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Abstract

Exosomes are small vesicles secreted by most cell types including neurons that function in intercellular communication
through transfer of their cargo or encapsulate and eliminate unnecessary cellular components and therefore have a
broad impact on nerve development, activation and regeneration. In addition, exosomes have been observed to
be involved in spreading pathological misfolded proteins, thereby leading to the onset and propagation of
disease. Alzheimer disease (AD) is the most common form of dementia and characterized by two types of lesions:
amyloid plaques and neurofibrillary tangles. Accumulating evidence has demonstrated that exosomes are
associated with amyloid precursor (APP) and Tau proteins and play a controversial role in Alzheimer's disease
process. In this review, we will discuss the role of exosomes in the metabolism and secretion of APP and Tau
proteins and their subsequent impact on AD pathogenesis.

Background

According to the 2016 World Alzheimer Report, there
are 47 million people living with dementia worldwide
[1]. It is estimated that the total worldwide cost of de-
mentia is $818 billion (USD) and is expected to reach $1
trillion (USD) by 2018, thus placing a huge burden on
individuals, families, and societies [1]. As the leading
cause of dementia, Alzheimer’s disease (AD) accounts
for an estimated 60 to 80% of all cases [2]. It is clinically
characterized by cognitive impairment, a variety of
neuropsychiatric symptoms and the restriction of daily
life activities [3]. AD is pathologically defined by the
deposits of the protein fragment beta-amyloid (AP
plaques) outside neurons and twisted fibers of the pro-
tein tau that build up inside neurons (NFTs). The cause
for most AD cases is still uncovered except for 1 to 5%
of cases which develop as a result of mutations in the
presenilinl (PSENI), presenilin2 (PSEN2), or amyloid
precursor protein (APP) genes [4].

Recently, the role of “Prion-like mechanisms” in the
pathogenesis of neurodegenerative diseases has attracted
more and more attention. It has been suggested that
pathologically misfolded proteins can transfer their
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conformation to properly folded proteins, thus resulting
in the propagation of disease [5]. For instance, plaques
and tangles tend to spread through the cortex in a pre-
dictable pattern as Alzheimer’s disease progresses [6].
While, the mechanisms underlying the spread of mis-
folded proteins still poorly understood. There are several
pathways for signal delivery and material communica-
tion between cells, such as synaptic transmission, dir-
ect communication trough gap junction and paracrine
signaling [7]. Among these hypotheses, accumulating
evidence supports the idea that exosomes may play as a
messenger to participate in cell communication and
contribute to this lesions spreading [8, 9].

Exosomes were first reported in reticulocytes and con-
sidered to function in the disposal of unnecessary cellu-
lar components [10, 11]. Exosomes are nanosized
extracellular vesicles (generally 50-100 nm diameter)
that can be released by nearly all cell types, including
neuronal cells [12]. The exosomes’ molecular contents
include proteins, lipids and genetic material. Exosomes
are released in bodily fluids and shuttle molecules for
long distances for the purpose of intercellular communi-
cation. Exosomes have been reported to implicate in the
spread of pathological proteins involved in neurodegen-
erative diseases, such as AD, Parkinson’s disease (PD)
and the prion diseases. APP, - secretase, y- secretase
has been detected in exosomes, what’s more, exosomal
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proteins such as Alix and Flotillin were also found to be
accumulated in the plaques of AD patient brains [13].

In this review, we will discuss role of exosomes in the
metabolism and secretion of APP and Tau proteins and
the subsequent impact on AD pathogenesis.

