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Abstract

Background: Diabetes is the most common metabolic disease with many chronic complications, and cognitive
disorders are one of the common complications in patients with diabetes. Previous studies have showed that
autophagy played important roles in the progression of metabolic syndrome, diabetes and other diseases. So we
investigated whether aged diabetic mice are prone to be associated with the cognitive and affective disorders and
whether Beclin-1-mediated autophagy might be involved in thepahological process.

Methods: High-fat diet/streptozotocin (STZ) injection-induced diabetic C57 mice were adopted in this study.
Cognitive disorders were detected by Morris water maze and fear conditional test. Affective disorders were
detected by tail suspension test and forced swimming test. Magnetic resonance imaging was applied to observe
changes of morphology and metabolism in the brain. The 18 F-fluorodeoxyglucose positron emission tomography
(FDG-PET) was used to assess metabolism changes in the brain of aged diabetic mice. Autophagy were evaluated
by Beclin- 1, LC3II/I and P62, which were detected by western blot analysis and observed by electron microscopy.
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Results: 1. Compared with control group, diabetes mice showed significantly decreasing abilities in spatial memory and
conditioned fear memory (all P < 0.05), and increasing tendency of depression (P < 0.05). 2. MRI showed that the majority
of elderly diabetic mice were associated with multiple cerebral small vessel disease. Some even showed hippocampal
atrophy, ventricular dilatation and leukoaraiosis. 3. FDG-PET-CT discovered that the glucose metabolism in the amygdala
and hippocampus was significantly decreased compared with normal aged mice (P < 0.05). 4. Electron microscopy found
that, although autophagy bodies was not widespread, and there was no significant difference between the two groups,
yet compared with normal aged mice, apparent cell edema, myelinated tow reduction and intracellular lipofuscin
augmentation existed in elderly diabetic mice brain. 5. The level of p62 was increased in the STZ-induced diabetic mice
hippocampus and striatum, and beclin1 protein expression were significantly decreased in diabetic mice hippocampus
compared with normal aged mice (P < 0.05). There was a upward trend of the ratio of LC3II/I in hippocampus, cortex and
striatum, but no statistically difference between the two groups.

Conclusion: Compared with normal aged mice, diabetic aged mice were apt to cerebral small vessel disease and
associated with cognitive and affective disorders, which may be related to the significantly reduced glucose metabolism
in hippocampus and amygdala. Beclin1 mediated autophagy in hippocampus probably played an important role in
cognitive and affective disorders of STZ-induced aged diabetic mice.

Background
Diabetes is the most common metabolic disease with many
chronic complications. Studies on animal models and
clinical diabetic patients have revealed that abnormalities
appear in both chemical and ultra-structural levels in brain
and in neurological behaviors including learning/memory
disability and the increasing risk in depression [1]. Oxida-
tive stress [2–7], chronic inflammation [8–10] and autopha-
gic imbalance [11–14] are considered to be most likely
causes to induce brain dysfunction [15–17]; however,
whether autophagic imbalance is involved in diabetes-
related cognitive and affective disorders remains unclear.
Autophagy, a self-eating mechanism, is a crucial cleaning

system for aggregated proteins and dysfunctional organelles
[18]. It is linked to the degradation of damaged materials by
acid hydrolases within the lysosomal system. There is
mounting evidence that the control of autophagocytosis is
impaired in many neurodegenerative diseases, which
display abnormal protein aggregation [19–21]. There are
three different pathways of autophagic uptake and process-
ing of cellular constituents, i.e., macro-, micro- and
chaperone-mediated autophagy [22]. Beclin1, an adaptor
protein via its interacting proteins called the Beclin1 inter-
actome, can either stimulate or suppress the onset of
autophagy. Beclin1 is one of the core elements to regulate
autophagy. The expression level and post-translational
modifications of Beclin1 interactome components can
crucially control the degree of cellular autophagy.
Up to date, few researches have investigated the rela-

tionship between diabetes-related cognitive and affective
disorders and Beclin1-mediated autophagy. The main
purpose of this study was to verify whether long-term
diabetes could induce cognitive and affective disorders
in elderly mice, and to explore whether changes of
Beclin1 protein and autophagy could affect this
pathogenesis.

