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Abstract

Alzheimer's disease (AD) is the most common form of dementia. At the present time, however, AD still lacks effective
treatments. Our recent studies showed that chronic treatment with anesthetic propofol attenuated brain caspase-3
activation and improved cognitive function in aged mice. Accumulation of 3-amyloid protein (AB) is a major component
of the neuropathogenesis of AD dementia and cognitive impairment. We therefore set out to determine the effects of
chronic treatment with propofol on AR levels in brain tissues of aged mice. Propofol (50 mg/kg) was administrated to
aged (18 month-old) wild-type mice once a week for 8 weeks. The brain tissues of mice were harvested one day after
the final propofol treatment. The harvested brain tissues were then subjected to enzyme-linked immunosorbent assay
(ELISA) and Western blot analysis. Here we report that the propofol treatment reduced AR (AB40 and AB42) levels in the
brain tissues of the aged mice. Moreover, the propofol treatment decreased the levels of 3-site amyloid precursor protein
cleaving enzyme (the enzyme for AR generation), and increased the levels of neprilysin (the enzyme for AR degradation)
in the brain tissues of the aged mice. These results suggested that the chronic treatment with propofol might reduce
brain A{ levels potentially via decreasing brain levels of B-site amyloid precursor protein cleaving enzyme, thus
decreasing AR generation; and via increasing brain neprilysin levels, thus increasing AR degradation. These preliminary

findings from our pilot studies have established a system and postulated a new hypothesis for future research.
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Introduction

Alzheimer disease (AD) is an insidious and progressive
neurodegenerative disorder accounting for the vast major-
ity of dementia, and is characterized by global cognitive
decline and the robust accumulation of amyloid deposits
and neurofibrillary tangles in the brain (reviewed in [1]).
However, there is still a lack of effective treatments for
AD, and many studies aim to find new and novel drugs
to treat and/or prevent AD.

B-Amyloid protein (AP) is a main component of the
plaques found in brains of AD patients and is the hallmark
of AD dementia and cognitive impairment (reviewed in
[1]). Accumulation and deposition of f-amyloid protein
(AP) has been reported as one of the main aspects of AD
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neuropathogenesis ([2-4], reviewed in [1]). AB was isolated
from meningovascular amyloid deposits in AD and
Down’s syndrome [2,5]. These findings led to the cloning
of the gene encoding amyloid precursor protein (APP) as
one of the AD genes [6,7] and consequently, the further
studies of APP processing and A} metabolism.

APP is hydrolyzed by aspartyl protease B-site APP-
cleaving enzyme (BACE) or -secretase, a type I trans-
membrane, glycosylated aspartyl protease found in
post-Golgi membranes and at the cell surface [8-11],
and then is cleaved by y-secretase [12-14] to generate Ap.
Finally, AP can be degraded by enzyme insulin degrading
enzyme (IDE) and neprilysin (NEP) ([15-19]; reviewed
in [20]).

Propofol (2, 6-disopropylphenol) is an intravenous anes-
thetic. It has been shown that propofol can attenuate the
caspase-3 activation and A oligomerization induced by the
anesthetic isoflurane [21]. Our recent studies have shown
that chronic treatment with propofol (50 mg/kg, once per
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week for 8 weeks) in aged mice (e.g., 18 month-old) can
improve the cognitive function and attenuate the caspase-
3 activation [22]. Given AP accumulation can lead to
cognitive impairment [reviewed in [1]), we set out in the
present pilot studies to establish a system and to test a
hypothesis that the chronic treatment with propofol can
decrease AP levels in the brain tissues of aged mice via
inhibiting its generation and/or promoting its degradation.
The findings from these proof of concept studies would
promote more research to further determine the effects of
anesthetic propofol on AD neuropathogenesis.

