collaboration on mild traumatic brain injury prognosis. Arch Phys Med Rehabil. 2014;95:S238–44.
Article
PubMed
Google Scholar
Aarsland D, Pahlhagen S, Ballard CG, Ehrt U, Svenningsson P. Depression in Parkinson disease – epidemiology, mechanisms and management. Nat Rev Neurol. 2012;8:35–47.
Article
CAS
Google Scholar
Brichta L, Greengard P, Flajolet M. Advances in the pharmacological treatment of Parkinson’s disease: targeting neurotransmitter systems. Trends Neurosci. 2013;36:543–54.
Article
CAS
PubMed
Google Scholar
Breckenridge CB, Berry C, Chang ET, Sielken RL Jr, Mandel JS. Association between Parkinson’s disease and cigarette smoking, rural living, well-water consumption, farming and pesticide use: systematic review and meta-analysis. PLoS One. 2016;11:e0151841.
Article
PubMed
PubMed Central
Google Scholar
Thacker EL, O'Reilly EJ, Weisskopf MG, Chen H, Schwarzschild MA, McCullough ML, et al. Temporal relationship between cigarette smoking and risk of Parkinson disease. Neurology. 2007;68:764–8.
Article
CAS
PubMed
Google Scholar
Mellick GD, Gartner CE, Silburn PA, Battistutta D. Passive smoking and Parkinson disease. Neurology. 2006;67:179–80.
Article
PubMed
Google Scholar
Searles Nielsen S, Gallagher LG, Lundin JI, Longstreth WT Jr, Smith-Weller T, Franklin GM, et al. Environmental tobacco smoke and Parkinson’s disease. Mov Disord. 2012;27:293–6.
Article
PubMed
Google Scholar
O’Reilly EJ, McCullough ML, Chao A, Henley SJ, Calle EE, Thun MJ, Ascherio A. Smokeless tobacco use and the risk of Parkinson’s disease mortality. Mov Disord. 2005;20:1383–4.
Article
PubMed
Google Scholar
Evans AH, Lawrence AD, Potts J, MacGregor L, Katzenschlager R, Shaw K, et al. Relationship between impulsive sensation seeking traits, smoking, alcohol and caffeine intake, and Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77:317–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ritz B, Lee PC, Lassen CF, Arah OA. Parkinson disease and smoking revisited: ease of quitting is an early sign of the disease. Neurology. 2014;83:1396–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen H. The changing landscape of Parkinson epidemiologic research. J Park Dis. 2018;8:1–12. https://doi.org/10.3233/JPD-171238.
Article
Google Scholar
Jafari S, Etminan M, Aminzadeh F, Samii A. Head injury and risk of Parkinson disease: a systematic review and meta-analysis. Mov Disord. 2013;28:1222–9.
Article
PubMed
Google Scholar
Taylor KM, Saint-Hilaire MH, Sudarsky L, Simon DK, Hersh B, Sparrow D, et al. Head injury at early ages is associated with risk of Parkinson’s disease. Parkinsonism Relat Disord. 2016;23:57–61.
Article
PubMed
Google Scholar
Rugbjerg K, Ritz B, Korbo L, Martinussen N, Olsen JH. Risk of Parkinson’s disease after hospital contact for head injury: population based case-control study. BMJ. 2008;337:a2494.
Article
PubMed
PubMed Central
Google Scholar
Fang F, Chen H, Feldman AL, Kamel F, Ye W, Wirdefeldt K. Head injury and Parkinson’s disease: a population-based study. Mov Disord. 2012;27:1632–5.
Article
PubMed
Google Scholar
Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehajia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.
Article
CAS
PubMed
Google Scholar
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388:839–40.
Article
CAS
PubMed
Google Scholar
Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M. Alpha-synuclein in filamentous inclusions of lewy bodies from parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci U S A. 1998;95:6469–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, et al. α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004;364:1167–9.
Article
CAS
PubMed
Google Scholar
Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, et al. alpha-synuclein locus triplication causes Parkinson’s disease. Science. 2003;302:841. doi:https://doi.org/10.1126/science.1090278.
Article
CAS
PubMed
Google Scholar
Braak H, Del Tredici K, Rub U, de Vos RAI, Jansen Steur ENG, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.
Article
PubMed
Google Scholar
Goedert M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science. 2015;349(6248):1255555. https://doi.org/10.1126/science.1255555.
Article
CAS
PubMed
Google Scholar
Helley MP, Pinnell J, Sportelli C, Tieu K. Mitochondria: a common target for genetic mutations and environmental toxicants in Parkinson’s disease. Front Genet. 2017;8:177. https://doi.org/10.3389/fgene.2017.00177.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tanner CM, Ottman R, Goldman SM, Ellenberg J, Chan P, Mayeux R, Langston JW. Parkinson disease in twins: an etiologic study. JAMA. 1999;281:341–6.
