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Abstract

Background: The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other
neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here,
we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation
carriers and non-carriers.

Methods: Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with
behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n=13), as well as presymptomatic
mutation carriers (PMC, n=16) and non-carriers (NC, n=8). A total of 492 antibodies were used to measure protein
levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort
including 13 FTD patients, 79 patients with Alzheimer's disease and 18 healthy controls.

Results: We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals
(PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD
patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in
protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to
have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to
unaffected individuals. The main findings were reproduced in the independent cohort.

Conclusion: In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein
levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented
here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
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Background

Frontotemporal dementia (FTD) is one of the most com-
mon forms of early onset dementia. The clinical presenta-
tions are diverse and overlap with other psychiatric and
neurological disorders [1]. The major phenotypes are be-
havioural variant FTD (bvFTD) and primary progressive
aphasia (PPA). Patients with bvFTD present personality
changes such as inappropriate behaviour, impaired judge-
ment and loss of empathy. PPA can be further divided
into progressive non-fluent aphasia (PNFA), in which pa-
tients have effortful speech with phonetic errors, and se-
mantic dementia (SD) in which patients have fluent
speech but impaired single-word comprehension [1, 2]. In
addition, approximately 15% of FTD patients develop
amyotrophic lateral sclerosis (ALS) and other motoric
symptoms [3]. This phenotypic heterogeneity and lack of
objective diagnostic tests may result in misdiagnosis and
incorrect care of patients and their families [4, 5].

A family history of dementia is found in up to half of pa-
tients with FTD [6]. Several genetic variants are known to
cause FTD, and are most frequently identified in the genes
C9orf72, progranulin (GRN) and microtubule-associated
protein tau (MAPT) [7-11]. In Sweden, the frequency of
the C9orf72 repeat expansion mutation is particularly high
[12, 13]. The pathogenic mutations are weakly associated
with the different FTD phenotypes [14]. Genetic testing is
useful for diagnostic confirmation of a genetic cause of
FTD but has limited value for prognosis of age at onset or
phenotype in presymptomatic individuals. Numerous
studies have investigated potential protein biomarkers for
FTD in cerebrospinal fluid (CSF) [15-18] and one

Table 1 Cohort demographics
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promising candidate is neurofilament light chain (NF-L).
In 2016, Meeter et al. showed that CSF NF-L is elevated in
patients with FTD compared to controls and suggested
that the levels correlate to disease severity [16, 19]. How-
ever, elevated levels of CSF NF-L have also been found in
several other neurodegenerative diseases and are thus not
specific for FTD [20, 21].

This far, most studies have focused on analysing single
candidate proteins. Here, we utilize antibody based sus-
pension bead arrays that enabled a high throughput
multiplex screening of 328 proteins in 53 CSF samples
from FTD patients, presymptomatic mutation carriers
and non-carriers from Sweden. We aimed to find differ-
ences in protein profiles between patients, presymptom-
atic mutation carriers and non-carriers to discover novel
protein biomarkers for further clinical validation.

Methods

Participants

The exploratory cohort 1 was recruited at the Memory
clinic at Karolinska University Hospital and consisted of
both patients diagnosed with FTD and unaffected sub-
jects enrolled in the GENFI-study (GENetic Frontotem-
poral Dementia Initiative): 29 were diagnosed with FTD,
between 1997 and 2016, according to the criteria by Ras-
covsky et al. 2008 or Gorno-Tempini et al 2011 [1, 2]
and 24 were clinically unaffected participants from the
GENFI-study (Table 1) [22, 23]. All the unaffected par-
ticipants were at 50% risk of FTD due to a confirmed
pathogenic mutation in a first degree relative. Through-
out the text, “unaffected individuals” will be used as a

Cohort 1
NC
(n=8)
Age, median years (range)® 52 (24-65)
Female, N (%) 4 (50)
Age at onset, median years (range) -
Years to expected onset® median years (range) -
Mutation, N (%)
C9orf72 -
GRN -
VcP -
Cohort 2 Control
(n=18)
Age, median years (range)d 81 (74-86)
Female, N (%) 10 (56)

PMC PPA bvFTD
(n=16) (n=13) (n=16)
53 (31-71) 65 (52-79) 61 (40-78)
10 (62) 8 (57) 6 (37)

- 63 (50-78) 59 (39-77)
8 (=24+3) - -

8 (50) 0 2(13)

8 (50) 1(8) -

- - 1(6)
FTD¢ AD

(n=13) (n=79

68 (50-83) 72 (54-88)

4(31) 49 (62)

NC Non carriers, PMC Presymptomatic mutation carriers, PPA Primary progressive aphasia, bvFTD - behavioural variant FTD, AD Alzheimer’s disease

