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Abstract

Parkinson'’s disease (PD) is diagnosed when patients exhibit bradykinesia with tremor and/or rigidity, and when
these symptoms respond to dopaminergic medications. Yet in the last years there was a greater recognition of
additional aspects of the disease including non-motor symptoms and prodromal states with associated pathology
in various regions of the nervous system. In this review we discuss current concepts of two major alterations found
during the course of the disease: cytoplasmic aggregates of the protein a-synuclein and the degeneration of
dopaminergic neurons. We provide an overview of new approaches in this field based on current concepts and
latest literature. In many areas, translational research on PD has advanced the understanding of the disease but

phenomena.

neurons, Autophagy

there is still a need for more effective therapeutic options based on the insights into the basic biological
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Introduction to Parkinson’s disease (PD)

PD is diagnosed when patients exhibit bradykinesia with
tremor and/or rigidity, and when these symptoms respond
to dopaminergic medications [1]. In the past few years,
additional aspects of the disease including non-motor
symptoms and prodromal states with associated pathology
in various regions of the nervous system gained increasing
attention. The non-motor symptoms affect the quality of
life because they cannot be treated as well as the typical
motor symptoms, thus constituting one of the most im-
portant therapeutic challenges in PD therapy. The other
challenge lies in the management of motor fluctuations,
i.e. the PD motor symptoms remain responsive to dopa-
minergic medications but the mobility is tightly linked to
serum concentrations, which requires short dosing-
intervals or the use of medication pumps. In the brains of
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PD patients, we have found two major pathologies, cyto-
plasmic aggregates of alpha-synuclein (aSyn) and degener-
ation of dopaminergic neurons. The current therapies and
translational research are focusing on these two aspects,
which will be discussed in the following.

Part 1: Synuclein pathology

In 1997, we began to know that rare familial forms of
PD could be caused by point mutations in the aSyn gene
SNCA [2], including the mutations of A53T, A30P,
E46K, H50Q and G51D, and duplication of the SNCA
locus. In addition, polymorphisms in the SNCA locus
are a risk factor for sporadic PD [3, 4]. Following the de-
tection of PD-associated mutations, aSyn was identified
as a major constituent of Lewy bodies (LB) [5]. These
cytosolic inclusions of aggregated proteins were first
described histologically by Fritz Heinrich Lewy in 1912
and associated with PD by Konstantin Nikolaevich
Trétiakoff in 1919 [6]. Almost a century later, Heiko
Braak described the distribution of LB in the brain and
suggested that the aSyn pathology spreads along the
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axonal projections [7]. According to this concept, the
aSyn pathology starts in the periphery and enters the
brain through the olfactory bulb or along the vagal nerve
[8]. Then it spreads transsynaptically to the limbic sys-
tem respectively to further brainstem nuclei including
the substantia nigra pars compacta. Subsequently, the
pathology spreads to the neocortical areas [9].

Lewy neurites are swollen neurites that contain aSyn
filaments [10] and in fact incorporate the majority of
aSyn aggregates [11]. Dystrophic aSyn-positive neurites
have also been observed in the peripheral nervous sys-
tem [12]. In addition to PD, other disorders are also as-
sociated with aSyn aggregates, including dementia with
Lewy bodies and multisystem atrophy (MSA). In MSA,
aSyn aggregates are located in glial rather than in neur-
onal cells [13]. The emergence and spread of the aSyn
pathology are illustrated in Fig. 1la.

Clinical correlates of synuclein pathology
The concept of the spreading aSyn pathology has con-
vinced clinicians because it is consistent with the fact
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that PD motor symptoms are accompanied by and often
preceded by non-motor symptoms. This concept also
led to the definition of prodromal or pre-motor stage of
PD [14]. Early non-motor symptoms include hyposmia
[15] — plausibly caused by aSyn pathology in the olfac-
tory bulb - and gastrointestinal symptoms [16] — plaus-
ibly caused by aSyn pathology in the vagus nerve. The
rapid-eye-movement sleep behavioral disorder is
caused by dysfunction of a specific brainstem nucleus
and is one of the most specific predictors of PD [17].
The most important non-motor symptom of advanced
PD is dementia, which is plausibly caused by cortical
aSyn pathology [18].