Article
CAS
PubMed
Google Scholar
Goldman SM, Marek K, Ottman R, Meng C, Comyns K, Chan P, et al. Concordance for Parkinson’s disease in twins: a 20-year update. Ann Neurol. 2019;85:600–5.
Article
PubMed
Google Scholar
Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide BM, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 2012;8:e1002548. https://doi.org/10.1371/journal.pgen.1002548.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem. 2016;139:59–74.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chang D, Nalls MA, Hallgrimsdottir IB, Hunkapiller J, van der Brug M, Cai F, et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;49:1511–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reed X, Bandres-Ciga S, Blauwendraat C, Cookson MR. The role of monogenic genes in idiopathic Parkinson’s disease. Neurobiol Dis. 2019;124:230–9.
Article
CAS
PubMed
Google Scholar
Sardi SP, Cadarbaum JM, Brundin P. Targeted therapies for Parkinson’s disease: from genetics to the clinic. Mov Disord. 2018;33:684–96.
Article
PubMed
PubMed Central
Google Scholar
Funayama M, Hasegawa K, Kowa H, Saito M, Tsuji S, Obata F. A new locus for Parkinson’s disease (PARK8) maps to chromosome 12p11.2-q13.1. Ann Neurol. 2002;51:296–301.
Article
CAS
PubMed
Google Scholar
Greggio E, Jain S, Kingsbury A, Bandopadhyay R, Lewis P, Kaganovich A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41.
Article
CAS
PubMed
Google Scholar
West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA, et al. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102:16842–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Steger M, Tonelli F, Ito G, Davies P, Trost M, Vetter M, et al. Phosphoproteomics reveals that Parkinson’s disease kinase LRRK2 regulates a subset of Rab GTPases. eLife. 2016:e12813. https://doi.org/10.7554/eLife.12813.
Ito G, Katsemonova K, Tonelli F, Lis P, MAS B, Shpiro N, et al. Phos-tag analysis of Rab10 phosphorylation by LRRK2: a powerful assay for assessing kinase function and inhibitors. Biochem J. 2016;473:2671–85.
Article
CAS
PubMed
Google Scholar
Lis P, Burel S, Steger M, Mann M, Brown F, Diez F, et al. Development of phosphor-specific Rab protein antibodies to monitor in vivo activity of the LRRK2 Parkinson’s disease kinase. Biochem J. 2018;475:1–22.
Article
CAS
PubMed
Google Scholar
Neudorder O, Giladi N, Elstein P, Abrahamov A, Turezkite T, Aghai E, et al. Occurrence of Parkinson’s syndrome in type I Gaucher disease. QJM. 1996;89:691–4.
Article
Google Scholar
Halperin A, Elstein D, Zimran A. Increased incidence of Parkinson disease among relatives of patients with Gaucher disease. Blood Cells Mol Dis. 2006;36:426–8.
Article
PubMed
Google Scholar
Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L, Lachmann RH, et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain. 2009;132:1783–94.
Article
PubMed
PubMed Central
Google Scholar
Huang CL, Wu-Chou YH, Lai SC, Chang HC, Yeh TH, Weng YH, et al. Contribution of glucocerebrosidase mutation in a large cohort of sporadic Parkinson’s disease in Taiwan. Eur J Neurol. 2011;18:1227–32.
Article
PubMed
Google Scholar
Yu Z, Wang T, Xu J, Wang W, Wang G, Chen C, et al. Mutations in the glucocerebrosidase gene are responsible for Chinese patients with Parkinson’s disease. J Hum Genet. 2015;60:85–90.
Article
CAS
PubMed
Google Scholar
Mitsui J, Mizuta I, Toyoda A, Ashida R, Takahashi Y, Goto J, et al. Mutations for Gaucher disease confer high susceptibility to Parkinson disease. Arch Neurol. 2009;66:571–6.
Article
PubMed
Google Scholar
Beavan M, Schapira AHV. Glucocerebrosidase mutations and the pathogenesis of Parkinson disease. Ann Med. 2013;45:511–21.
Article
CAS
PubMed
Google Scholar
Perrett RM, Alexopoulou Z, Tofaris GK. The endosomal pathway in Parkinson’s disease. Mol Cell Neurosci. 2015;66:21–8.
Article
CAS
PubMed
Google Scholar
Billingsley KJ, Bandres-Ciga S, Saez-Atienzar S, Singleton AB. Genetic risk factors in Parkinson’s disease. Cell Tissue Res. 2018;373:9–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Redensek S, Trost M, Dolzan V. Genetic determinants of Parkinson’s disease: can they help to stratify the patients based on the underlying molecular defect? Front Aging Neurosci. 2017;9:20. https://doi.org/10.3389/fnagi.2017.00020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cookson MR. Mechanisms of mutant LRRK2 neurodegeneration. Adv Neurobiol. 2017;14:227–39.