@ Differences in age were found between PPA and unaffected individuals (ANOVA, p = 0.001, pairwise post hoc test PPA vs NC, p=0.01, PPA vs PMC, p=0.01).
Differences where found between FTD as a whole group and unaffected individuals (t-test, p < 0.001)

b Difference between the subjects age at sampling and the mean age at onset in their family

€ Clinical phenotype: 7 bvFTD and 5 SD

9 Differences in age were found between controls and FTD/AD (ANOVA, p < 0.001, pairwise post hoc test controls vs FTD, p < 0.001, controls vs AD, p < 0.001)
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collective term for presymptomatic mutation carriers
and non-carriers. The study was approved by the Re-
gional Ethical Review Board, Stockholm, Sweden
(registration numbers: 2017/834-31/1, 2012/1611-31/
3, 2013/1563-32, 2017/2097-32).

An independent cohort from Uppsala University Hos-
pital (cohort 2) consisting of 13 patients diagnosed with
FTD, 79 patients diagnosed with Alzheimer’s disease (AD)
and 18 healthy individuals were used to replicate the main
findings in the cohort collected at the Karolinska Univer-
sity Hospital Memory clinic (Table 1). The study was ap-
proved by the Regional Ethical Review Board in Uppsala,
Sweden (registration numbers: 2005-244, O 48-2005;
2005-11-02, 2006-01-30, 2011/044; 2011-02-23).

All participants gave informed consent to research, in-
cluding DNA and CSF sampling. Detailed information
about patient recruitment and sample collection can be
found in Supplementary Materials and Methods.

Genetic screening

FTD patients recruited at the Karolinska University Hos-
pital Memory clinic were screened for mutations in
CYorf72, GRN and MAPT (n=25) or by whole genome
sequencing (n=4) (see Supplementary Materials and
Methods). Unaffected subjects were screened for the
mutation segregating in the family using Sanger-
sequencing (for MAPT and GRN) or repeat primed PCR
(for C9orf72 repeat expansion). Thus, the mutation sta-
tus was known in cohort 1.

Protein profiling

Antibody suspension bead arrays were used to explore
the protein profiles in human CSF. A total of 328 pro-
teins, targeted by 492 antibodies, were included in the
experimental analysis. Creation of the suspension bead
array was done by immobilizing antibodies onto mag-
netic, colour coded carboxylated beads as described pre-
viously [24-27]. Fifteen pl of each CSF sample was
diluted, labelled with biotin and detection was enabled
by a streptavidin coupled fluorophore, reported as me-
dian fluorescence intensity (MFI) from at least 30 beads
per bead identity and sample (see Supplementary Mate-
rials and Methods).

Validation of NF-M antibodies

To ensure that the antibodies HPA023138 and
HPA022845 captured neurofilament medium polypep-
tide (NF-M) in the studied sample material, a sandwich
assay directed toward NF-M was developed according to
a previously published workflow [28] (see Supplementary
Materials and Methods).
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Data processing and statistical analysis
All data analysis and data visualizations were performed
using the open source software R version 3.5.1 [29].

Demographics

Tests of normality were performed using Shapiro-Wilk
test (age, age at onset, years to expected onset). ANOVA
with Bonferroni post hoc tests were used for assessing
differences in age between patients and unaffected indi-
viduals. Due to a violation of the assumption of normal-
ity, Mann-Whitney U test was used when assessing the
variable age at onset. When assessing sex differences,
Fischer’s exact test was used as the expected values was
<5 in more than 20% of the contingency cells. P-values
of < 0.05 were considered significant.

Analysis of protein profiles

Differences in protein levels between patients with FTD
and unaffected individuals were investigated using prin-
cipal component analysis (PCA) from a set of antibodies
with intra-assay coefficient of variance (CV)<10% and
inter-assay rho >0.8. To avoid bias from multiple anti-
bodies targeting the same protein, one antibody was se-
lected for each target. All protein values were
univariance scaled and centered as in R function prcomp
default. The antibody selection for the PCA analysis was
made based on the highest degree of technical validation
within the Human protein atlas project (HPA, www.pro-
teinatlas.org). All group comparisons were made using
the Mann-Whitney U test and all p-values were false dis-
covery rate (FDR) adjusted by the Benjamini-Hochberg
procedure for multiple comparisons [30]. Adjusted p-
values of <0.01 were considered significant. Generalized
linear models for gamma distributed variables were per-
formed on log transformed data to examine effects of age
at sampling on protein level differences between the stud-
ied groups. Two hierarchical clustering models were made
using complete linkage. The first one using the 10 first
principal components from the PCA and the second one
using intensity levels of a selected set of proteins. The
clustering was presented as dendrograms using a cut off
of four clusters, based on the number of subject groups.
All additional protein or antibody correlations were calcu-
lated using Spearman’s rho statistics.