It should be noted, however, that the correlation be-
tween the distribution of Lewy bodies in the brain and
clinical symptoms is not perfect. There are patients with
“incidental” Lewy bodies that clinically do not differ
from age-matched controls and patients with an
“atypical” distribution pattern of aSyn pathology [19].
Furthermore, even some familial forms of PD lack Lewy
bodies [20]. Some authors have argued that the clinical
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Fig. 1 Aggregation, transport and clearance of a-synuclein. a Concept of aggregation and spreading: After ribosomal translation of pathogenic a-
synuclein (aSyn), monomers (1) form oligomers (2) and primary nucleation with formation of the first aggregate takes place. Subsequent steps are
fibril elongation (3) and secondary nucleation with formation of further nuclei, e.g. by fibrils breaking (4). The aggregates are transported along
the axonal projections, secreted and taken up by a neighboring cell (5). The aggregation of aSyn monomers is greatly enhanced by addition of
even small quantities of aggregates, which serve as nuclei and replace the slow step of primary nucleation by the faster step of secondary
nucleation. This process is called seeding (6). b Transport and autophagic clearance of aSyn: Aggregates are dynein-dependently transported to
the perinuclear region to form aggresomes. Parts of the cytosol containing aggregates get engulfed by a membrane to form autophagosomes.
Subsequently, Rab7 regulates the trafficking of autophagosomal and lysosomal vesicles and their fusion towards autolysosomes, followed by
degradation of the vesicle content. There is also evidence for the secretion via exosomal release
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symptoms are better explained by the distribution of
Lewy neurites than by Lewy bodies given that the former
likely produce greater functional impairment [21].

The non-motor symptoms are prominent features of
PD and constitute a major impact on quality of life [22].
This can be attributed to the fact that classical motor
symptoms respond well to dopaminergic medication,
whereas symptomatically, the non-motor symptoms
often cannot be treated well.

Synuclein aggregation and spreading

aSyn aggregation has been studied extensively in vitro,
using biophysical methods to assess different steps of
the aggregation process and measure different aSyn
species [23]. Steps of aggregation include primary nucle-
ation (i.e. formation of the first aggregate from mono-
meric aSyn), fibril elongation/aggregate growth, and
secondary nucleation (formation of further nuclei, e.g.
by fibrils breaking) (Fig. 1a). Small molecules can inhibit
the aggregation by interfering with any of these steps
[24, 25]. We have recently demonstrated that an engi-
neered B-wrappin can bind to the aSyn monomer and
prevent aSyn aggregation in a substoichiometric manner
[23]. Aggregation of aSyn monomer is greatly enhanced
by addition of even small quantities of aggregates, which
serve as nuclei and replace the slow step of primary nu-
cleation by the faster step of secondary nucleation. This
process is called seeding (step 6 in Fig. 1).

The spread of aSyn pathology through the brain can
therefore be decomposed into three distinct processes:
(i) the transport of aSyn aggregates along the axonal
projections to new brain areas, (ii) the secretion and up-
take of aSyn aggregates and (iii) seeding (Fig. 1). The
transport was initially described as mainly retrograde,
but both directions have been observed in cellular and
mouse models [26, 27]. The mechanisms of secretion
and uptake remain to be clarified, however, the
exosomal release and endocytosis have been proposed to
be involved [28-30]. Some evidence has suggested that
the aSyn secretion is dependent on the presynaptic activ-
ity [31-33] and the lysosomal processing may also be
involved in the transmission [34, 35]. The endogenous
synuclein and a fibrillary structure of aSyn are not
essential for the spread of aSyn through the brain
[36, 37], and environmental toxins can trigger aSyn
aggregation [8].

Although aSyn fibrils consisting largely of beta-sheets
are considered the major constituents of Lewy bodies
and Lewy neurites, the beta-sheet formation is not ne-
cessary for aSyn toxicity [38, 39]. One of the most con-
troversial questions about aSyn aggregation is whether
different synucleinopathies, specifically PD and MSA,
are characterized and/or caused by different “strains” of
aSyn aggregates [40]. A recent refinement of the “protein
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misfolding cyclic amplification” method has indicated
that PD and MSA are indeed characterized by different
strains of aSyn aggregates and that their differences can
be detected even in cerebrospinal fluid from PD and
MSA patients [41]. Also in mouse models, different
pathologies have been observed following injection of
“PD” and “MSA” seeds [42, 43].