Methods
Animal grouping
Male C57BL/6 mice were purchased from ProMedican
in Shanghai, China. Mice were raised under a 12-h light/
dark cycle and humidity- and temperature-controlled
environment with adlibitum access to water and stand-
ard laboratory chow. All the animal experiments were
approved by Fudan University Animal Care and Use
Committee. The 3-weeks aged mice were randomly
divided into a control group (n = 12) and a diabetic
group (n = 12).

Model making
Control mice were given with normal diet. The model
mice were given high fat diet (HFD, Shanghai SLAC com-
pany) for 12 weeks. After that, 45 mg/kg Streptozocin
(STZ, Enzo life sciences) were intraperitoneally injected
for two weeks. Blood glucose in caudal venous of mice
were detected after STZ injection. Mice with random
blood glucose >11.1 mmol/L were considered as diabetic
mice. Then the control and diabetic mice were respect-
ively raised with normal diet and HFD (Fig. 1a).

Morris water maze test
Learning and reference/working memory were evaluated
by the Morris water maze test as previously described
[23]. Groups were blinded to the examiners. In brief,
swimming paths were video-tracked with a camera fixed
on the ceiling of the room and analyzed by the software
(Coulbourn, USA). A training session was carried out
before the hidden platform test sessions. Mice were
given 60 seconds free swimming and guided to climb
onto the hidden platform and allowed to remain there
for 30 seconds before returning to their cages. On the
hidden platform test, the mice had 5 sessions at 20-min
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intervals per day on the following 4 consecutive days
(day 1 to 4). During each session mice were released
from randomly assigned 3 starting points and swam for
60 s. On the probe test at day 5, the hidden platform
was removed and the mice swam freely for 60 s. The
number of times the mice crossed the original platform
location was recorded. On the visible platform test
which was performed after the probe test on day 5, the
platform was elevated 5 cm above the water surface level
and placed in a different position. The mice were given
four sessions of a visible trial with an inter-session.

Conditioned fear test
Conditioned fear (fear conditioning) formation is not
only a process of learning and memory, but also the
formation of an emotional process. The Study on the
fear of the fear model used in the rodent fear memory,
and the freeze is considered to be an objective indicator
of fear [24].
Mice (14-months old) were subjected to fear condition-

ing test. Fear conditioning test was performed as described
previously [25]. Briefly, a mouse was placed in a plexiglas
training chamber whose floor had a stainless grid for
shock delivery. After a 3-min baseline exploratory period
in the chamber, mice received 3 tone (2000 Hz, 90 db)–

shock (0.7 mA, 2 s) pairings separated by 1 min. Each
training chamber was cleaned with 95% ethyl alcohol be-
fore the placement of a mouse and was illuminated only
with a 10 W bulb in a dark experimental room. Twenty-
four hours after the training session, mouse was placed
again in the training chamber for 8 min without tone and
foot shock. Each animal’s freezing behavior was scored
every 8 s during the 8 min observation period. The per-
centage of time in freezing behavior was calculated using
the formula of 100*f/n, where f was the number of freez-
ing events in the 8 min and n was the total number of 8-s
observation period in 8 min. One hour later, the mouse
was placed in a new chamber without a stainless floor
grid. This chamber was cleaned with the lemon fresh
pine-sol each time after use and room light was turned on
during the test. After a 3-min exploratory period in this
new chamber, a 30-s tone (2000 Hertz, 90 db) was applied.
The mouse was then left in the chamber for another
1 min. The percentage of time in freezing was calculated
by the formula of 100*f/30, where f is the total freezing
time during the 30-s observation period.