Results

Demographics

Cohort 1 consisted of 29 patients diagnosed with FTD
and 24 unaffected individuals with a 50% risk of genetic
FTD. Of the 29 FTD patients, sixteen fulfilled criteria for
bvFTD, eight for PNFA and four for SD. Four of the pa-
tients displayed symptoms of motor neuron disease. One
patient with PPA could not be subclassified as neither
PNFA nor SD. This individual had anomic aphasia and
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alexia with agraphia but did not fulfil criteria for SD.
Magnetic resonance imaging showed atrophy of the left
temporal cortex. CSF total-tau (291 ng/L), phospho-tau
(50 ng/L) and Amyloid beta 42 (489 ng/L) were within
normal range. Four of the FID patients were found to
have a pathogenic mutation, two with the C9orf72 repeat
expansion mutation, one with a GRN mutation and one
with a valosin containing protein (VCP) mutation.

Among the 24 unaffected individuals, 8 were non-
mutation carriers (NC), 8 were C9orf72 mutation carriers
and 8 were GRN mutation carriers. These mutation carriers
are denoted as presymptomatic mutation carriers, (PMC)
(Table 1). When comparing the mean age at sampling in
the four groups (NC, PMC, bvFTD and PPA), differences
were only found between PPA and unaffected (PPA, 65
years; PMC, 53 years; NC, 52 years; ANOVA, p = 0.001, pair-
wise post hoc test PPA vs NC, p =0.01 and PPA vs PMC,
p =0.01). Differences in age were found between FTD as a
whole group and unaffected individuals (FTD, 64 years; un-
affected, 53 years; t-test, p < 0.001). The sex distribution was
not statistically different between the four groups (Fisher’s
exact test, p = 0.49). Patients with PPA had a later age at on-
set compared to bvETD (mean 63 vs 59 years).

Cohort 2 consisted of 13 patients diagnosed with FTD
(7 with bvFTD and 5 with SD), 79 patients diagnosed
with AD and 18 healthy individuals. When comparing
the mean age at sampling in the three groups, differ-
ences were found between controls and FTD/AD
(ANOVA, p<0.001, pairwise post hoc test controls vs
FTD, p <0.001, controls vs AD, p <0.001) (Table 1).

Analysis of protein profiles
A principal component analysis of 70 proteins (targeted
by the most robust antibodies, which fulfilled intra-assay
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CV < 10% and inter-assay rho> 0.8) showed that the ma-
jority of the distribution of differences in protein levels
could be explained by principal components 1 to 10
(90%). Figure la illustrates differences in protein levels
between patients with FTD, PMC and NC. Unaffected
individuals mainly cluster at the bottom left and bvFTD
patients at the upper right while PPA patients are scat-
tered around the plot.

Differences between all FTD patients (bvFTD and
PPA) and unaffected individuals were further visualized
by hierarchical clustering of PC 1 to 10. Two major clus-
ters were revealed (Fig. 1b): one including 12/16 (75%)
of the bvFTD patients and 7/13 (54%) of the PPA pa-
tients (Cluster 1), and the other including all NC and
the majority (56%) of PMC (Cluster 2). A third minor
cluster was also observed consisting of three PPA pa-
tients, three bvFTD patients and a single PMC (Cluster
3). Two individuals (one PMC and one PPA) made one
separate cluster (Cluster 4).

Protein level differences between bvFTD, PPA, PMC and NC
The PCA indicated differences in protein profiles between
FTD patients and unaffected individuals. Comparisons were
also made for each protein separately (n = 70), illustrated in
Fig. 2 and Supplementary Table 1. Statistically significant
differences in protein levels (FDR adjusted p <0.01) be-
tween FTD patients and unaffected individuals were found
for 26 proteins (purple and red points). Nine of the 26 pro-
teins showed differences with an FDR adjusted p-value
below 0.001: neurosecretory protein VGF (VGF), neuronal
pentraxin receptor (NPTXR), transmembrane protein 132D
(TMEM132D), prodynorphin (PDYN), neurofilament
medium polypeptide (NF-M) (with two independent anti-
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Fig. 1 PCA and cluster dendrogram. a PCA plot of principal component 1 and 2. Unaffected individuals are shown as circles and FTD patients as
triangles. b Cluster dendrogram of principal component 1 to 10. The four groups are indicated by the coloured bar and numbers have been
added to each cluster for clarification. NC — Non-carriers, PMC — Presymptomatic mutation carriers, PPA — Primary progressive aphasia, bvFTD —
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neurocan core protein (NCAN) and calsyntenin-1
(CLSTN1). An absolute log2 fold change larger than 0.5
(corresponding to a fold change < 0.7 or > 1.4) was observed
for eight proteins: TMEM132D, NPTXR, VGF, NF-M,
PDYN, apolipoprotein A-I (ApoA-I), cadherin-8 (CDHS)
and neural cell adhesion molecule L1-like protein (CHL1).
The five proteins VGF, NPTXR, TMEM132D, PDYN and
NE-M showed both an absolute fold change > 0.5 and sta-
tistically significant differences (FDR adjusted p <0.001)
(Fig. 2, red points, Fig. 3a-e). Nine of the 26 proteins were
elevated in FTD patients compared to unaffected indi-
viduals, while lower levels were observed for the other
17 proteins. Generalized linear models showed that
age had a significant effect (p < 0.05) on the differences
between the two groups for eight proteins; CLSTNI,
Peptidyl-glycine alpha-amidating monooxygenase, ApoA-
I, Leucine-rich alpha-2-glycoprotein (LRG), Alpha-1-
antichymotrypsin (ACT), Inter-alpha-trypsin inhibitor
heavy chain H1, Oligodendrocyte-myelin glycoprotein and
Phosphoinositide-3-kinase-interacting protein 1 (Table 2
and Supplementary Table 2).