Materials and methods

Mice and propofol treatment

The animal protocol was approved by the Standing
Committee on Animals at Massachusetts General Hospital,
Boston, Massachusetts. The maintenance and handling
of mice were consistent with the guideline of National
Institute of Health, and all of the efforts were made to
minimize the number of animals in the studies. Wild-type
mice (C57BL/6 ], The Jackson Lab, Bar Harbor, ME) were
used in the study. There were 10 mice in the propofol
treatment group and 10 mice in the saline control group.
The mice, at the age of 18 months-old, were randomized
by weight and gender into experimental groups, which
received propofol (APP Pharmaceuticals, Inc, Schaumburg,
IL) treatment [50 mg/kg, intraperitoneal (IP) injection], and
control groups, which received the same volume of saline
(IP), once a week every Saturday for 8 weeks.

Tissue preparation

One day after the last propofol or saline treatment, mice
were decapitated, and the brain tissues were harvested.
The harvested brain tissues were homogenized on ice with
an immunoprecipitation buffer (10 mM Tris—HCI, pH 7.4,
150 mM NaCl, 2 mM ethylenediaminetetraacetic acid,
0.5% Nonidet P-40) plus protease inhibitors (1 pg/ml
aprotinin, 1 pg/ml leupeptin, 1 pg/ml pepstatin A). The
lysates were centrifuged at 14,000 rpm for 15 minutes,
and quantified for total protein concentration by a
bicinchoninic acid protein assay kit (Pierce, Iselin, NJ).
The harvested brain tissues were subjected to Enzyme-
linked immunosorbent assay (ELISA) or Western blot
analyses as described in our previous studies [21,23,24].

ELISA determination of A

The mouse AP40 (KMB3481) and AP42 (KMB3441)
immunoassay Kits (Invitrogen, San Francisco, CA) were
used to determine the AP40 and AP42 levels in the
brain tissues of the aged mice, respectively. The brain
tissues were homogenized in TBS buffer (including
50 mM Tris, and 150 mM NaCl, pH 8.0) with protease
inhibitor (1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml
pepstatin A), and then centrifuged for 45 minutes at
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65,000 rounds per minute (RPM) at 4 degrees Celsius. The
supernatants were removed. The pellets were resuspended
by sonication in a homogenization buffer containing 1%
SDS, and spun again (15 minutes at 18,000 RPM). We
collected the supernatants and measured the total protein
amount of each sample. We obtained 110 pg of protein
from each harvested mouse brain sample or standard,
and placed the sample into each well coated with a
monoclonal antibody to the NH2-terminus of mouse A.
The samples and the antibody were incubated overnight
at 4 degrees Celsius. After washing 4 times, a rabbit
monoclonal antibody specific for the COOH-terminus of
the AP sequence (1-40 or 1-42) was added and incubated
in room temperature for one hour. After another 4
washes, horseradish peroxidase-labeled anti-rabbit anti-
body was added to the wells, and incubated for a half
hour at room temperature. Wells were then developed
with tetramethylbenzidine (TMB) reagent in dark and
the well absorbance was measured at 450 nm. AB40
and AP42 levels in test samples were determined by
comparison with the signals from the standard spiked
with known quantities of AB40 or Ap42.

Western blot analysis

BACE antibody (1:1,000 dilution; Abcam, Cambridge,
MA, Cat. Number: ab2077) was used to recognize BACE
(65 kDa). Anti-neprilysin (NEP) antibody (1:1,000 dilution,
Millipore, Temecula, CA) was used to detect protein levels
of NEP (86 kDa). Antibody anti-p-Actin (1:10,000, Sigma,
St. Louis, MO) was used to detect B-Actin (42 kDa). Each
band in the Western blot represented an independent
experiment. The results were averaged from 6-10 inde-
pendent experiments. We quantified the Western blots
in two steps as described in our previous studies [25].
First, we used B-Actin levels to normalize protein levels
(e.g., determining the ratio of BACE to p-Actin amount)
and control for loading differences in the total protein
amount. Second, we presented protein level changes
in the brain tissues of mice treated with propofol as a
percentage of those in the saline control group. 100%
of protein level changes refer to control levels for the
purpose of comparison to experimental conditions.