Tail suspension test
Tail suspension test was performed as described previ-
ously [26]. Briefly, animals were suspended by the tail

Fig. 1 HFD/STZ treatment upregulated body weight and blood sugar in mice. a Experimental time-flow diagram. The body weight (b) and blood
glucose (c) of mice were measured before death. Blood samples were collected from tails of mice under fasting condition (*P < 0.05, n = 12 for
each group)
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from a ledge with adhesive tape (approximately 1 cm from
the tip of the tail). The distance between the tip of the tail
of the mouse and the floor was approximately 30 cm. Each
animal was partitioned to avoid interference during the
test. Immobility was defined as the absence of movement
for 6 min. Each mouse in the test was recorded by a video-
camera and scored by a blinded experimenter.

Forced swimming test
Forced swimming test was performed as described previ-
ously [27]. Briefly, animals were placed in an open cylin-
drical container (total volume, 2500 mL; height, 20 cm;
diameter,14 cm) filled with 10 cm of water (25 °C).
Immobility was defined as mouse ceasing struggling,
remaining floating motionless in water, and making only
movement necessary to keep its head above water. The
duration of immobility in the last 4 min of the (total)
6 min of swimming time was recorded with a videoca-
mera and scored by a blinded experimenter.

Magnetic resonance imaging scanning
We use Bruker 3.1 7 T superconducting magnetic reson-
ance imaging with the diameter of the 47 mm micro-
scope coil to do mouse MR imaging study. Before MR
scan, the mice were anesthetized with isoflurane. After
that, the mice were fixed on the fixed frame, and the T1,
T2 and enhanced scan were performed. Scanning pa-
rameters: echo time 20s; repetition time 2000 ms; band
width 333333.3hz; layer 16; layer thickness 0.8 mm;
image size 64; scanning field of view 21600 ~ 15000 mm.

PET/CT scanning
Prior to the PET scans, the mice were fasted for 12 h. Each
mouse was injected approximately 0.5 mCi (18.5 MBq)
18 F-FDG in less than 0.5 ml via tail vein. The injection
was completed in less than 1 min and the injection site was
pressed for 30 s to prevent leakage. The exact injection time
and the radio activity of the syringe both before and after
the injection, together with their measure time, were
recorded for dosage calibration. After an uptake period of
40 min, the mouse was anaesthetized with agasmixture of
1% isoflurane and oxygen (1 L/min) and then prone
positioned in the gantry with a mask covering its mouth to
ensure continuous gas inhalation throughout the scan. The
PET signals were acquired from approximately 45 min
post-injection for 10 min inaInveon MM micro PET/CT
scanner (Siemens Co., Ltd, Knoxville, TN, USA) designed
for high resolution imaging of small laboratory animals.
The following CT scan was performed for localization and
attenuation correction. The raw PET data were binned into
a single frame, and the multiple planar reconstruction
(MPR) images were obtained by OSEM3D/MAP recon-
struction methods with iterations of OSEM3D= 2 and iter-
ations of MAP = 18. The final voxel size was 0.776 ×

0.776 × 0.796 mm3, and the matrix was 128 × 128 × 159.
PMOD 3.4 software (PMOD Technology, Switzerland) was
used to analyze the images. Automatic rigid matching was
performed after rough manual co-registration in the PFUS
module. A Gaussian kernel with full width of half max-
imum (FWHM) of 0.6 mm× 0.6 mm× 0.6 mm was used to
smooth the image during normalization. After that, Mir-
rione atlas was overlapped on the normalized PET images
so as to obtain the SUV mean of all 19 mouse brain regions
in this standardized template. Finally, each regional SUV
mean was divided by that of the brain stem to derive an
SUVR for statistical analysis purpose.

Transmission electron microscopy
Transmission electron microscopy (TEM, PHILIPS
CM-120, Netherlands) Brain tissues were perfused with
2.5% glutaraldehyde perfusate (25% glutaraldehyde and
0.2 M phosphate buffer with 3mMMgCl2, pH 7.4),
followed by fixation with 2.5% glutaraldehyde as previ-
ously described [28]. And then concentional of fixation
solution, dehydrated, embedded in paraffin, sliced and 3%
uranyl acetate and lead citrate double staining. The
CM-120 PHILIPS was observed and photographed
under transmission electron microscope.