The protein levels were further compared between
bvFTD, PPA, PMC and NC. Statistically significant dif-
ferences (here defined as FDR adjusted p < 0.001) in pro-
tein levels were found for six proteins between bvFTD
and PMC and for fifteen proteins between bvFTD and
NC (Table 2). No significant differences were observed
when comparing NC with PMC, or when comparing

PPA to bvFTD. The most statistically significant differ-
ences between the subgroups (bvFTD vs NC and bvFTD
vs PMC) were found for the proteins VGF and TN-R.
VGF was found in lower levels in bvFTD compared to
NC and PMC while TN-R showed the opposite trend
(Fig. 3a and f). NF-M showed results similar to that of
TNR, with higher levels in FTD patients compared to
NC and PMC (Fig. 3e). The proteins NPTXR,
TMEM132D and PDYN all displayed lower levels in
FTD patients compared to NC and PMC (Fig. 3b-d). A
visualisation of the comparisons across the different sub-
groups for every additional protein in Table 2 can be
found in Supplementary Figure 1. Generalized linear
models showed that age had a significant effect (p < 0.05)
on group differences for seven proteins, the same as for
the analysis between FTD and unaffected individuals ex-
cept CLSTNI1 (see above).

Combining protein levels of VGF, TN-R and NF-M

As previously stated, VGF and TN-R were the two pro-
teins for which the subgroup analyses showed the lowest
p-values (bvFTD vs NC p-values 0.002 and 0.003 re-
spectively and bvFTD vs PMC p-values 0.0008 and 0.002
respectively) (Table 2). However, in the comparison be-
tween all patients with FTD and unaffected individuals,
NF-M was one of the proteins with lowest p-value
(0.0007) together with a high log2 fold change (0.58).
Moreover, NF-M was the only protein with a p-value <
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0.001 and log2 fold change >0.5 that displayed higher
levels in FTD compared to unaffected individuals (Fig. 2,
Supplementary Table 1). The results on NF-M are highly
interesting as they are in agreement with previously pub-
lished results on the closely related protein neurofila-
ment light chain [19]. Hence, the intensity levels of NF-
M, VGF and TN-R were analysed for their combined
ability to separate bvFTD, PPA, PMC and NC (Fig. 4).
FTD patients could be separated from NC and PMC, as
seen in Fig. 4a. Similarly, hierarchical clustering of VGF,
TN-R and NF-M protein levels showed that FTD pa-
tients and unaffected individuals primarily clustered sep-
arately (Fig. 4b). The majority (81%) of the bvFTD
patients clustered together (Cluster 1) while most of the
PMC (81%) and NC (100%) individuals clustered separ-
ately from the patients (Cluster 2 and 4). Patients with
PPA were spread out across three clusters, similar to the
result from the PCA.