Aggregate clearance and functional significance of Lewy
bodies

Cells do not remain passive to the formation of aSyn ag-
gregates. Using fluorescently tagged aSyn and live-cell
microscopy we observed active transport of aSyn aggre-
gates towards a perinuclear region where aggregates ac-
cumulate [44]. This region is called aggresome and is
located at the microtubule organizing center [45]. The
transport of aggregates towards the aggresome is medi-
ated by microtubules and dynein motors (Fig. 1b). Ag-
gregates are recruited to dynein motors by different
adaptor proteins, including p62, heat-shock proteins and
HDACS6 [46]. Ubiquitination is a typical first step for the
recognition of aggregates by this system, but it is neither
necessary nor required [47].

Cells can degrade aSyn aggregates [44] and they do so
mainly by autophagy [48] (Fig. 1b). Autophagy can be
stimulated by starvation and by other mechanisms in-
cluding the Ras-related in brain 7 (Rab7) pathway [49].
The purpose of aggregate transport to the aggresome is
to bring together the aggregates and the degradation
machinery, i.e. precursors of autophagic vesicles [46, 50].
Autophagosomes are degraded by fusion with lysosomes.
This accumulation of autophagosomes and lysosomes
around aggresomes and aggregates is illustrated in Fig. 2.
Consequently, interfering with dynein functions impairs
autophagic degradation of protein aggregates [51]. Over-
expression of the cargo protein p62 leads to the forma-
tion of large “p62 bodies”, which are to some extent
similar to aggresomes [52]. The P62 bodies are also ob-
served with coexpression of p62 and aSyn (Fig. 2b).
Autophagy can be induced by starvation (“HBSS” in
Fig. 3cl and c2), leading to more cells without aggre-
gates and a particularly strong reduction of aggresomes
rather than that of small dispersed aggregates. The
increased aggregate clearance was also observed to be
induced by Rab7 and its effector FYCO1 (FYVE and
coiled-coil domain 1) [49, 53]. Conversely, blocking the
induction of autophagy with a dysfunctional version of
the autophagic membrane protein Atg5 leads to a strong
increase of aggresomes (Fig. 3b2) and the presence of
p62 bodies in neurons of mouse cortex and striatum
[52]. The autophagic clearance can also be inhibited by
bafilomycin, which blocks the fusion of autophagosomes
with lysosomes (Fig. 3c1 and c2). Inhibiting the prote-
asome (e.g. by MG132) also leads to a strong increase in
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Fig. 2 a-Synuclein particles and acidic compartments by light microscopy. a Deconvolved confocal images of live HEK293T cells transfected with
A53T-a-synuclein (Syn)-EGFP and treated with lysotracker red for 2 h at 37 °C. Arrows show an aggresome. Note the distribution of lysotracker-
positive vesicles close to the aggresome and other aSyn aggregates. b Deconvolved confocal image of HEK293T cells transfected with A53T-a-
Syn-mCherry, the lysosomal marker LAMP1-EGFP and the cargo protein p62 without fluorescent tag. Enlarged insets show a cluster of LAMP1-
decorated vesicles colocalizing with aSyn. Arrow shows a large aggresome, so called “p62 body". ¢ Deconvolved confocal image of HEK293T cells
transfected with A53T-a-syn-EGFP and a biosensor of the autophagosome lipid phosphatidylinositol 3-phosphate (PI3P) tagged to mCherry.
Enlarged insets show the PI3P-positive vesicles around the aggresome (arrow), consistent with the hypothesis that autophagosomes degrade
aggresomes. In panels b-c, the red and green channels of the insets are shown individually next to the merged images. Scale bars, 5 um.

Original data
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aggresomes (Fig. 3c2), but this effect is based on the fact
that the proteasome clears monomeric synuclein [48].
Thus the proteasome inhibition increases aggregates by
increased formation but not by reduced clearance. This
reasoning highlights the importance of time-resolved la-
boratory methods like time-lapse imaging.