Article
PubMed
Google Scholar
Arranz AM, Delbroek L, Van Kolen K, Guimarães MR, Mandemakers W, Daneels G, et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J Cell Sci. 2015;128:541–52.
Article
CAS
PubMed
Google Scholar
Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, et al. Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12:826–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu HF, Lu S, Ho PW, Tse HM, Pang SY, Kung MHW, et al. LRRK2 R1441G mice are more liable to dopamine depletion and locomotor inactivity. Ann Clin Transl Neurol. 2014;1:199–208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ho PW, Leung CT, Liu HF, Pang SY, Lam CS, Xian J, et al. Age-dependent accumulation of oligomeric SNCA/α-synuclein from impaired degradation in mutant LRRK2 knockin mouse model of Parkinson disease: role for therapeutic activation of chaperone-mediated autophagy (CMA). Autophagy. 2019;14:1–24. https://doi.org/10.1080/15548627.2019.1603545.
Article
CAS
Google Scholar
Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A, Chen SG, et al. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21:1931–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stafa K, Tsika E, Mose R, Musso A, Glauser L, Jones A, et al. Functional interaction of Parkinson’s disease-associated LRRK2 with members of the dynamin GTPase superfamily. Hum Mol Genet. 2014;23:2955–77.
Article
CAS
Google Scholar
Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, De Miranda BR, et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci Transl Med. 2018;10(451):eaar5429. https://doi.org/10.1126/scitranslmed.aar5429.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sidransky E, Nalls MA, Aasly JO, Aharon-Peretz J, Annesi G, Barbosa ER, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361:1651–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wong K, Sidransky E, Verma A, Mixon T, Sandberg GD, Wakefield LK, et al. Neuropathology provides clues to the pathophysiology of Gaucher disease. Mol Genet Metab. 2004;82:192–207.
Article
CAS
PubMed
Google Scholar
Murphy KE, Gysbers AM, Abbott SK, Tayebi N, Kim WS, Sidransky E, et al. Reduced glucocerebrosidase is associated with increased α-synuclein in sporadic Parkinson’s disease. Brain. 2014;137:834–48.
Article
PubMed
PubMed Central
Google Scholar
Gegg ME, Burke D, Heales SJR, Cooper JM, Hardy J, Wood NW, et al. Glucocerebrosidase deficiency in substantia nigra of Parkinson disease brains. Ann Neurol. 2012;72:455–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:702–5.
Article
CAS
PubMed
Google Scholar
Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8:711–5.
Article
CAS
PubMed
Google Scholar
Evans W, Fung HC, Steele J, Eerola J, Tienari P, Pittman A, et al. The tau H2 haplotype is almost exclusively Caucasian in origin. Neurosci Lett. 2004;369:183–5.
Article
CAS
PubMed
Google Scholar
Lin CH, Wu RM. Biomarkers of cognitive decline in Parkinson’s disease. Parkinsonism Relat Disord. 2015;21:431–43.
Article
PubMed
Google Scholar
Giasson BI, Forman MS, Higuchi M, Golbe LI, Graves GL, Kotzbauer PT, et al. Initiation and synergistic fibrillization of tau and α-synuclein. Science. 2003;300:636–40.
Article
CAS
PubMed
Google Scholar
Goris A, Williams-Gray CH, Clark GR, Foltynie T, Lewis SJ, Brown J, et al. Tau and α-synuclein in susceptibility to, and dementia in. Parkinson’s disease Ann Neurol. 2007;62:145–53.
CAS
PubMed
Google Scholar
Singleton A, Hardy J. The evolution of genetics: Alzheimer’s and Parkinson’s diseases. Neuron. 2016;90:1154–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marder K, Wang Y, Alcalay RN, Mejia-Santana H, Tang MX, Lee A, et al. Age-specific penetrance of LRRK2 G2019S in the Michael J. fox Ashkenazi Jewish LRRK2 consortium. Neurology. 2015;85:89–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22. https://doi.org/10.1186/s40478-017-0426-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klein C, Lohmann-Hedrich K, Rogaeva E, Schlossmacher MG, Lang AE. Deciphering the role of heterozygous mutations in genes associated with parkinsonism. Lancet Neurol. 2007;6:652–62.
Article
CAS
PubMed
Google Scholar
Casarejos M, Menendez J, Solano RM, Rodriguez-Navarro JA, Garcia de Yebenes J. Mena MA Susceptibility to rotenone is increased in neurons from Parkin null mice and is reduced by minocycline. J Neurochem. 2006;97:934–46.
Article
CAS
PubMed
Google Scholar
Liu HF, Ho PW, Leung GC, Lam CS, Pang SY, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson’s disease. Sci Rep. 2017;7:40887. https://doi.org/10.1038/srep40887.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y. Striatal dopamine deficiency in Parkinson’s disease: role of aging. Ann Neurol. 1989;26:551–7.
Article
CAS
PubMed
Google Scholar