
RESEARCH Open Access

Clinical features and genotype-phenotype
correlation analysis in patients with ATL1
mutations: A literature reanalysis
Guo-hua Zhao1,2 and Xiao-min Liu3*

Abstract

Background: The hereditary spastic paraplegias (HSPs) are a group of clinically and genetically heterogeneous
disorders. Approximately 10% of the autosomal dominant (AD) HSPs (ADHSPs) have the spastic paraplegia 3A
(SPG3A) genotype which is caused by ATL1 gene mutations. Currently there are more than 60 reported ATL1 gene
mutations and the genotype-phenotype correlation remains unclear. The study aims to investigate the genotype-
phenotype correlation in SPG3A patients.

Methods: We performed a reanalysis of the clinical features and genotype-phenotype correlations in 51 reported
studies exhibiting an ATL1 gene mutation.

Results: Most HSPs-SPG3A patients exhibited an early age at onset (AAO) of <10 years old, and showed an
autosomal dominant pure spastic paraplegia. We found that 14% of the HSPs-SPG3A patients presented
complicated phenotypes, with distal atrophy being the most common complicated symptom. The AAO of each
mutation group was not statistically significant (P > 0.05). The mutational spectrum associated with ATL1 gene
mutation is wide, and most mutations are missense mutations, but do not involve the functional motif of ATL1
gene encoded atlastin-1 protein.

Conclusions: Our findings indicate that there is no clear genotype-phenotype correlation in HSPs-SPG3A patients.
We also find that exons 4, 7, 8 and 12 are mutation hotspots in ATL1 gene.
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Background
The hereditary spastic paraplegias (HSPs) are a group of
clinically heterogeneous neurological disorders, which
are classified into “pure” or “complicated” HSP accord-
ing to the clinical features. The pure HSP is defined by
progressive spasticity and weakness limited to the lower
limbs, while the complicated HSP may include other
neurological manifestations such as optic atrophy, retinal
pigmentation, seizures, deafness, neuropathy and mental
retardation. In the clinic, HSPs can also be classified into
early onset (mainly 1st decade of life) and late onset
(between the 2nd and 4th decade) type. The main

pathological changes of HSP include the axonal degener-
ation of the corticospinal tracts and back column [1, 2].
Genetic mutations are the main cause of HSPs and

there are currently over 72 spastic paraplegia genes or
genetic loci (designated SPG1-SPG72 genetic type in
order of their discovery) in which mutations can occur
[3]. HSPs can be inherited as autosomal dominant (AD),
autosomal recessive (AR) or X-linked trait or a spastic
paraplegia syndrome. Among identified mutations, ap-
proximately 40% of definite autosomal dominant pure
HSP mutations are in the spastic paraplegia 4 (SPG4/
SPAST) gene which encodes the spastin protein [4, 5].
SPG3A is the second most common type of HSP

which accounts for approximately 10% of autosomal
dominant HSP [6] and is caused by mutations in the
atlastin-1 (ATL1) gene. The atlastin-1 protein is a mem-
ber of the dynamin family of large guanosine
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triphosphatases (GTPases) which contains three con-
served motif-P loops (74GAFRKGKS81), RD (217RD)
and DxxG (146DTQG) which are characteristic regions
for guanylate binding/GTPase active sites [6]. HSPs-
SPG3A phenotype (HSPs with ATL1 gene mutations)
was generally a pure HSP with age at onset (AAO) less
than 10 years old [6]. Patients characterize progressive
bilateral and mostly symmetric lower extremity weak-
ness and spasticity.
Currently there are more than 60 different ATL1 gene

mutations described, including numerous missense,
small deletion, small insertion and splice site mutations,
as well as whole exon deletions [6–56]. However, the
genotype-phenotype correlation remains unclear [13]. In
this study, we perform a reanalysis of all published stud-
ies (n = 51) to identify the clinical features and then
genotype-phenotype correlations in HSPs caused by
ATL1 gene mutations.

Methods
We conducted a literature search using databases from
PubMed (http://ncbi.nlm.nih.gov/pubmed) and the
China National Knowledge Infrastructure (CNKI)
(http://cnki.net) with the keyword “SPG3A” or “ATL1”,
which resulted in 51 articles describing ATL1 gene mu-
tations [6–56]. We collected information related to the
age at onset (AAO), age at examination, pure or compli-
cated form, involvement of upper and lower limbs,
Babinski signs, urinary urgency and other symptoms or
signs for individually affected patients directly from rele-
vant papers. Asymptomatic individuals were also in-
cluded, but excluded from the analysis of AAO and pure
or complicated form. Patients with elderly sensory neur-
opathy caused by ATL1 gene mutations were excluded
in this study [57, 58]. We reanalysed the clinical and
genetic data in ATL1 gene mutant patients and per-
formed a correlation analysis of AAO with mutational
class in ATL1 gene. Comparisons of data were per-
formed using two-way ANOVA. Tests were considered
statistically significant for P < 0.05.