Immunoblot detection of AR

Immunoblot detection of AP in brain tissues was mea-
sured as described in previous studies [25-27]. Specifically,
brain samples were homogenized (150 mM NaCl with
protease inhibitor cocktail in 50 mM Tris, pH of 8.0)
and centrifuged (65,000 rpm x 45 minutes), and the
supernatant was removed. The pellet was then resuspended
by sonication in homogenization buffer containing 1% SDS.
Following the pelleting of insoluble material (18,000 rpm x
15 minutes), the SDS-extract was electrophoresed on
SDS-PAGE (4-12% Bis-Tris polyacrylamide gel from
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Invitrogen, Carlsbad, CA), blotted to PVDF membrane
and probed with a 1:200 dilution of 6E10 (Covance).

Statistics

Data were expressed as mean + standard deviation (SD).
The number of samples varied from 6 to 10, and the
samples were normally distributed (tested by normality
test). Student-t test was used to analyze the difference in
A, BACE, and NEP levels between the brain tissues of
the propofol-treated mice and the brain tissues of the
saline-treated mice. Prism 6 software (La Jolla, CA) was
used to analyze the data.

Results

Propofol treatment reduced the A levels in the brain
tissues of aged mice

Our recent studies [28] showed that chronic treatment
with anesthetic propofol (50 mg/kg, once a week for
8 weeks) was able to improve cognitive function and
attenuated the aging-associated caspase-3 activation.
Both caspase-3 activation and AP have been reported
to contribute to AD neuropathogenesis and cognitive
impairment ([29], reviewed in [1]). Therefore, we set out to
determine whether the chronic propofol treatment could
also reduce the AP levels in the brain tissues of mice.

The 18 month-old mice received 50 mg/kg propofol
or saline once a week for 8 weeks. On the day after the
last propofol treatment, the mice were euthanized and
the brain tissues were harvested. The harvested brain
tissues were subjected to ELISA studies for the deter-
mination of AB40 and AP42 levels. The ELISA studies
showed that the brain tissues from the propofol-treated
mice had lower levels of ABP40 as compared to the brain
tissues from the saline-treated mice: 42 versus 78 pg/
1 mg protein, P =0.027 (Figure 1A). The ELISA studies
also showed that the propofol treatment reduced the
AB42 levels in the brain tissues of mice: 0.54 versus
0.89 pg/ 1 mg protein, P =0.030 (Figure 1B). These data
suggested that the chronic treatment with propofol might
decrease both AP40 and AP42 levels in brain tissues of
aged mice.

Next, we performed Western blot analysis of AP to
further determine the effects of the propofol treatment
on the AP levels in the brain tissues of the aged mice.
The immunoblotting of A showed that there was a visible
reduction in the levels of bands representing A (4 kDa)
in the brain tissues of mice following the propofol treat-
ment as compared to those of mice following the saline
treatment (Figure 1C). There was no significant difference
in the B-Actin levels between the brain tissues of mice
following the propofol treatment and the brain tissues
of mice following the saline treatment. The quantification
of the Western blot, based on the ratio of AP to B-Actin,
showed that the propofol treatment (black bar) decreased
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the AP levels as compared to the saline treatment (white
bar): 43% versus 100%, P =0.001 (Figure 1D). Taken
together, these data suggested that the chronic treatment
with 50 mg/kg propofol weekly for 8 weeks was able to
decrease AP levels in the brain tissues of aged mice.

Propofol treatment reduced the BACE levels in the brain
tissues of aged mice

Given the findings that the propofol treatment could
decrease the AP levels in the brain tissues of aged mice,
next, we investigated the potential underlying mechanisms.
We used Western blot analysis to assess the effects of the
propofol treatment on the level of BACE, the enzyme for
the AP generation [8]. The BACE immunoblotting showed
that there were reduced levels in the levels of the bands
representing BACE (65 kDa) in the brain tissues of the
propofol-treated mice (lanes 5 to 8) as compared to
those of the saline-treated mice (lanes 1 to 4) (Figure 2A).
The quantification of the Western blot showed that the
propofol treatment (black bar) decreased the BACE
levels as compared to saline treatment (white bar): 58%
versus 100%, P = 0.001 (Figure 2B). These results suggested
that the propofol treatment might decrease A levels
by reducing its generation through inhibition of its gen-
eration enzyme, BACE.