Lewy bodies are related to aggresomes [54] and thus
signal the occurrence of aggregated proteins. Yet, they
are considered part of the cellular defense against pro-
tein aggregates and not toxic per se. Aggresomes are the
meeting place for aggregates, autophagic membranes,
and even lysosomes. Consequently, they are composed
not only of densely packed aggregates but also of other
cellular components including microtubule-associated
proteins [55] and vesicle membranes [56]. The formation

of Lewy bodies is in fact a slow maturation process that
involves many steps after accumulation of aggregates
and vesicles, including posttranslational modifications of
aSyn [57]. These findings provide an explanation for the
observation in our own work of vesicles positive for the
autophagosome lipid phosphatidylinositol 3-phosphate
(Fig. 3c) and Rab7 [49].

Open questions and future perspectives

Several antibodies against aSyn are currently under test-
ing in PD patients. They are well tolerated and have
shown a reduction of serum aSyn [58]. This strategy
builds on early findings in an aSyn-based mouse model
[59, 60], but important questions remain unresolved: (1)
What is the ideal epitope against which, antibodies
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Fig. 3 a-Synuclein and autophagy. a HEK293 cells were transfected with EGFP-tagged A53T-a-synuclein and manually classified due to the
distribution of EGFP. a1 A representative example of homogenous distribution of EGFP, as the healthy phenotype. a2 A representative example
of a cell containing an aggresome. Scale bars, 5 um. b HEK293 cells were transfected with EGFP-tagged A53T-a-synuclein and the dominant
negative version of autophagy-related protein 5 (Atg5). Significances from t-test; n = 3 independent experiments. ¢ HEK293 cells were transfected
with EGFP-tagged A53T-a-synuclein and cells were incubated with 0.2 uM Bafilomycin A1 (BafA1) for 4 h to block autophagy or with 5 uM
proteasome inhibitor MG132 for 4 h. Starvation was induced by complete medium exchange for Hank's balanced salts (HBSS) for 4 h. One-way
ANOVA was significant, results from post-hoc test are indicated (n = 3 independent experiments). Graphs represent mean + SD. *p < 0.05, **p <
0.01, **p < 0.001. Original data

should be targeted? Is it the C-terminus or the N-
terminus? Is it monomers, oligomers or fibrils, full-
length or truncated aSyn, native or aSyn with posttrans-
lational modifications? (2) Can systemic administration
of an antibody deplete aSyn in the brain? Could intra-
thecal antibodies deplete aSyn in the basal ganglia and
brainstem nuclei? (3) How often will antibodies have to
be applied and how long will it take to expect an effect
on PD symptoms? Can we expect an effect even in man-
ifested PD or do we have to start even earlier? (4) Which
PD symptoms are good primary endpoints for aSyn-
directed trials? Since dopamine depletion is already quite
advanced at the time of diagnosis, and since the
dopamine-responsive symptoms are alleviated by current
treatments, the non-motor symptoms likely are better

candidates. But which non-motor symptoms can be
assessed quantitatively and progress in a linear way?
While some of these questions can only be addressed
in PD patients, some can be addressed in aSyn-based
animal models - certainly in the near future. Which is
the best animal model for these investigations? In ro-
dents, many current studies used viral overexpression of
aSyn or the administration of pre-formed aSyn fibrils
[42, 61-63]. Viral overexpression induces aSyn aggre-
gates, degeneration of dopaminergic neurons and a
behavioral phenotype [64, 65]. The validity of aSyn over-
expression is supported by the fact that PD can be
caused by triplications of the aSyn locus and that poly-
morphisms in the aSyn promoter region (which affect
aSyn expression levels) are important risk factors for
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sporadic PD. Fibrils can be generated in vitro from re-
combinant aSyn protein [66], and have been extracted
from diseased brains of rodent models or patients [67,
68]. These models have been instrumental to investigate
the existence of aSyn strains (see above) and support
prion-like properties of aSyn pathology [69]. Work on
aSyn aggregation in PD patients is hampered by the fact
that brain pathology is available only post mortem. aSyn-
based biomarkers in cerebrospinal fluid are under way
[70], but still much less developed than for Alzheimer’s
disease. aSyn pathology in skin biopsies has shown prom-
ise to develop into a biomarker to confirm the diagnosis
and possibly even quantify synucleinopathy [71].