Biogenesis of exosomes

Exosomes are small membrane vesicles that are gener-
ated via endocytic pathways [14, 15]. Inward budding of
the plasma membrane forms small vesicles, which
undergo fused together to form the early endosome.
Intraluminal vesicles (ILVs) begin to compose through
invagination of the limiting endosomal membrane dur-
ing the maturation process of early endosome. Upon
creation, cytoplasmic molecules such as proteins, lipids,
and RNAs are encapsuled into the lumen and accumu-
lated within the late endosome, thus forming multi-
vesicular bodies (MVBs). There are two fates for MVBs,
some of which transport to lysosomes for degradation
(dMVBs), while others fuse with the plasma membrane
and release ILVs into the extracellular space as exo-
somes (sMVBs). Compared with the dMVBs which are
enriched in bismonoacylglycerophoshate (BMP, LBPA),
the sMVBs contain more of ceramides [16, 17]. ILV
formation is the key step in exosome biogenesis [18].
The formation of ILVs is mainly regulated by the com-
plex of multi-molecular machinery named Endosomal
Sorting Complex Required for Transport (ESCRT) [19, 20].
However, studies have shown that depletion of ESCRT sub-
units does not totally impair the composition of MVBs,
which indicate that other mechanisms may exist in the
process of ILVs formation [21]. It suggested that proper
level of lipids and tetraspanin-enriched micro-domains is
needed for MVBs formation [22—-25]. Exosome secretion is
also regulated by membrane depolarization.

Molecular contents of exosomes
The molecules within exosomes can be divided into two
types: constitutive molecules and cargo molecules. Con-
stitutive molecules are unique to exosomes regardless of
the cell type from which they are derived and play an es-
sential role in keeping fundamental structures and func-
tions of exosomes. Cargo molecules, on the other hand,
are proteins, lipids and genetic material which are
sorted, encapsulated and transported by exosomes. The
cargo molecules are variable according to cell origin and
the physiological or pathological conditions when exo-
somes generate. In addition, sorting of molecules into
exosomes is thought to be a selective process, since
some accumulated factors observed in exosomes are
barely detectable in parental cells.

The protein composition of exosomes has been ana-
lyzed extensively. Since exosomes are released through
the endosome pathway, proteins such as tetraspanins
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(CD9, CD63, CD81 and CD82), Rab GTPases, flotillin,
Alix, TSG10land heat shock proteins (Hsc70, Hsp90)
have been all identified in exosomes [26—29]. In addition
to constitutive molecules, exosomes with different cell
origin carry specific proteins. For example, major histo-
compatibility complex class II (MHCII) is mainly present
on exosomes derived from antigen presenting cells [30].
Cells can also release prions, beta-amyloid peptides, tau
protein, misfolded superoxide dismutase-1(SOD1) and
alpha-synuclein through exosomes in different patho-
logical and physiological conditions [13, 31-34]. Lipids
in exosomes mainly work as regulating exosomal sorting
of small RNAs and proteins [35, 36].

In addition to proteins and lipids, genetic materials are
also found in exosomes, such as DNA, mRNA, miRNA,
ribosomal RNA (rRNA), circular RNA, and long non-
coding RNA (InRNA) [37-42]. Among them, small RNA
(<30 nucleotides) account for a large proportion, making
up >50% of all exosomal RNA species [38, 40, 43]. How-
ever, a few studies have shown different results in
which ribosomal RNA, in particular 28S and 18S rRNA
subunits, were found to be the major class of RNA in
exosomes [39]. These conflicting results may be due to
the purity of the exosome preparation and differences
in cell origin. It has been shown that exosome RNA is
functional. Valadi and colleagues detected the expres-
sion of mouse proteins after transfer of mouse exoso-
mal RNA to human mast cells [43]. What more
previous studies showed that miR-222 transferred through
exosome was able to increase tumor malignancy in melan-
oma through suppression of p27Kipl expression and
induction of the PI3BK/AKT pathway [44].

Function of exosomes in the central nervous
system (CNS)
Exosomes can be released by most cell types in the CNS,
such as neurons, astrocytes, oligodendrocytes and micro-
glia, and participate in regulating neuronal develop-
ment, regeneration, and modulation of synaptic
functions [45-47]. The main physiological roles of
exosomes include eliminating cellular waste, regulat-
ing immune response and communicating between
neural cells [20, 48, 49]. Once released into extracellu-
lar space, exosomes act as messengers, can be cap-
tured by neighboring cells or internalized by cells with
a certain distance, or enter body fluids and taken up
by different tissues [50]. There are several ways for
signal transduction mediated by exosomes, such as
receptor-ligand pathway, endocytosis and phagocytosis
[51]. Because of the double membrane structure, exo-
somes pathway may have a higher efficiency in trans-
fer substance.

