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Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disorder affecting the elderly people. AD is
characterized by progressive and gradual decline in cognitive function and memory loss. While familial early-onset
AD is usually associated with gene mutations, the etiology of sporadic late-onset form of AD is largely unknown.

It has been reported that environmental factors and epigenetic alterations significantly contribute to the process
of AD. Our previous studies have documented that chronic hypoxia is one of the environmental factors that
may trigger the AD development and aggravate the disease progression. In this review, we will summarize the
pathological effects of chronic hypoxia on the onset and development of AD and put forward the possible molecule
mechanisms underlying the chronic hypoxia mediated AD pathogenesis. Finally, we propose that epigenetic regulations

may represent new opportunity for the therapeutic intervention of this disease.
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Introduction

Alzheimer’s disease (AD) is the most common neuro-
degenerative disorder in the elderly people. The latest
epidemiology study of AD reported that the number of
people with the disease in China is significantly in-
creased from 1.93 million in 1990 to 5.69 million in
2010 [1], representing a major health problem and a
heavy financial burden on individuals and society as a
whole. Clinically, AD is characterized by progressive and
gradual decline in cognitive function, accompanying
with severe memory loss and, ultimately, decreasing
physical functions and death. The clinical manifestations
of AD are associated with the specific pathological
changes in the brain of the patient. The pathological
hallmarks of the disease are extracellular neuritic plaques,
intracellular neurofibrillary tangles (NFTs), synaptic loss
and neuron degeneration. Aberrant hyperphosphorylation
of tau protein is the main constituent of NFTs. Neuritic
plaques are composed of abnormal cleavaged p-amyloid
(AB) peptide and are surrounded by reactive astrocytes
and activated microglia [2,3].
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AD can be classified into two forms: early-onset fami-
lial AD (FAD) and sporadic late-onset form of AD
(LOAD). Most cases of AD are sporadic, with only 5% of
the total number of AD exhibiting a clear genetic inhe-
ritance [4]. Gene mutations in the amyloid precursor
protein (APP), presenilinl (PS1) and presenilin2 (PS2)
have been documented as causatives for FAD, and the
Apolipoprotein E4 (ApoE4) allele has been associated
with LOAD [5]. Several new genetic findings derived
from genome-wide association studies (GWAS) have
been identified as new susceptibility loci. These include
clusterin (CLU), phosphatidylinositol binding clathrin as-
sembly protein (PICALM), complement receptor 1 (CR1),
bridging integrator (BIN1), microtubule affinity-regulating
kinase4 (MARK4), the ATP cassette transporter (ABCA7),
a membrane-spanning 4-domains, subfamily A (MS4A6A),
CD33, a CD2-associated protein (CD2AP), and ephrin Al
(EPHA1) [6,7]. While gene mutations undoubtedly play an
important role in the etiology of AD, more and more stu-
dies support that the environmental risk factors con-
tribute greatly to the disease onset and progression
[8-10]. It is believed that most cases of AD arise
through interaction between genetic and environmen-
tal factors. Gene-environment interaction refers to a
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certain environmental exposure in the presence of a
susceptibility gene [8]. It is thought that various envi-
ronmental exposures can contribute to the risk of AD,
such as aging, diet and nutrition, educational level, ex-
posure to metals, pesticides, diabetes, brain trauma
and etc. [11-14]. Among all the environmental expo-
sures, chronic hypoxia has been extensively studied re-
cently [15]. It has been shown that chronic hypoxia
may trigger the AD development and may also aggravate
the disease progression [15]. Hereby we summarize current
findings of the pathological effects of chronic hypoxia on
the onset and development of AD and put forward the po-
tential molecule mechanisms of epigenetic modification
underlying the hypoxia mediated AD pathogenesis.