Characterization in an independent cohort

To investigate whether the differences in protein levels be-
tween FTD patients and unaffected individuals (Table 2)
could be replicated in another sample material, protein
levels were analysed in a second cohort (Table 1). This co-
hort also included samples from patients with AD to allow
comparison to another type of neurodegenerative disease.
Results could be replicated in the second cohort for VGF,
NPTXR, PDYN, NF-M, TN-R and five other proteins, but
not for TMEM132D (Fig. 5, Table 2 and Supplementary
Table 3). In addition, a significant difference in protein
levels was found between FTD and AD for TN-R and NF-
M (only one antibody, HPA023138, Supplementary
Table 3), but not for VGF, NPTXR or PDYN. The FTD
patients displayed higher levels of both TN-R and NF-M
compared to AD. The generalized linear models
showed that age had a significant effect (p <0.05) on
group differences for three proteins in the second
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Table 2 List of proteins with significant differences in protein profiles. Sorted by p-values for comparison of bvFTD and NC (lowest

to highest)
Protein name Short name  Uniprot ID  Antibody bvFTD vs NC  bvFTD vs PMC  FTD vs Direction of
unaffected change®

Neurosecretory protein VGF VGF 015240 HPA055177  0.0002 0.0003 0.0001° l
Tenascin-R TN-R Q92752 HPA027150  0.0008 0.002 0.0007° 1
Neuronal pentraxin receptor NPTXR 095502 HPA001079  0.003 0.008 0.0005° 1
Transmembrane protein 132D TMEM132D  Q14C87 HPA010739  0.003 0.008 0.0007 l
Prodynorphin PDYN P0O1213 HPA053342  0.003 0.006 0.0007° 1
Neurocan core protein NCAN 01459% HPA058000  0.003 0.006 0.0007° 1
Calsyntenin-1 CLSTN1 094985 HPA012749"  0.003 0.01 0.0009° !
Cadherin-8 CDH8 P55286 HPA014908  0.003 0.01 0.001 !
Neural cell adhesion molecule L1-like protein CHL1 000533 HPA003345  0.003 0.02 0.003° 1
Rabphilin-3A RPH3A Q9Y2Jo HPA002475  0.004 0.01 0.001 l
Peptidyl-glycine alpha-amidating monooxygenase  PAM P19021 HPA042260°  0.004 0.02 0.005° |
Neuronal pentraxin-1 NP1 Q15818 HPA077062  0.006 0.02 0.0007 |
von Willebrand factor C domain-containing VWC2L B2RUY7 HPA059414  0.006 0.01 0.003 1
protein 2-like

Tripeptidyl-peptidase 1 TPP-1 014773 HPA037709  0.008 0.02 0.002 1
Amyloid-like protein 1 APLP-1 P51693 HPA028971  0.008 0.05 0.009 !
Apolipoprotein A-1 ApoA-| P02647 HPA046715%  0.01 0.04 0.001 i
Neurofilament medium polypeptide NF-M P07197 HPA022845  0.02 0.02 0.0007° 1
Neurofilament medium polypeptide NF-M P07197 HPA023138  0.02 0.02 0.0008° 1
Leucine-rich alpha-2-glycoprotein LRG P02750 HPA001888%  0.02 0.03 0.002 T
Alpha-1-antichymotrypsin ACT PO1011 HPA000893®  0.02 0.03 0.003 1
UPF0606 protein KIAAT549L KIAAT549L  Q62VL6 HPA051594  0.02 0.02 0.005 !
Inter-alpha-trypsin inhibitor heavy chain H1 ITI-HC1 P19827 HPA0420497  0.02 0.03 0.005 i
Oligodendrocyte-myelin glycoprotein OMG P23515 HPA008206°  0.02 0.02 0.006° 1
Neuronal cell adhesion molecule Nr-CAM Q92823 HPA061433  0.02 0.02 0.006 l
TAR DNA-binding protein 43 TDP-43 Q13148 HPA070770  0.02 0.01 0.006 1
Brevican core protein BEHAB Q96GW7  HPA007865  0.06 0.02 0.008 1
Phosphoinositide-3-kinase-interacting protein 1 PIK3IP1 Q96FE7 HPA007353*  0.08 0.04 0.009 !

P-values (FDR adjusted) based on Mann Whitney U tests for each statistically significant sub group comparison. Group comparisons with PPA (PPA vs NC, PPA vs
PMC and PPA vs bvFTD) and between unaffected (NC vs PMC) were not statistically significant

? The generalized linear model showed a significant (p < 0.05) age effect
® The result could be replicated in the second cohort
¢ Direction of change in FTD compared to unaffected individuals

cohort, ACT, LRG and TAR DNA-binding protein 43
(Supplementary Table 2 and Supplementary Table 3).

Validation of NF-M antibodies

Since the neurofilament chains contain common do-
mains and sequences, we wanted to confirm that the
anti NF-M antibodies did selectively bind NF-M. This
was examined by development of sandwich assays using
several combinations of antibodies targeting NF-M, NF-
L and NF-H (Supplementary Table 4). Results showed
that antibody HPA022845 could successfully detect NE-
M in combination with the two independent antibodies
20,664—1-AP and 13-0700 (Supplementary Figure 2A-B,

for correlation between the sandwich assays see Supple-
mentary Figure 3). In addition, HPA023138 also detected
NF-M in combination with a third antibody: 34—1000
(Supplementary Figure 2C). Comparison to single-binder
data showed strong correlation (rho>0.82, p<1E~ %) be-
tween the two assay formats (Supplementary Figure 2D-F).
Correlations between different NF-M assays are found in
Supplementary Figure 3.