Propofol treatment increased the NEP levels in the brain
tissues of aged mice

The reduction of AP could be due to either a decrease in
its generation (e.g., decrease in BACE levels) or increase
in its degradation. Neprilysin (NEP) is one of the enzymes
of AP degradation ([15-19]; reviewed in [20]). We there-
fore assessed the effects of the chronic propofol treatment
on the levels of NEP in the brain tissues of the aged
mice by employing the Western blot analysis. The NEP
immunoblotting showed visible increases in the levels
of bands representing NEP (86 kDa) in the mice treated
with propofol (lanes 4 to 6) as compared to those treated
with saline (lanes 1 to 3) (Figure 3A). The quantification
of the Western blot showed that the propofol treatment
(black bar) increased the levels of NEP as compared to
the saline treatment (white bar) in the brain tissues of
the aged mice: 167% versus 100%, P = 0.001 (Figure 3B).
These data suggested that the propofol treatment might
also decrease AP levels by increasing its degradation
through promotion of its degradation enzyme, NEP.

Discussion

Our recent studies have shown that a weekly treatment
with 50 mg/kg propofol for 8 weeks is able to improve
the cognitive function in the aged mice, and reduces
caspase-3 activation in the brain tissues of the mice [22].
AP accumulation also contributes to cognitive impairment
[reviewed in [1]). Therefore, in the current study, we
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Figure 1 Propofol decreases A levels in the brain tissues of aged mice. A. ELISA shows that there are lower levels of AB40 in the brain
tissues of mice following the propofol treatment (black bar) as compared to the mice following the saline treatment (white bar). B. ELISA shows
that there are lower levels of AR42 in the brain tissues of mice following the propofol treatment (black bar) as compared to the mice following
saline treatment (white bar). C. Western blot analysis shows that there are lower levels of AR in the brain tissues of mice following propofol
treatment (lanes 5 to 8) as compared to the mice following saline treatment (lanes 1 to 4). D. Quantification of the Western blot shows that there
are lower levels of AR in the brain tissues of mice following propofol treatment (black bar) as compared to the mice following saline treatment
(white bar). N=10.

assessed the effects of the chronic treatment of propofol
on the levels of AP, as well as its generation enzyme
BACE and degradation enzyme NEP. Note that the main
objective in this proof of concept study is to establish a
pre-clinical model for future large scale studies.

We found that the weekly treatment of propofol for
8 weeks in the aged mice was able to attenuate the AP
levels in the brain tissues of the mice (Figure 1). These
data suggested that it was possible that the anesthetic
propofol might improve cognitive function in aged mice
by reducing the AP levels in the brain tissues of the mice.
However, the cause-effect relationship of the propofol-
induced reduction in brain AP levels of aged mice and
the propofol-induced improvement of cognitive function

in aged mice remain to be determined. Such studies would
illustrate the functional outcomes of the propofol-induced
reduction in brain AP levels of aged mice and are war-
ranted to perform in the future.

Moreover, the propofol treatment decreased BACE levels
in the brain tissues of the aged mice (Figure 2). These
results showed the potential underlying mechanism of
the propofol-induced reduction in AP levels, and suggested
that propofol might decrease the A levels by inhibiting its
generation in the brain tissues of the mice.

Finally, the propofol treatment increased the NEP levels
in the brain tissues of the aged mice (Figure 3). These
findings demonstrated a different underlying mechanism
of the propofol-induced reduction in AP levels, and
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Figure 2 Propofol decreases BACE levels in the brain tissues of aged mice. A. Western blot analysis shows that there are lower levels of
BACE in the brain tissues of mice following propofol treatment (lanes 5 to 8) as compared to the mice following saline treatment (lanes 1 to 4).
B. Quantification of the Western blot shows that there are lower levels of BACE in the brain tissues of mice following propofol treatment (black
bar) as compared to the mice following saline treatment (white bar). N=6.
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Figure 3 Propofol increases NEP levels in the brain tissues of aged mice. A. Western blot analysis shows that there are higher levels of
NEP in the brain tissues of mice following propofol treatment (lanes 4 to 6) as compared to the mice following saline treatment (lanes 1 to 3).
B. Quantification of the Western blot shows that there are higher levels of NEP in the brain tissues of mice following propofol treatment (black
bar) as compared to the mice following saline treatment (white bar). N=6.
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suggested that propofol might decrease the Af levels by
enhancing its degradation in the brain tissues of the mice.