Chronic hypoxia is a risk factor for dementia and
Alzheimer’s disease
Chronic hypoxia is a reduction of oxygen supply, which
is a direct consequence of hypoperfusion and restricts
the function of organs, tissues or cells. Efficient oxygen
delivery to brain tissues is essential for normal brain
function and cells survival. Clinically, chronic hypoxia is
a common pathophysiological event and contributes sig-
nificantly to the progression of widespread diseases in-
cluding fever, chronic obstructive pulmonary disease,
obstructive sleep apnea syndrome, stroke, cancer, neuro-
degenerative disorders and etc. [16]. It has been shown
that individuals who have suffered severe hypoxia or is-
chemia are more susceptible to developing AD [17-19].
Researchers reported that AB deposited in the brain after
severe head injury [12,20], and cardiac arrest induced a
time-dependent increase level of AP in the serum of
heart attack patients [21]. A recent clinical prospective
study by Yaffe and colleagues, demonstrated that older
women with sleep-disordered breathing and hypoxia had
a significantly increased risk of developing cognitive im-
pairment and dementia [22]. Their findings suggested
that chronic hypoxia but not sleep fragmentation or du-
ration was associated with the higher risk of mild cogni-
tive impairment or dementia. Another prospective study
named Health, Aging, and Body Composition (Health
ABC) that took a follow-up observation over the 11 years
has shown that anemia was associated with an increased
risk of developing dementia among older adults [23].
Consistent results have been published in transgenic
mouse models or cell models showing the impact of
chronic hypoxia on AD. It is found that hypoxia in-
creased both mRNA and protein levels of APP in cells
and elevated the level of AP in culture medium signifi-
cantly [24]. Our previous study has reported that re-
peated hypoxia treatment could lead to more and larger
senile plaque formations and more AB42 production in
aged APP™ 4+ PS14?*F double transgenic mice [25].
Interestingly, similar neuropathology was observed in
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the study of prenatal hypoxia in AD development in
adult mice [26]. It has been found that prenatal chronic
intermittent hypoxia significantly contributed to mem-
ory and cognition deficit in adult mice [26]. Moreover,
prenatal hypoxia increased senile plaque formation and
AP production in adult mice [26]. Another study also
showed that hypoxia treatment impaired spatial learning
and memory of AD transgenic mice, and caused ER
stress and neuronal apoptosis [27]. These effects were
associated with abnormal calpain activation because sup-
pression of m-calpain expression could attenuate the
hypoxia-induced ER stress and apoptosis [27].

Chronic hypoxia may facilitate AD pathogenesis by
increasing AP generation and decreasing AP degradation
Abnormal cleavaged B-amyloid peptide is the main con-
stituent of neuritic plaques, which derives from sequen-
tial cleavage of APP by [B-secretase and y-secretase [28].
In the brain, the clearance of AP is mainly degraded by
neprilysin (NEP) and insulin-degrading enzyme (IDE)
[29]. Several studies including ours have shown that
chronic hypoxia may elevate the production of Ap and
reduce the degradation of AP [25,26,30-33]. Chronic
hypoxia in the human neuroblastoma SH-SY5Y cells
caused reduced expression ADAMI0, part of the o-
secretases and increased the expression of [B-site APP
cleaving enzyme 1 (BACE1) [34,35]. Our previous study
has demonstrated that chronic hypoxia increased A
generation by altering - and y-cleavage of APP [25].
The ratio of C99/C83 was elevated by chronic hypoxia
in the brain of AD transgenic mice and the expression
level of APH-1a was enhanced under hypoxia condition,
which in turn would lead to increase in AP production
[25]. Others have also shown that hypoxia could up-
regulate BACE1 and APH-1a at both transcriptional and
translational levels in vitro and in vivo [30,31,33]. It is
widely accepted that hypoxia-inducible factor-1 (HIF-1)
is the master regulator of the cellular response to
chronic hypoxia [36]. Further investigations have re-
vealed a functional hypoxia responsive element in the
BACEL gene promoter, to which HIF-1a can bind and
result in increased activity of f-secretase under hypoxia
conditions [30,33]. Similar HIF-1a binding site AP4 was
identified in the promoter of APH-1a [31]. The binding
of AP4 and HIF-1 to the promoter under hypoxia condi-
tions may significantly affect the expression of APH-1a
and lead to increased activity of y-secretase [31]. All
these findings suggest that hypoxia may increase the
generation of AP in vivo and in vitro.

It is known that NEP plays a key role in the degra-
dation of A in the brain and it is one of the most im-
portant AB-degrading enzymes [29,37]. Evidence showed
that NEP mRNA, protein and activity levels were de-
clined not only in AD but also in the normal aging in
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the brains [38-42]. Fisk et al. demonstrated that hypoxia
reduced NEP expression at the protein and mRNA levels
as well as its activity [43,44]. We previously tested the
expression levels of NEP in the cortex of AD transgenic
mice, and found that the protein level of NEP started to
reduce at the age of 6-month old in the brain of AD
mice in comparison with age-matched wide-type mice
[26]. Interestingly, the results also documented that
chronic hypoxia induced significantly down regulation of
NEP protein level in both transgenic mice and wide-type
mice [26]. The declined level of NEP would reduce the
clearance of AP. Given to the aggravated pathogenesis of
AD and the over-load of Ap burden under hypoxia con-
dition, the chronic hypoxia-induced down regulation of
NEP was implied to be a significant event in AD.