In CNS, both glia and neuron secrete exosomes is reg-
ulated by glutamate in a certain degree. It has been
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hypothesized that exosomes can be served as messenger
to mediate the communication between neuron and glia.
While, as the reported, exosomes derived from neurons
can only be captured by neurons, but not glia. It is inter-
esting to note exosomes secreted by neuroblastoma cells
can bind with both of neurons and glial cells. It demon-
strate that cell communication mediated by exosomes
has cell- selectivity [52].

In addition, the function of exosomes may be variable
among different cell origins. Evidence shows that exo-
somes derived from N2a cells or isolated from human
cerebrospinal fluid can abolish the synaptic plasticity
disruption caused by both synthetic and AD brain-
derived AP [53]. However, Asai and colleagues observed
that exosomes derived from microglia can spread tau
protein, and inhibiting exosome synthesis significantly
reduced tau propagation in vitro and in vivo [47].

Except the physiological function, the role of exosomes
in spreading toxic proteins and inducing the propagation
of diseases such as AD has been discussed extensively.

Impact of exosomes on amyloidogenic processing
of APP
The major component of amyloid deposits is small pep-
tides, 39-43 amino acids in length named AP, which is
derived from a sequence of successive cleavages of APP
[54]. APP is a type-I transmembrane glycoproteins.
Three secretases termed o,  and y-secretases are involved
in the metabolism of APP. In the amyloidogenic pathway,
upon cleavage by [-secretase (BACE-1) and y-secretase, a
large soluble ectodomain fragment (sAPP-f3), membrane-
bound C-terminal fragment (B-CTF), a small APP intra-
cellular fragment (AICD) and AP peptides are produced
[55, 56]. In the non-amyloidogenic pathway, APP is
initially cleaved at the «-secretase site, generating
sAPP-a and a-CTF. The latter is further processed by
the y-secretase complex, releasing AICD and a p3 pep-
tide [57]. B-cleavage of APP mainly occurs in early
endosomes [51, 54]. Immunofluorescence experiments
in HeLa cells (APP mutant) observed the colocaliza-
tion of sAPPPB, APP and BACE with early endosomal
markers (Rab5) and early endosomal antigen-1 [51]. It
has been found that AP is accumulated in MVBs and
can be released into extracellular space through exo-
somes [13, 58]. Although only a very small portion of
AP (<1%) is associated with exosomes, APP, - and y-
secretase have been detected in exosomes, suggesting
that except transport AP peptide in the extracellular
space, cleavage of APP to generate AP could be the
main mechanism of spreading lesions [8, 48, 59].
However, the exact role of exosomes in AD progress is
still controversial. Several studies have observed that
exosomes play a harmful role. A unique AP species,
tightly binding with GM1, was found in brains of early
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pathological stage of AD [60]. Endocytic pathway im-
pairment in neurons, including the enlargement of early
endosomes and the up-regulation of Rab5 was observed
in the brain of a patient with sporadic AD. This impair-
ment significantly accelerated the release of GMI-
associated exosomes and induced amyloid fibril formation
[61]. Furthermore, exosomes mediate the apoptosis of as-
trocytes caused by AP exposure. Wang and colleagues
found that amyloid peptides could activate neutral sphin-
gomyelinase 2 (nSMase2) and induce an increase of PAR-4
and ceramide-containing exosomes secretion in astrocytes.
The exosomes were able to be captured by astrocytes and
cause apoptosis [62]. Alternatively, fewer amyloid plaques
were observed in a mouse model of AD after injection of
GW4869, an inhibitor of nSMase2, through prevention of
the secretion of exosomes [63]. The protective function of
exosomes was also found in various studies. Neuronal exo-
somes rich in glycosphingolipids could capture AP and
promote uptake of A by microglia, thus decreasing Ap
and amyloid deposition in APP transgenic mice [64—66].
The cellular prion protein (PrP<), a glycosylphosphati-
dylinositol (GPI)-anchored surface glycoprotein highly
expressed on exosomes, was shown to bind oligomeric
AP42 with high affinity via its flexible N-terminus and
accelerate fibrillization of amyloid beta, thereby redu-
cing the neurotoxic effects imparted by oligomeric Ap
[53, 67]. It should be noted that exosomes utilized as
protective agents in recent studies almost always come
from healthy cells.