Discussion

In this study, we found altered protein levels in CSF
from FTD patients compared to unaffected individuals.
Both principal component analysis and analysis of single
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Non-carriers, PMC - Presymptomatic mutation carriers, PPA — Primary progressive aphasia, bvFTD — Behavioural variant FTD

protein levels show patterns of separation between un-
affected individuals and FTD patients, especially for
those with a clinical diagnosis of bvFTD. In total, the
levels of 26 proteins in FTD patients were found to be
significantly different (p <0.01) when compared to un-
affected individuals. When comparing the subgroups
NC, PMC, PPA and bvFTD, the most statistically signifi-
cant differences in protein levels were found for VGF,
TN-R, NPTXR, TMEM132D, PDYN and NF-M, none of
which were affected by age.

Principal component analysis and hierarchical clustering
was used to visualize overall differences on CSF protein
levels between the studied individuals. The distribution
pattern revealed that the unaffected individuals and FTD
patients cluster differently, although with an overlap be-
tween the groups. Of the 26 proteins with significantly dif-
ferent levels in FTD patients compared to unaffected
individuals, eight displayed an absolute log2 fold change
larger than 0.5, also highlighting the overlap between the
groups. However, when dividing patients into bvFTD and
PPA, and unaffected individuals into PMC and NC, we
observed more distinct differences.

A total of 15 proteins showed significant differences
between bvFTD and NC and six proteins were signifi-
cantly different when comparing bvFTD with PMC
(Table 2). The direction of each difference was the same
when comparing to both NC and PMC, but the PMC
protein levels were in general closer to those of bvFTD

patients. This trend might illustrate an altered protein
profile in the preclinical stage of FTD, similar to what is
seen in presymptomatic mutation carriers in genetic AD
[31]. The nine proteins that showed a difference between
bvFTD and NC, but not between bvFTD and PMC
might be important for monitoring the transition to an
early disease stage which can be useful for estimation of
time to clinical onset. However, the sample size is low,
and the PMCs are of different ages, thus with a variable
expected time to symptom onset. In the univariate ana-
lyses, all PMC individuals are considered as one group
when compared to both NC and FTD cases. The differ-
ences in time to expected onset within the PMC group
may explain why the differences between PMC and NC,
as well as bvFTD and PMC for the nine proteins, did
not reach statistical significance. On the other hand, the
observation that PMC and NC clustered together in the
multivariate analysis could imply that a group of pro-
teins, such as the one studied here, will be useful for
monitoring the conversion from PMC to FTD. The sep-
aration seen between bvFTD and PMC indicates that the
protein profile changes at conversion to dementia. This
agrees with previous studies on for example NF-L, which
is suggested to be a diagnostic, as well as a disease sta-
ging marker for FTD [19].

No distinct differences between patients with bvEFTD
and PPA could be seen neither in the PCA nor the uni-
variate analysis. The large range in protein levels among
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\

PPA patients is most likely a contributing factor to the
absence of significant differences between PPA and NC/
PMC. If this variability is due to the small sample size or
in fact reflects a protein heterogeneity in the aphasia
phenotype, as could be interpreted by the PCA, has to
be further explored.

The most significant differences between bvFTD, NC
and PMC were seen for VGF and TN-R. To further
examine the protein profiles, all proteins in Table 2 were
analysed in a second cohort. The second cohort con-
sisted of both patients with FTD and AD to enable com-
parisons between different types of neurodegenerative
disease. The results from the initial screening could be
replicated for ten proteins, although with modest differ-
ences. We also found significant differences in TN-R
and NF-M levels between FTD and AD patients,

suggesting that TN-R and NF-M could be used not only
as general markers for neurodegeneration, but more spe-
cifically have the potential to separate between different
pathologies. However, the differences observed in our
study are relatively small and would need to be explored
further before their potential can be determined.

VGF is a neuropeptide precursor believed to be im-
portant for dendritic growth and neuronal survival [32,
33]. Lower CSF levels of VGF in FTD patients, as seen
in our study, was recently demonstrated using mass
spectrometry [34—36]. Van der Ende et al. (2019) identi-
fied several proteins in CSF that differed between genetic
FTD and controls of which seven were selected for valid-
ation by parallel reaction monitoring. VGF was found in
lower levels in FTD due to GRN mutations, compared to
controls. Although reaching statistical significance, VGF
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alone is not enough to distinguish FTD from other de-
mentias as both our own and former studies have shown
decreased levels in CSF from AD patients as well [36—
39]. TN-R is an extracellular matrix protein expressed
by oligodendrocytes and neurons [40, 41]. It is thought
to have multiple functions within the central nervous
system such as regulation of synaptic plasticity, cell mi-
gration and adhesion [42, 43]. Downregulation of hippo-
campal TN-R was observed in a small set of individuals
with AD, compared to age-matched controls by Mana-
vlan et al. (2013) [44] but this is to our knowledge the
first study investigating TN-R as a potential biomarker
for FTD. TN-R deficient mice display abnormal behav-
iours and motor coordination [45, 46] which indicates
that TN-R is important for maintaining the normal cog-
nitive functions.

