Skip to main content

Table 1 Summary of imaging radiomics features and calculation formulas

From: A review of brain imaging biomarker genomics in Alzheimer’s disease: implementation and perspectives

 

Feature name

Calculation formula

First-order features

SUVR

\(SUVR_{mean} = \frac{{I_{avg\_ROIC} }}{{I_{avg\_ref} }}\)

FA

\(\sqrt {\frac{{(\lambda_{1} - \lambda_{2} )^{2} + (\lambda_{1} - \lambda_{3} )^{2} + (\lambda_{2} - \lambda_{3} )^{2} }}{{2(\lambda_{1} + \lambda_{2} + \lambda_{3} )^{2} }}}\)

Skewness

\(\sigma^{ - 3} \mathop \sum \limits_{i = 1}^{{N_{g} }} \left( {i - \mu } \right)^{3} p\left( i \right)\)

Kurtosis

\(\sigma^{ - 4} \mathop \sum \limits_{i = 1}^{{N_{g} }} [\left( {i - \mu } \right)^{4} p\left( i \right)] - 3\)

Variance

\(\mathop \sum \limits_{i = 1}^{{N_{g} }} \left( {i - \mu } \right)^{2} p\left( i \right)\)

Other First-order features: cortical thickness; grey matter volume (sMRI features); ALFF, fALFF, ReHo, FC (fMRI signals); MD, radD, axD (DTI diffusion parameters); clustering coefficient, characteristic path length, small-worldness, global efficiency, transitivity, assortativity coefficient, modularity (various network parameters); and so on

High-dimensional features

Energy

\(\mathop \sum \limits_{i = 1}^{{N_{g} }} \mathop \sum \limits_{j = 1}^{{N_{g} }} \left[ {p\left( {i,j} \right)} \right]^{2}\)

Strength

\(\frac{{\mathop \sum \nolimits_{i = 1}^{{N_{g} }} \mathop \sum \nolimits_{i = 1}^{{N_{g} }} \left( {n_{i} + n_{j} } \right)\left( {i - j} \right)^{2} }}{{\left[ {\varepsilon + \mathop \sum \nolimits_{i = 1}^{{N_{g} }} s\left( i \right)} \right]}},n_{i} \ne 0,n_{j} \ne 0\)

Entropy

\(\mathop \sum \limits_{i = 1}^{{N_{g} }} \mathop \sum \limits_{j = 1}^{{N_{g} }} p\left( {i,j} \right)log\left( {p\left( {i,j} \right)} \right)\)

GLN

\(\mathop \sum \limits_{i = 1}^{{N_{g} }} (\mathop \sum \limits_{j = 1}^{{N_{r} }} r\left( {i,j} \right))^{2}\)

LRHGE

\(\mathop \sum \limits_{i = 1}^{{N_{g} }} \mathop \sum \limits_{j = 1}^{{N_{r} }} i^{2} j^{2} r\left( {i,j} \right)\)

GLV

\(\frac{1}{{N_{g} \times N_{r} }}\mathop \sum \limits_{i = 1}^{{N_{g} }} \mathop \sum \limits_{j = 1}^{{N_{r} }} \left( {ir\left( {i,j} \right) - \mathop \sum \limits_{i = 1}^{{N_{g} }} i\mathop \sum \limits_{j = 1}^{{N_{r} }} r\left( {i,j} \right)} \right)^{2}\)

Other High-dimensional features are based on other analytical methods

  1. ALFF amplitude of low-frequency fluctuations, axD axial diffusivity, FA fractional anisotropy, fALFF fractional ALFF, FC functional connectivity, GLN/GLV grey-level non-uniformity/variance, LRHGE long run high grey-level emphasis, MD mean diffusivity, radD radial diffusivity, ReHo regional homogeneity, SUVR standard update value ratios. Where \(I_{avg\_ROIC}\) is the average intensity of the brain regions, \(I_{avg\_ref}\) is the average intensity of the reference region, \(\lambda_{1} ,\lambda_{2} ,\lambda_{3}\) means the DTI eigenvalues, \(N_{g}\) denotes the number of grey levels, \(N_{r}\) is the maximum distance of run lengths, \(p\left( i \right)\) denotes the number of pixels with grey level \(i\) in the normalized grey histogram, and \(\mu\) denotes the mean value