In brief, exosomes may serve as a double-edged sword
in AP metabolism. The imbalanced metabolism of APP
may cause accumulation of intracellular Ap. When be-
yond the clearance capacity of lysosomes or glial cells,
the toxic protein will be released into extracellular space
and spread through the brain via the exosome pathway.

Impact of exosomes on tau pathology

Hyperphosphorylated tau proteins are the major compo-
nents of NFTs [68]. Tau protein is a member of the fam-
ily of microtubule-associated proteins encoded by the
MAPT gene. Because of the alternative splicing of exon
10, there are two major tau isoforms in the adult brain,
denoted as 3R and 4R [5, 69]. An abnormal 3R/4R bal-
ance is thought to impair the function of tau in keeping
stabilization of microtubule structure and material trans-
port [70]. Differences in 3R/4R expression also exist
among different diseases. For instance, 3R is the main
tau isoform in Pick’s disease, while the 4R tau isoform is
a significant component of inclusions in progressive
supranuclear palsy (PSP) and corticobasal degeneration
(CBD) [71, 72]. In AD, two major tau isoforms are
present in the filaments [73]. Tau pathology developed
within a definite pattern in AD. The first involved region
is entorhinal cortex (Braak stages I-II), then developed
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to limbic areas (Braak stages III-IV), finally reaches neo-
cortical areas (Braak stages V and IV) [6]. The mechan-
ism of this spreading characteristic of tauopathy
throughout human brain has been discussed many years.
There is accumulating evidence that tau aggregates
spread and replicate in a prion-like manner, with the up-
take of pathological tau causing misfolded aggregations
of monomeric tau in recipient cells [74, 75]. Exosome-
mediated secretion pathways may play an important role
in this progress. Studies showed that tau can be exported
via an exosome-mediated mechanism in the M1C neuro-
blastoma tauopathy model, where it is enriched in a
phospho-tau biomarker for early AD (AT270). In
addition, exosome-associated tau is also present in
human CSF samples [76]. Previous studies discovered
that propagation of mutant tau between brain regions
depended on the presence of microglia, the resident
phagocytes of the brain. Microglia spread tau via exo-
some secretion and depletion of microglia or inhibition
of exosome synthesis significantly reduced tau propaga-
tion in vitro and in vivo [47]. Polanco and colleagues
detected tau in exosomes from tau transgenic rTgd510
mice, and these vesicles were capable of seeding tau ag-
gregation in a threshold-dependent manner [32].

Conclusions

Increased attention has been paid to the prion-like
mechanism involved in the propagation of AD. In this
review, we have illustrated the biogenesis and function
of exosomes and their impact on amyloidogenic process-
ing and tau pathology. The exosomes pathway may have
a “double-edged sword” effect on the process of AD.
And the effect is dependent on the cell origins of exo-
somes and the conditions when exosomes formed. The
identification of exosomal pathways could provide not
only important insights in the pathogenesis of AD, but
due to the tissue-specificity and non-immunogenicity of
exosomes, could also serve as an ideal platform for de-
livery of therapeutic drugs. Furthermore, the molecules
packaged in exosomes can be secreted into a variety of
bodily fluids, which may serve as biomarkers of disease.
Despite the potential benefits of exosomes in diagnosis
and therapy, there are some remaining issues, such as
making improvements in exosomal isolation techniques
and developing a more thorough understanding of the
role of exosomes from different cell types under different
conditions, which should be the focus of future studies.
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