In our study, NF-M was found at increased levels in pa-
tients which is similar to what has previously been ob-
served for NF-L, with higher levels in FTD patients
compared to unaffected individuals [19]. NF-M is approxi-
mately twice the size of its well-studied sibling, and assem-
bles into structural filaments together with NF-L and
neurofilament heavy chain (NF-H) [47]. The intracellular
ratio of the neurofilament isoforms is known [48] but the
relative ratios and correlations between isoforms in CSF
has not been extensively studied. Although CSF and
serum NEF-L is known to increase in several neurodegen-
erative diseases [49, 50] including FTD, NF-M has to our
knowledge not been investigated in the context of FID
before. However, high CSF levels of NF-M has previously
been reported in stroke patients [51] and using the same
NE-M antibodies as in this study, high levels of NF-M
were observed in plasma of ALS patients [52].

Promising patterns were also observed for other pro-
teins, such as NPTXR, TMEM132D and PDYN. NPTXR
is a receptor protein predominantly expressed in the
brain [53]. It is part of the neuronal pentraxin family
and has been suggested as a marker for both AD and
genetic FTD [34, 39]. NPTXR was recently measured by
Van der Ende et al. (2019), together with VGF, and
found at lower levels in FTD patients compared to non-
carriers, independent of mutation group (C9rf72, GRN
or MAPT) [34]. Although different mutation groups
could not be compared in our study, we also observed
lower levels of NPTXR in patients. TMEM132D is a
transmembrane protein also highly expressed in the
brain [54]. Its function is still largely unknown but it has
been suggested to serve as a cell surface marker for oligo-
dendrocytes [55], and more recently, to possess cell-
adhesion functions [56]. Although genetic variants in
TMEM132D have been associated with primary psychi-
atric disorders [57], this is to our knowledge, the first re-
port of TMEM132D in relation to FTD, but TMEM132D
was one of the proteins for which the results from the first
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cohort could not be replicated with significance. However,
as both cohorts show concordant trends, we still believe
TMEM132D to be an interesting protein to be further ex-
plored in the context of FTD. PDYN is the precursor of
dynorphins, a group of endogenous opioid peptides that
has implications for pain and addiction [58]. Certain gene
variants of PDYN have been associated to episodic mem-
ory performance [59] and others have been shown to
cause spinocerebellar ataxia type 23 [60]. Yakovleva et al.
(2007) reported upregulated levels of dynorphin A (a
cleavage product of PDYN), in AD patients but no change
in levels of PDYN was observed [61]. Knock-out of PDYN
expression was suggested to protect against age related
cognitive decline in mice, but its importance in human de-
mentia is still unknown [62].

As this is a pilot study, we acknowledge several limita-
tions. The sample size is small which limits the statistical
computations. For example, comparisons between differ-
ent genetic groups were not possible nor were correla-
tions to time to expected onset in the PMC group (n =
16). The presence of motor neuron symptoms could not
be assessed separately as they were found in only four
cases. Also, only four of the 29 FTD cases were mutation
carriers, compared to all of the PMC which might influ-
ence the comparisons between these two groups. Since
age is the most significant risk factor for dementia, age-
related changes in CSF protein concentration is a highly
relevant topic for studies of dementia [63—-65]. We ob-
served significant age effects on eight of the 26 proteins
found to be different in FTD patients compared to un-
affected individuals, in any of the two cohorts. Hence,
for these eight proteins, we cannot rule out that the dif-
ferences in protein levels observed between the groups
could be due to age rather than diagnosis, or a combin-
ation of both. Five of the eight proteins were also among
those for which the differences between unaffected indi-
viduals and FTD could not be replicated in the second
cohort. There could be many reasons why the results
could not be replicated, such as sample size and hetero-
geneity between the two control groups in the patient
population, or that there are no generalisable differences
between FTD and unaffected individuals for these pro-
teins. Since the control group in the second cohort did
not contain any presymptomatic mutation carriers,
nothing can be said about the subgroup comparisons.
Limitations commonly associated with antibodies such
as off-target binding, also applies in this study, and all
antibodies have undergone technical validation within
the Human Protein Atlas project. The NF-M antibodies
have been extensively investigated and the developed
sandwich assay shows that both antibodies (HPA023138
and HPA022845) bind NF-M, as previously verified by
PRM-mass spectrometry in CSF [66]. Nevertheless, with
the setup used here we cannot fully exclude that some
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reactivity towards either NF-L or NF-H could be present
in addition to binding of NF-M. The semi-quantitative
nature of the SBA assay could be viewed as a limitation
since no definite concentrations are obtained. However,
it has previously been shown that the protein levels ac-
quired by the use of suspension bead arrays can be
reproduced using other methods [28, 52, 66, 67].