Western Blot
Western Blot was performed as described previously
[29]. The hippocampus tissues from mice were homoge-
nized using RIPA (20mgorganizationwith 200 μl RIPA).
The tissue lysates were centrifuged at 12,000 rpm for
5 min and the supernatant were collected to determine
the protein concentrations by a bicinchoninic acid pro-
tein assay (Beyotime Institute of Biotechnology, China).
Membranes were reprobed with an antibody specific
against GAPDH as an internal control. The specific pri-
mary antibodies included: a rabbit polyclonal antibody
for BECN1 (1:500; SantaCruz, USA), LC3 (1:200; cell sig-
naling technology, USA), p62 (1:3000, abcam, England),
and GAPDH (1: 2000, Boster, China). At last, X-ray films
were used to Photosensitive, developing and fixing in
dark room.

Statistical analysis
All statistical analysis was performed using PRISM soft-
ware (GraphPad, La Jolla, CA). All data were repre-
sented as mean ± SEM and analyzed by student t-test
using treatment (diabetes vs.control). P values less than
0.05 were considered significant.

Results
HFD/STZ treatment induces upregulation in both body
weight and blood glucose level in mice
Before grouping, all the mice had similar body weight
and random blood glucose levels. After STZ injection,
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the level of blood glucose in HFD/STZ-treated mice was
significantly increased till 14 months later. As showed in
Fig. 2, HFD/STZ-treated mice showed significant rise in
both body weight (Fig. 1b, P < 0.05) and blood sugar
level (Fig. 1c, P < 0.05) compared with those in normal
diet-treated control mice. These results indicated that
HFD/STZ-treatment successively induced diabetic mice
model in 14-month-aged elderly mice.

Cognitive impairment and depressive symptoms in
elderly diabetic mice
We performed Morris water maze test to evaluate the
spatial acquisition ability. As showed in Fig. 2, the
number of platform crossing significantly decreased in
diabetic mice (Fig. 2d, P < 0.05), indicating that HFD/
STZ-induced diabetes induced remarkable reduction in
the spatial learning/memory ability.

Fig. 2 HFD/STZ treatment casused cognitive impairment and depressive symptoms in mice. a and b, typical swimming traces of control mice
(a) and diabetic mice (b) in Morris watermaze test. c, No difference were found between the two groups in the latency time during training trials.
d, During testing phase, the frequency of platform-crossing in diabetic mice decreased remarkably when compared with control mice. (*P < 0.05,
n = 12 for each group). Gand F, cued and contextual fear memory was evaluated using the fear conditioning test. Percent of time in total freezing
during the contextual test (e) and tone test (f) was represented. (*P < 0.05, n = 12 for each group). Gand H, effects of diabetes on immobility time
in the tail suspension test (g) and the forced swimming test (h). The immobility time in diabetes group was significantly higher than that of
control group. (*P < 0.05, n = 12 for each group)
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In the fear conditioning test, we assessed changes in
cued and contextual fear memory in diabetic mice. As
showed in Fig. 2e, when compared with control mice,
the percentage of time of total freezing behavior de-
creased significantly in diabetic mice (P < 0.05). For the
tone test, no obvious difference was observed between
two groups, indicating that HFD/STZ-induced diabetic
mice had reduction in fear conditioning memory ability.
By using tail suspension and forced swimming, we also

detected the depressive status in the mice. As showed in
Fig. 2g and h, the time of ‘immorbility’ in diabetic mice
remarkably increased during both tail suspension test
(Fig. 2g) and forced swimming test (Fig. 2h).
These results indicated that abilities of HFD/STZ-in-

duced diabetic mice decreased in both spatial memory
acquisition and fear conditioning memory. Meanwhile,
these diabetic mice represented more severe depressive
behaviors than the control mice.