Results
The patients’ clinical information and the ATL1 gene
mutation of 51 reports are summarized in Additional file
1: Table S1. The published studies contain data for 142
families with known ATL1 gene mutations. These 142
families included 130 (91.54%) autosomal dominant HSP
(ADHSP) families, 10 (7.04%) sporadic families, one
(0.70%) ARHSP family, and one (0.70%) family with un-
known inheritance mode. Gender information was avail-
able in 151 patients, including 88 male patients and 63
female patients (ratio is 1.40:1). The main clinical fea-
tures included lower spasticity (99.68%, 313/314), upper
spasticity (10.03%, 30/299), Babinski sign (87.83%, 231/

263) and urinary urgency (16.37%, 38/232). AAO data
were available in 355 subjects from infancy to the sev-
enth decade, in which 301 (84.79%) patients had AAO <
10 years old, whereas 54 (15.21%) patients had AAO
>10 years old. Patient information for pure or compli-
cated type was available in 440 patients, including 378
(85.90%) pure HSP and 62 (14.10%) complicated HSP
patients. Distal atrophy or neuropathy is the most com-
mon symptom in patients with complicated SPG3A gene
mutations (69.35%, 43/62). In addition, 15/142 families
(10.56%) showed incomplete penetrance.
In total, there were 61 different types of mutations re-

ported, which were divided into five broad groups: 130
(91.54%) families had missense mutations (54 types), six
(4.23%) had small insertions (4 types), four had (2.82%)
small deletions (2 types), one (0.70%) had presumed
splice site mutation (1 type), and one (0.70%) had whole
exon deletion (1 type). The mutations were located in
exon 3 (0.70%, n = 1), exon 4 (11.26%, n = 16), exon 5
(1.41%, n = 2), exon 6 (0.70%, n = 1), exon 7 (24.65%, n =
35), exon 8 (12.68%, n = 18), exon 9 (1.41%, n = 2), exon
10 (5.63%, n = 8), exon 11 (1.41%, n = 2), exon 12
(38.73%, n = 55), exon 13 (0.70%, n = 1), and intron 1
(0.70%, n = 1). A total of 124 (87.32%) mutations were
found in exons 4, 7, 8 and 12. No mutations were de-
tected in exons 1, 2 and 14. Figure 1 shows the locations
of ATL1 gene mutations and the number of mutations
found in the families. Most mutations did not involve in
the functional motif of atlastin-1, except R217Q, c.35-
3C > T and exon 4 deletion [7, 13, 40]. The most com-
monly reported mutations were R239C (n = 31) and
R495W (n =14). All the published mutations are listed
in Ensemble database (ensemble.org).
The AAOs of each mutation group are summarized in

Table 1. The patients with missense mutations had a
slightly lower AAO, however this difference is not statis-
tically significant (F = 1.273, P = 0.282). The patients with
splice site mutation and exon deletion were not included
in the statistics because there was only one patient in
each group.

Discussion
HSPs-SPG3A patients account for approximately 10% of
ADHSP. Although several large cohorts of patients with
mutant ATL1 gene were reported [17, 21, 27, 29, 32, 36,
45, 50, 54, 56], a genotype-phenotype correlation still re-
mains unclear. Here, we reanalysed the observations on
142 families and confirmed three previously reported
observations. First, we find that most HSPs-SPG3A pa-
tients exhibiting early AAO and autosomal dominant
pure spastic paraplegia there have a wide mutational
spectrum associated with ATL1 gene mutations. Second,
we find that most mutations are missense but do not in-
volve the functional motifs of atlastin-1. Third, we note
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that exon 4, 7, 8 and 12 might be mutation hotspots.
Additionally, we found that the complicated type was
prevalent in HSPs-SPG3A patients, and that distal atro-
phy or neuropathy is the most common complicated
symptoms.
ATL1 gene mutations are thought to be the most

common cause of hereditary spastic paraplegia with
an AAO < 10 years [17]. Our re-analysis of the 51 re-
ported studies showed that 84.79% patients exhibited
early AAO (<10 years), but we found that 15.21% pa-
tients had a later AAO (>10 years). Therefore, ATL1
gene mutation analysis should not be limited to early
onset HSP [11, 34].
Our re-analysis also showed no correlation between