Conclusions

Overall, our results show that CSF protein profiles differ
between bvFTD, PPA, PMC and NC, and that the largest
differences are found between bvFTD and NC. Bio-
marker research in FTD has previously focused primarily
on analysis of single proteins and there are limited re-
sults on combinations of protein levels, for example NF-
L and tau [19]. Here, we demonstrate that it might be
possible to separate healthy individuals from patients
with FTD by combining the protein levels of VGF, TN-R
and NF-M. Promising patterns were also found for a
number of other proteins, such as NPTXR, TMEM132D
and PDYN, which need to be explored further. We are
currently in the process of validating the results in a lar-
ger cohort from the GENetic Frontotemporal Dementia
Initiative (GENFI) [23], where we include both CSF and
plasma samples.

Both clinical phenotype, neuropathology and genetic
findings are highly heterogeneous in FTD. With ad-
vancements in computational data analysis, we have the
possibility to study complex diseases by searching for
patterns, as opposed to limiting the analysis to single
biomarkers. The results from the PCA and cluster ana-
lyses advocate the future use of multivariate methods in
dementia research which we plan to incorporate in the
follow-up study. Although validation in a larger cohort
is necessary to confirm our findings and approach bio-
marker applications in a clinical setting, we believe the
results presented here could be a first step towards
highly needed new biomarkers for FTD.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/540035-020-00198-y.

Additional file 1: Supplementary Table 1. List of 70 proteins included
in statistical analysis. Sorted by p-value (lowest to highest).
Supplementary Table 2. P-values of age effect from generalized linear
models. Sorted by order of Table 2. Supplementary Table 3. Table of
unadjusted p-values for group separations in the second cohort. Sorted
by order of Table 2. Supplementary Table 4. Antibodies used for
development of NF-M sandwich assay.

Additional file 2: Supplementary Figure 1. CSF levels of proteins in
Table 2. Statistically significant differences (p-values) are found in Table 2.
NC - Non-carriers, PMC — Presymptomatic mutation carriers, PPA — Pri-
mary progressive aphasia, bvFTD - Behavioural variant FTD.

Additional file 3: Supplementary Figure 2. Validation of NF-M anti-
body binding. (A) Detection of NF-M with HPA022845 as capture
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antibody and 20,664-1-AP as detection antibody. No cross-reactivity with
antibodies targeting NF-L or NF-H was observed. (B) Detection of NF-M
with HPA022845 as capture antibody and 13-0700 as detection antibody.
No cross-reactivity with antibodies targeting NF-L or NF-H was observed.
(C) Detection of NF-M with HPA023138 as capture antibody and 34-1000
as detection antibody. No cross-reactivity with antibodies targeting NF-L
or NF-H was observed. (D-F) Comparison between sandwich assay data
and single-binder data. Rhop) = 0.85, poy = 1€, rhog = 0.86, pe = 1€,
thog) =082, pg = 1E°.

Additional file 4: Supplementary Figure 3. Correlation between NF-
M assays. (A) Correlation between HPA022845 and HPA023138 single-
binder data. (B) Correlation between HPA022845 sandwich assays.
HPA022845 was used as capture antibody together with two different de-
tection antibodies, 20,664-1-AP and 13-0700. (C) Correlation between
one HPA22845 sandwich assay and HPA023138 sandwich assay.
HPA022845 was used as capture antibody together with 20,664-1-AP as
detection antibody, and HPA023138 was used as capture antibody to-
gether with 34-1000 as detection antibody.

Additional file 5: Supplementary Figure 4. Antibodies used for
development of NF-M sandwich assay aligned to the neurofilament amino
acid sequences. The neurofilaments are shown in green and the size of the
domains (head, rod and tail) are displayed at the top. The highly conserved
rod domain is highlighted in grey. Position and length of the amino acid se-
quences used to generate the antibodies are shown in blue and the exact
amino acid positions are given in brackets, if known. Antibody 13-1300 tar-
gets all three neurofilaments. The smallest epitope identified for HPA022845
corresponds to amino acids 746-749 [50].
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