Part 2: Dopamine deficiency

Responsiveness of PD motor symptoms to dopaminergic
medication is one of the great medical achievements of
the twentieth century [72], constitutes a major diagnos-
tic criterion [1], and highlights the importance of dopa-
minergic neuron degeneration in PD. Still, many
fundamental questions remain unresolved, including the
question why dopaminergic neurons in the substantia
nigra degenerate in PD even though they are not the
only or even the first neurons to show aSyn pathology.
Moreover, it has remained enigmatic through which
changes in neuronal structure and/or function dopamine
deficiency causes PD motor symptoms.

Selective vulnerability of substantia nigra dopaminergic
neurons

Many types of neurons acquire aSyn pathology, but it is
mainly dopaminergic neurons in the substantia nigra
pars compacta (SNc) that degenerate in PD. Further cell
types include noradrenaline and serotonin neurons in
the locus coeruleus and raphe [73, 74]. It is therefore
plausible to assume that the catecholamine production
renders neurons particularly sensitive to neurodegenera-
tion and aSyn toxicity. Indeed, dopamine can form toxic
quinones with aSyn [75] and oxidative stress is critical
for the propagation of aSyn pathology [8, 64] and neur-
onal dysfunction [76]. Moreover, catecholamine synthe-
sis is associated with oxidative stress and dopaminergic
neurons predominantly degenerate upon systemic ex-
posure to mitochondrial complex I inhibitors such as
rotenone [77]. This is consistent with the epidemio-
logical finding that exposure to insecticides constitutes a
risk factor for PD [78, 79]. Conversely, aSyn modulates
dopaminergic neurotransmission [80], and the induction
of aSyn pathology leads to degeneration of dopaminergic
neurons [81, 82].

Yet, there are also arguments against the notion that
dopamine production is the critical feature that explains
degeneration of this neuronal population in PD. The
most important argument is the fact that the
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neighboring population of dopaminergic neurons in the
ventral tegmental area degenerates much less in PD pa-
tients. Moreover, even among the dopaminergic neurons
of the SNc, caudal and ventrolateral subpopulations are
affected more strongly [83]. Consequently, additional
features of SNc dopaminergic neurons have been tested
for their capacity to explain selective vulnerability. These
features include firing patterns, specific ion channels and
morphological features such as their long and highly
branched axons [84—86].

The latter aspect is supported by the notion that dopa-
minergic axon terminals in the striatum degenerate earl-
ier in PD than their somata in the substantia nigra [87].
The fact that most of the striatal axon terminals are
already lost at the time of diagnosis (and at least 50% of
substantia nigra dopaminergic neurons) indicates that
there is a long time of prodromal PD, consistent with
the findings from Lewy pathology. The advanced degen-
eration of the dopaminergic system at the time of
diagnosis means that the dynamic range for further neu-
rodegeneration after diagnosis is small. Classical
dopamine-dependent motor symptoms are therefore not
good candidates to monitor neurodegeneration in clin-
ical trials with possible neuroprotective strategies. In
addition, this notion gives rise to the question of what
underlies the qualitative differences between the re-
sponse to dopaminergic medications in early as com-
pared to advanced PD patients (see below).

Effects of dopamine deficiency on neuronal activity

The dominating model of how dopamine deficiency
causes the cardinal motor symptoms was established
based on the electrophysiological recordings in 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated pri-
mates [88]. Since its original description, it has been modi-
fied and expanded [89, 90]. In the “rate model” [91]
(Fig. 4), the striatum functions as the primary entry struc-
ture for the basal ganglia and projects to its output nuclei
(globus pallidus par interna, GPi, and substantia nigra pars
reticulata, SNr) through two pathways: the direct pathway
consists of D1 dopamine receptor-bearing striato-pallidal
projection neurons; and the indirect pathway is gated by
D2 dopamine receptors and projects from striatum to the
output nuclei through the globus pallidus pars externa
and the subthalamic nucleus (STN). The GABAergic out-
put nuclei project to the thalamus (primarily ventral an-
terior and ventral lateral nuclei).