AAO and mutational classes. More studies with larger
sample sizes may be required to resolve this issue be-
cause of the limited number of small insertion, small de-
letion, splice site mutation and exon deletion. In
addition, there was variability of AAOs between families
with the same mutation, even within the same family.
Some members in different families exhibiting the same

mutation had different AAOs. For example, the AAOs
for the A161P ATL1 gene mutation could be childhood
or age 45–55 in different families [11]. We found that
both childhood-onset HSP and late onset HSP (after age
40 years) occurred in the same family with A161P muta-
tion [21]. Furthermore, intrafamilial variability in AAO
varied from eight to 28 years in a family with R495W
mutation [21]. One family member with complicated
HSP showed AAOs >30 years, whereas another family
member with pure HSP presented AAO at puberty, but
both members had a R416C mutation in the ATL1 gene,
suggesting a clear intrafamilial variability. Hedera et al.
reported a family in which patients had a variable AAO
from five to 39 years, and two subjects were functionally
asymptomatic despite abnormalities in neurological ex-
aminations [15]. Patients in an ADHSP family carrying
the ATL1 R416C mutation were found to have variable
clinical characteristics, both the pure phenotype with
early onset and the complicated phenotype with later
onset [41]. Differences of AAO and clinical features be-
tween families with the same mutation or in the same
family might be due to variability in expression of this
mutation or maybe to related to other genetic or epigen-
etic factors [11, 18, 34]. Overall, the comparison of the
clinical data for all ATL1 gene mutation families failed to
reveal any genotype-phenotype correlation as demon-
strated in other types of ADHSP [13].
ATL1 gene was commonly thought to be associated

with pure spastic paraplegia manifesting as lower limb
spasticity, decreased vibration sense in the lower limbs,
and sphincter disturbances. Information for pure or
complicated HSPs were available in 440 patients, includ-
ing 378 (85.90%) pure patients and 62 (14.10%)

Fig. 1 The ATL1 mutation spectrum in CDS. Red line indicates the GBp/Ras-like GTPase domain; blue line shows the P-loop domain; orange line
displays the DxxG domain; green line indicates the RD domain. n correlates with the number (if ≥2) of families containing ATL1 mutations

Table 1 The comparison of AAOs between different kinds of
mutations

Mutation type No. of families No. of subjects Mean age at
onset (years)

Missense 109 271 7.47 ± 11.97

Small insertion 6 10 13.60 ± 12.39

Small deletion 4 12 8.25 ± 11.87

Splice site 1 1 44

Exon deletion 1 1 Not available

F = 1.273, P = 0.282. No.: number
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complicated patients. Our re-analysis suggests that most
ATL1 gene mutations usually display a pure phenotype,
but ATL1 gene mutation can also been found in patients
with complicated phenotype of HSPs. The complicated
symptoms of HSPs-SPG3A patients included seizure,
optic atrophy, sensory impairment, mental retardation,
ataxia, distal atrophy and peripheral axonal neuropathy
(Additional file 1: Table S1). Additionally, we found that
distal atrophy is the most common symptom in compli-
cated HSPs-SPG3A patients (69.35%, 43/62).
The early-onset and relatively non-progressive nature

of lower extremity spasticity in HSPs-SPG3A patients
closely resembles symptoms of patients with spastic
diplegic cerebral palsy. Because of this, many HSPs-
SPG3A cases have been misdiagnosed as cerebral palsy
even when there is no antecedent of a perinatal sentinel
event and no lesions detected on brain imaging [10, 28,
31, 47]. However, reaching a HSP diagnosis in paediatric
cases is challenging, especially in the absence of a posi-
tive family history. However, the occurrence of a de novo
ALT1 gene mutation must be considered in patients with
spastic diplegic cerebral palsy, when other causes can
not be identified.
Disease severity in HSPs-SPG3A patients is most com-