Glucose metabolism reduction and structural
abnormalities in the amygdala and hippocampus of
elderly diabetic mice
To investigate whether regional functional changes exist
in the brain of diabetic mice, we further evaluated the
FDG uptake ability by using PET-CT scaning. As showed
in Fig. 3a, the standard uptake value of FDG in both
hippocampus and amygdala were much less in diabetic
mice than those in control mice (P < 0.05).
Magnetic resonance imaging showed that the majority of

elderly diabetic mice were associated with multiple lacunar
infarction which indicated cerebral small vessel disease.
Some even appeared hippocampus atrophy, ventricle en-
largement in parts of elderly diabetic mice (Fig. 3b).
We also performed electron microscopy to observe the

ultrastructural changes in the hippocampus. As showed in
Fig. 4, mice in diabetic group appeared a slight increase
without significant differences in autophagosome, but

Fig. 3 a Standard uptake value (SUV) of FDG in the Hippocampus and Amygdala in diabetes group and control group. The SUV of FDG in
diabetes group were much less than those in the control (*P < 0.05, n = 3 for each group). b Magnetic resonance imaging showed mild white
matter loose, cerebral small vessel disease, hippocampal atrophy and ventricle enlargement in the brain of diabetic mice
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there were more intracellular lipofuscin and less myelin-
ated nerve fibers in diabetic hippocampus, in accompan-
ied with apparent hippocampal edema.
These results suggested that the brain function reduc-

tion and structural abnormalities existed in the amygdala
and hippocampus of elderly diabetic mice.

Autophagy was upregulated in the hippocampus, cortex
and striatum of elderly diabetic mice
By using western blot analysis, we detected the expres-
sion levels of p62, LC3 and Beclin1 in hippocampus, cor-
tex and striatum. Our results showed that the level of
p62 had a increased trend in the STZ-induced diabetic
mice hippocampus and striatum without markedly
difference, and the ratio of the Beclin1 protein level de-
creased significantly in the diabetic hippocampus (Fig. 5).
There was a upward trend of the ratio of LC3II/LC3I in
hippocampus, cortex and striatum, but no statistically
difference between the two groups.

Discussion
Diabetes can produce long-term negative effects, such as
high blood glucose, hypoglycemia, free radical-mediated
oxidative stress, brain blood vessel reconstruction

disorder and abnormal brain insulin [30, 31], thus, dia-
betes may represent a metabolic state in which
neuroprotective and neuromodulatory effects of insulin
in the Central Nervous System were disrupted [32], and
causes brain damage. At present, the pathogenesis of
diabetes related cognitive dysfunction is not clear. Ac-
cording to previous studies, diabetes related cognitive
dysfunction consists of 2 types: One is vascular cognitive
dysfunction which is caused by cerebrovascular disease;
the other type shows apparent memory decline in asso-
ciation with atrophy in hippocampus and amygdala, but
with no obvious cerebrovascular disease. In our study,
we found that diabetic mice was prone to be accompan-
ied by both cerebral small vessel disease and hippocam-
pus atrophy, which was likely to be an important cause
of diabetes related cognitive dysfunction, and maybe a
predictor of cognitive impairment in patients with dia-
betes. This means that the pathogenesis of diabetic cog-
nitive impairment include both of the two as showed
before. Additionally, HFD/STZ-induced diabetic mice
also showed apparent glucose uptake reduction in
hippocampus and amygdala, indicating that vascular in-
dependent dementia might also be responsible for the
cognitive decline.

Fig. 4 Alterations in hippocampus ultrastructure was examined by transmission electron microscope. Autophagosomes (red arrow) existed in
both control and diabetic mice were no significantly decrease in diabetes mice. Diabetes mice have more lipofuscin (yellow arrow) and fewer
myelinated nerve fibers (green arrow) in the hippocampus. a, c, e were control groups and (b, d, f) were diabetes groups
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In the present study, diabetes related cognitive impair-
ment showed not only the decline of memory ability,
but also apparent depressive symptoms. These emotional

decline were corresponding to the glucose uptake re-
duction in hippocampus and amygdala, since the two
brain regions were important for emotional integration.