The physiological function of this basal ganglia cir-
cuitry is to gate motor patterns, i.e., it serves as a “brake”
for movements. This brake is too tight in PD and not
tight enough in chorea. Our current understanding of
basal ganglia functioning includes the following add-
itional aspects:
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the direct pathway from striatum to GPi/SNr, gated by D1 dopamine receptors, the indirect pathway through GPe and STN, gated by D2
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excitability and morphology. Display of circuitry inspired by Hutchison et al., 2004 [91
arrows indicate glutamatergic projections. Abbreviations: p, pathway; rec,, receptor; STN, subthalamic nucleus; GPe, globus pallidus pars externa;
GPi, globus pallidus pars interna; SNr, substantia nigra pars reticulata; MSN, medium spiny neurons

inhibition of competing
motor patterns

]. Blue arrows indicate GABAergic projections, and red

J

(1) The basal ganglia are not simply a brake but both
serve to allow (disinhibit) a desired motor pattern
and inhibit competing motor patterns [92].

(2) The striatum is not the only input structure for the
basal ganglia; there is also a “hyperdirect pathway”
to the subthalamic nucleus [91].

(3) Movements are not only regulated by the projection
from GPi/SNr to the thalamus but also through
projections to brainstem nuclei, in particular the
pedunculopontine nucleus [90].

(4) The basal ganglia are not one big structure for motor
control, but consist of several loops that regulate
motor, limbic and associative functions [93].

Explaining the therapeutic mechanism of chronic
high-frequency stimulation of the STN in PD patients
has been a major challenge for the basal ganglia model.
One solution to this challenge is to focus on the spatial
and temporal patterns of neuronal activity, instead of
the overall firing rate. For instance, recordings in PD pa-
tients and nonhuman primate models have suggested
that a bursting firing pattern is more common and that
correlations between neurons are altered [90]. Moreover,
oscillations in the basal ganglia circuitry are important
determinants of patients’ mobility [91, 94, 95]. Beta os-
cillations in particular are associated with impaired

movement. Their detection can be used to find the best
spot for therapeutic STN stimulation. The specific inhib-
ition of these oscillations by phase-locked stimulation
can change PD motor symptoms. Importantly, only al-
tered firing patterns and oscillations but not changes in
firing rate can explain the emergence of tremor in PD
patients. In simple terms, therapeutic deep brain stimu-
lation works mainly by cancelling these pathological fir-
ing patterns but not by altering the overall rate of
neuronal activity.

Cellular consequences of dopamine deficiency

Dopaminergic neurons project to virtually all areas of
the brain. The densest network of dopaminergic axon
terminals is located in the striatum. Spiny projection
neurons (or medium spiny neurons, MSNs) are the most
abundant cell type in the striatum and thus are most dir-
ectly affected by dopamine deficiency in PD. From the
rate model explained above, we expect D1-MSNs to be
less active with dopamine depletion and D2-MSNs to be
hyperactive. Yet, MSNs do not remain passive with
dopamine depletion. Animal experiments have shown
that MSNs rather change their excitability in order to
compensate for the loss of dopaminergic innervation.
Thus, D1-MSNs increase their electrical excitability and
D2-MSNs decrease their electrical excitability after
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prolonged dopamine depletion. In addition, both types
of MSN also change their morphology, showing less
complex dendritic arborizations and fewer spines with a
reduced number of glutamatergic synapses [96—98].
Similar changes in MSN dendritic arborizations have
also been observed in PD patients [99].

These findings — primarily in PD rodent models —
highlight the notion that even though it is dopaminergic
neurons that degenerate in PD, many more cell types
change their functioning in response to dopamine
depletion. These “homeostatic” changes are affected by
dopaminergic mediation [97, 98] and both the conse-
quences of dopamine depletion and the consequences of
excessive dopamine substitution might not be fully re-
versible. Accordingly, even transient administration of
dopamine antagonists can induce lasting movement dis-
orders termed tardive dyskinesias [100].

Moreover, the clinical effects of dopaminergic medica-
tions last much longer than what would be expected from
pharmacokinetics alone. For levodopa, this “long-duration
response” [101] has been partially explained by levodopa
storage in dopaminergic terminals. Yet, a long duration re-
sponse is also seen for dopamine agonists with short half-
life [102]. In the classical ELLDOPA trial, the long-
duration response - ie. the difference after 2 weeks with-
out medication in patients either treated for 1 year with
levodopa as compared to placebo — made up 50% of the
total response to levodopa [103]. It is plausible to assume
that the changes in MSN excitability and morphology at
least partially underlie the long-duration response to
dopamine depletion and dopaminergic medication.