monly mild, although the severity of spasticity increases
with disease duration. In general, the onset of disease
symptoms in children has a long phase of relatively slow
progression. In many cases, symptoms remain un-
changed up to old age. Additionally, there are some
asymptomic cases that contain the ATL1 gene muta-
tions. Incomplete penetrance has been previously re-
ported in 10.56% HSPs families [8, 12, 15, 24, 27, 45].
The scarce penetrance of the mutations favours a modu-
lator gene or strong epigenetic factor hypothesis, which
may influence the phenotype. However, previous reports
have shown the existence of some severe symptoms in
HSPs-SPG3A patient. For example, Haberlova et al. re-
ported a HSPs-SPG3A patient with a severe and early
complicated phenotype, which was caused by the
M408T mutation in ATL1 gene [25]. Furthermore, a de
novo G409D mutation in the ATL1 gene exhibited an
extremely severe spastic paraplegia combined with gen-
eral hypertonia and hypokinesia since the neonatal
period in one patient [47].
Linkage analysis suggests that mutations in the ATL1

gene account for approximately 10% of ADHSP. The re-
ported frequency of ATL1 gene mutations varied from
2.9 to 38.7% though most studies reported a frequency
of less than 15%. For example, we found that there were
eight studies which reported a frequency of ATL1 gene
mutations less than 15%: 2.9% [27] in ADHSP families,
3.7% in ADSHP probands [45], 4.2% in HSP families
[36], 8.3% in unrelated early onset pure ADHSP families
[9], 6.6% in a heterogeneous population including both

pure and complicated HSP phenotypes [21], 8.6% in
ADHSP families [29], 11.3% in the ADHSP families [32],
and 11.7% in ADHSP probands [44]. We also found four
studies which reported a higher frequency of ATL1 gene
mutations: 20.0% in pure HSP [55], 20.0% (3/15) in early
onset autosomal dominant HSP [13], 38.5% in SPG4-
negative pure ADHSP families [11], and 38.7% in pure
ADHSP families [15]. We also found that there was a
difference in the frequency of ATL1 gene mutations re-
ported with different AAOs. For example, Namekawa et
al. reported that the frequency of ATL1 gene mutation in
ADHSP was 6.6%, whereas the frequency was 13.5% in
ADHSP families with onset before age 20, and it in-
creased to 31.8% in ADHSP families with onset before
age 10 [17]. The frequency variation may be caused by
the differences in ethical criteria, number of patients and
inclusion criteria, such as pure and complicated pheno-
types of the patients, AAOs and SPAST mutations.
This study found that most ATL1 gene mutations were

located at exons 4, 7, 8 and 12, which is consistent with
a previous study [29], which suggests that these exons
should be given priority when performing molecular
diagnosis. In addition, R239C (n = 31) [6, 9, 11, 13, 15,
17, 21, 22, 27–29, 31, 32, 36, 39, 45, 51, 53, 54, 56] and
R495W (n = 14) [15–17, 21, 32, 36, 43, 50, 52, 54] muta-
tions were the most commonly reported mutations in all
studied families. Zhao et al. reported that the three fam-
ilies with R239C mutations were not apparently related
and haplotype analysis did not exclude a distant founder
effect [6]. Namekawa et al. reported that the R495W
mutation could occur by independent mutational events
[59]. Genetic testing should be performed in HSPs pa-
tients with very early-onset pure spastic paraplegia.
It is still not understood how the atlastin-1 protein func-

tions and it is also unclear how autosomal dominant muta-
tions in ATL1 gene lead to the degeneration of upper
motor neurons. In our analysis of the literature we found
that all ATL1 gene mutations except 3 (R217Q, c.35-3C <
T, and exon 4 deletion) fell outside the GTPase-related mo-
tifs or the conserved motifs identified in the ATL1 gene se-
quence which are thought to alter the structure of atlastin-
1 and its interaction with other proteins [6, 11, 13, 16]. We
find that most mutations are missense which suggests a
gain-of-function pathogenic mechanism that is dependent
on the position of the mutation, gene modifier and envir-
onmental factors [32]. This is supported by studies using
yeast two-hybrid assay and co-immunoprecipitation of
wild-type and p.del436N atlastin proteins which show
that the p.del436N mutant protein can still oligomerize
with wild-type atlastin, supporting a loss-of-function
disease mechanism [23]. Atlastin-1 interacts with spas-
tin (SPG4), suggesting that they may be a part of a
common biological cascade whose disruption can result
in motor neuron death [60].
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Conclusions
Our reanalysis demonstrates that most HSPs-SPG3A pa-
tients exhibited a pure autosomal dominant HSP with
early AAO. The causal ATL1 gene mutations are mis-
sense mutations and exons 4, 7, 8 and 12 should be pri-
oritized for genetic testing. We find that there is no
clear genotype-phenotype correlation.

Additional file

Additional file 1: Table S1. Correlation between clinical and genetic
characteristics in patients with mutant ATL1. (DOC 562 kb)
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