A recent study has shown that AD patients may have
an age-dependent decrease of gamma-aminobutyric acid
(GABA) currents in the AD brain, and this reduction is
associated with decreased mRNA and protein levels of
GABA receptor subunits [30]. These findings suggest that
reduced GABA neurotransmission could also contribute
to AD neuropathogenesis. Propofol is a GABA receptor
agonist [31], and it has been shown in a preliminary
clinical study that propofol may improve cognitive
function in humans [32]. Our current studies showed
that the chronic propofol treatment might decrease BACE
levels (the generation enzyme) and increase NEP levels (the
degradation enzyme), leading to reduction in Af levels
in brain tissues of aged mice. Furthermore, our recently
published work [22] suggested that the same chronic pro-
pofol treatment was able to attenuate caspase-3 activation
in the brain tissues of aged mice and improved cognitive
function in the mice. Taken together, these findings
suggest the potential association between GABA neuro-
transmission with caspase activation, A metabolism and
cognitive function. Future studies may use different GABA
receptor agonist(s) to further test this hypothesis. These
findings may promote more research, leading to new
concepts of AD neuropathogenesis and new intervention
(s) of AD.

Moreover, these findings demonstrated the possibility
that the anesthetic propofol could be used to prevent
or treat neurological disorders, e.g.,, AD. Pending further
studies, the chronic treatment with propofol would be
used to attenuate the neuropathogenesis of AD and to
improve the cognitive function in AD patients. These
studies would promote further investigations, in both
pre-clinical and clinical settings, to seek innovative uses of
current anesthetics for the interventions of other disorders.

Some anesthetics, e.g., isoflurane, have been shown to
induce neurotoxicity and neurobehavioral deficits in vitro
and in vivo [25,33-46]. Therefore, the current findings that
propofol attenuated AP levels in brain tissues of mice

suggested that more studies are needed to assess whether
propofol could be a better choice when providing anes-
thesia care for AD patients or senior patients who are
vulnerable to develop postoperative cognitive dysfunction.

Note that propofol is a short acting anesthetic agent.
The observed reductions in the levels of AR and BACE,
and increases in the NEP levels were likely not the acute
effects of propofol. The exactly mechanism by which the
chronic treatment of propofol alters the levels of A,
BACE, and NEP remains unknown at the current time.
We have postulated that the weekly treatment with
50 mg/kg propofol for 8 weeks may regulate the functional
status of GABA receptor, which then leads to the changes
in the levels of AP, BACE, and NEP. Future studies to test
this hypothesis are warranted.

The studies have several limitations. First, we did not
determine the dose or time-dependent effects of propofol
on AP levels in the brain tissues of the aged mice.
Different treatments of propofol may be neurotoxic
[47-49] or neuroprotective [50-52]. Therefore, it is
possible that propofol treatment with different doses
or administered at different times may have different
effects on brain AP levels. Nevertheless, the outcomes
from the current studies have established a system and
proposed a new concept to further determine the effects
of propofol on brain function. Second, we did not assess
the effects of propofol on the levels of other enzymes
involving in AP metabolism, e.g., y-secretase and/or insulin
degradation enzyme (IDE). However, the main objective of
the current studies was to determine whether anesthetic
propofol could decrease brain Af levels in aged mice. We
will systematically investigate the underlying mechanism
by which propofol affects brain AP levels using our estab-
lished system in the future.

In conclusion, we found that chronic treatment with
the anesthetic propofol was able to reduce AB (both
AP40 and AP42) levels in the brain tissues of aged mice.
Furthermore, the chronic propofol treatment might
reduce the brain AP levels by decreasing brain BACE
levels (decreasing A generation) and increasing brain
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NEP levels (increasing AP degradation). The findings from
these concept and hypothesis generation studies will
promote more research to systematically determine the
effect of chronic treatment of propofol or other anesthetics
on AP levels and the associated behavioral changes,
which would ultimately lead to the development of new
therapeutic strategies for aging- and/or AD-associated
cognitive impairment and of better anesthesia care for
senior and AD patients.
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