In addition to facilitating movement, dopamine serves
as a reward-based teaching signal in many brain areas
[104]. Consequently, dopamine deficiency not only leads
to the altered steady-state activity, excitability and
morphology, but in addition to alterations in long-term
potentiation (LTP) and long-term depression (LTD), the
neurophysiological correlates of learning and memory.
Specifically, dopamine depletion reduces both LTP and
LTD induction in the striatum. Short-term and long-
term dopamine substitution have different effects, with
short-term substitution leading to recovery of LTP and
LTD and long-term high-dose substitution leading to a
loss of LTD and a loss of LTP depotentiation [105].
These effects could underlie the occurrence of dyskine-
sias and impulse control disorder in PD patients.

Future perspectives for translational research

At the timepoint of PD diagnosis, motor symptoms can
be readily and continually alleviated by dopaminergic
medication whereas in advanced disease, dopaminergic
medication may trigger dyskinesia and hallucinations
and the duration of the effect is much shorter. The ma-
jority of dopaminergic axon terminals are already lost at
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the timepoint of diagnosis [87]. The qualitative and
quantitative differences in the response to dopamine be-
tween early and late PD can not only be explained by
the progressive loss of dopaminergic terminals. Rather,
adaptive and maladaptive changes in the striatum and
further basal ganglia nuclei must contribute to these dif-
ferential effects. We are only beginning to understand
the molecular mechanisms behind these changes. Even
fundamental biological phenomena such as the adapta-
tion in electrical excitability in response to the changing
synaptic inputs are only beginning to be unraveled [106].
Cellular and animal models of dopamine depletion will
be critical to address these questions and hold great
promise to develop new non-dopaminergic therapies
that have the potential to avoid these long-term
consequences of dopamine depletion and substitution.
In this research, classical toxin-based models of PD (like
the 6-OHDA or MPTP models) are used not to study
the pathways of dopaminergic neuron degeneration but
to determine the consequences of long-term dopamine
deficiency. In particular, therapeutic approaches with
striatal interneurons [107], M4 muscarine receptors
[108] and A2A adenosine receptors [109] have shown
promising results.

Conclusion

PD is a paradigmatic neurodegenerative and movement
disorder. Translational studies are aimed into under-
standing PD pathogenesis and pathophysiology and ad-
dressing diverse areas of biophysics, cell biology and
neuroscience. In most aspects we have only given a
broad overview of current concepts. For a more detailed
description we refer to the suggested reading listed
below. In many areas, translational research on PD has
catalyzed a better understanding of basic biological
phenomena, including intrinsically disordered proteins,
autophagy, mitochondrial function, homeostatic plasti-
city and basal ganglia physiology. In some instances, we
even had to revise fundamental biological concepts. For
instance, the spread of individual aSyn molecules across
several synapses and the emerging knowledge about
exosomes indicate that neurons are less self-contained
entities as stated by the “neuron doctrine” that has
dominated neuroscience since the 1890s. Translational
research is appealing because of its inherent promise to
produce new and refined treatments for human diseases.
But it requires a detailed understanding of basic bio-
logical phenomena and therefore cannot be conceived
without basic sciences.

Suggested reading
Synuclein pathology
Braak H, Ghebremedhin E, Rib U, Bratzke H, Del
Tredici K. Stages in the development of Parkinson’s
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disease-related pathology. Cell Tissue Res. 2004;318:
121-134.

Synuclein aggregation and aggregation inhibitors

Pujols ], Pena-Diaz S, Pallares I, Ventura S. Chemical
chaperones as novel drugs for Parkinson’s disease.
Trends Mol Med. 2020;26:408—421.

Aggregate clearance and the functional significance of
Lewy bodies

Lamark T, Johansen T. Aggrephagy: selective disposal of
protein aggregates by macroautophagy. Int J Cell Biol.
2012;2012:736905-21.

Selective vulnerability of substantia nigra dopaminergic
neurons

Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal
vulnerability in Parkinson disease. Nat Rev. Neurosci.
2017;18:101-113.

Effects of dopamine deficiency on neuronal activity
Wichmann T. Changing views of the pathophysiology of
Parkinsonism. Mov Disord 2019;34:1130-1143.

Cellular consequences of dopamine deficiency

Zhai S, Shen W, Graves SM, Surmeier D]. Dopaminergic
modulation of striatal function and Parkinson’s disease. |
Neural Transm. 2019;126: 411-422.
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