Fig. 5 a The protein levels of LC3II/LC3I in Hippocampus, Cortex and Striatum were measured by Western Blotting, The graphs showed the
relative density of LC3-II to LC3-I. (n = 4 for diabetic group, n = 5 for control group). b The protein levels of Beclin1 in Hippocampus, Cortex and
Striatum were measured by Western Blotting, The graphs showed the relative density of Beclin1 to GAPDH. Note that the protein level of Beclin1
decreased significantly in the hippocampus of diabetic mice (*P < 0.05 n = 4 for diabetic group, n = 5 for control group). c The protein levels of
p62 in Hippocampus, Cortex and Striatum were measured by Western Blotting, The graphs showed the relative density of p62/GAPDH
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Current studies had confirmed that the hippocampal
volume of depressed patients was significantly reduced
[33–35], and the most serious damaged regions of de-
pressed patients were hippocampus and amygdala [36].
Therefore, abnormalities in hippocampus and amygdala
might induce emotional imbalance such as depression
symptoms in diabetic mice. Few researches reported that
diabetes induced reduction in metabolism of the amyg-
dala, and our study suggested that the elderly diabetic
mice had the dysfunction of glucose metabolism in the
amygdala, which might be one of the pathological
mechanisms of cognitive impairment. Therefore, these
findings provided a new and interesting clue to find
the intrinsic causes of memory impairment in patients
with diabetes.
Autophagy played important roles of maintaining nor-

mal tissue and cellular homeostasis [37, 38]. Previous
studies have showed that autophagy played important
roles in the progression of metabolic syndrome, diabetes
and other diseases. The pathogenesis of these diseases
was, to some extent, related to the dysfunction of au-
tophagic removement of damaged organelles [39]. It was
found that the efficiency of autophagy function de-
creases with aging. Recent researches showed that type 2
diabetes could lead to autophagy dysfunction of vascular
cells and neuronal cells, cause or aggravate cerebral vas-
cular lesions and vascular dementia process, and eventu-
ally resulted dysfunction of memory [40–44].
The protein of p62, a protein associated with autopha-

gosomes and degraded in the autolysosome, is com-
monly regarded as autophagy substrate protein [45, 46],
as a mainly negative regulator of autophagy, activated
mTORC1 inhibits autophagy induction through blocking
of the initial inducer of autophagy [47, 48]. The p62 is
the scaffold protein implicated in selective autophagy
which is induced by the stress of cells. It plays an im-
portant role in the mechanism of diabetes. Beclin1 is not
only a central positive regulator in the early stage of au-
tophagy, but also one of the core proteins of autophagy,
apoptosis and inflammatory reaction [49]. In recent
years, scientists have discovered that Beclin1 protein
levels decreased significantly in the brain regions of
neurodegenerative diseases [49, 50], suggesting that
Beclin1 may be involved in the cognitive dysfunction in
Alzheimer’s disease. Our study found that the p62 pro-
tein expression in the brain tissue of elderly diabetic
mice had a increased trend and the result meant that the
autophagy in STZ-induced diabetic mice was downregu-
lated. At the same time, the Beclin1 protein decreased
markedly in hippocampus. Meanwhile, the result of
LC3II/I showed that the diabetes group had a upward
trend without statistical difference. These results indicat-
ing that the expression changes of p62 and Beclin1
might play different roles in the pathogenesis of

autophagy. Based on our present study, we concluded
that the autophagy was reduced in diabetic mice. Previ-
ous studies found that Akt plays a role in induced endo-
thelial injury in diabetes [31], and that the NF-kB
pathway is a mechanism of cerebral ischemia and hyp-
oxia [51]. Next step, we will explore whether Akt and
NF-kB pathway has an effect on diabetic cognitive
dysfunction.

Conclusions
The results of this study suggested that the elderly dia-
betic mice were prone to complicated with cognitive and
affective disorders, which was probably caused by hippo-
campal atrophy, glucose metabolism disorders in the
hippocampus and amygdala, and cerebral small vessel
disease. Compared with normal aged mice, diabetic aged
mice were apt to complicate cerebral small vessel disease
with cognitive and affective disorders. Beclin1 mediated
autophagy might play an important role in the process
of its occurrence and development. The intrinsic mo-
lecular mechanism still need further deep-going research
in the future.
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