Chronic hypoxia may aggravate Ap burden through
epigenetic modifications on genes associated with Ap
metabolism

It has been indicated that environmental factors and epi-
genetic mechanisms are likely to contribute to the eti-
ology of LOAD [8-10]. Epigenetic mechanisms modify
heritable and non-heritable traits without altering the
underlying DNA code, mediated through the reversible
modifications of DNA and histones [45]. Epigenetic pro-
cesses play an important role in normal physical func-
tions of cells and the body, so aberrant epigenetic
modification are hypothesized to contribute to a majority
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of pathologies [46]. Abnormal PS1 methylation patterns
have previously been associated with hypomethylation in
promoter [47]. DNA demethylation has a strong correl-
ation with transcriptional activation [48]. Hypomethyla-
tion in promoter CpG islands of other AD-associated
genes such as APP and BACE1 has also been reported,
which in turn may lead to abnormal up regulation of these
genes and over-production of AB [49,50]. In the study of
epigenetic differences in monozygotic twins discordant for
AD, a significantly reduction of DNA methylation was ob-
served in the temporal cortex neuronal nuclei of AD twin
[51]. It was shown that hypoxia can reduce global DNA
methylation in cancer cell lines in vivo and in vitro [52].
Importantly, hypoxia could cause long-lasting change in
DNA methylation change in promoter regions, some of
which could be highly correlated with transcriptional
modulation in a number of genes involved in neural
growth and development [53]. Chen et al. found that Ap
could reduce global DNA methylation and increase NEP
promoter methylation and further suppress the NEP ex-
pression in mRNA and protein levels [54]. However, the
methylation status of the NEP promoters did not regulate
its expression in vitro [55], and chronic hypoxia did not
affect the methylation patterns of NEP gene promoters in
mouse primary cortical and hippocampal neurons [32].
Interestingly, chronic hypoxia could cause significant
down regulation of NEP by up-regulating G9a histone
methyltransferase and histone deacetylase 1 (HDACI),
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Figure 1 The effect of chronic hypoxia on AD. Hypoxia increases the 3 and y cleavage of APP by demethylation in promoter CpG islands of
APP, PS1, and BACET1. In addition, chronic hypoxia reduces the expression of NEP by up-regulating histone methyltransferase and histone
deacetylase. All these contribute to the deposition of AR and AD pathogenesis.
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which resulted in increased expression of H3K9me2 and
decreased expression of H3-Ace respectively [32]. In
addition, methylation inhibitor 5-Aza, HDAC inhibitor val-
proic acid VA, and siRNA-mediated knockdown of G9a or
HDACI1 could reverse the expression of NEP [32]. Others
also reported that the NEP promoter could be repressed by
HDACsSs and the expression of NEP was repressed in neur-
onal cells via the competitive binding of HDACs to its pro-
moter [55]. All these findings suggest that chronic hypoxia
aggravates AD by epigenetic modulations, mainly focusing
on DNA methylaion and histones modifications, which are
of tremendous importance to the onset and progression of
the disease (Figure 1).

Epigenetic regulation targeting A burden may help

relieve the chronic hypoxia-mediated disease process

Currently, the treatment of AD focuses mainly on im-
proving symptoms, targeting cholinergic and glutamater-
gic neuron transmission, with no therapeutics that can
cure the disease [56]. Researchers around the world have
worked hard to search for novel therapeutics for AD,
which include the anti-AB (drugs to reduce its produc-
tion, prevent its aggregation and promote its clearance),
anti-tau (drugs to prevent its aggregation or phosphoryl-
ation), neurotrophins, and others [56]. Epigenetic regula-
tion is a strong candidate therapeutic, since epigenetic
modifications are reversible while genetic mutations are
not. Drugs which can modulate DNA methylation and
remodel the structure of chromatin through post-
translational modifications of histones are promising
potential candidates [57-60]. Recently, several drugs
have been reported to be effective on AD mice models
by modulating DNA methylation and histone acetyl-
ation separately, although none have yet entered clin-
ical development [58,59,61,62]. Sodium valproic acid is
one of these disease-modifying drugs, which may not
only attenuate AD pathogenesis in transgenic AD
mice, but also show effect in hypoxia-induced AD in
the model. Valproic acid is a widely used antiepileptic
drug, which has recently been found to have neuropro-
tection [63,64], and histone deacetylase inhibitory
property may offer potential therapeutic option for AD
[65]. It has been reported that valproic acid could in-
hibit Ap production, reduce neuritic plaque formation,
and improve behavioral deficits in AD mice [66]. Fur-
ther study has demonstrated that valproic acid could
attenuate the prenatal hypoxia-induced AD neuropath-
ology, improved learning deficits and decrease AP42
levels in AD transgenic mice by up regulation of NEP
[67]. Moreover, valproic acid could also restore mem-
ory deficit in adult offspring caused by prenatal hyp-
oxia via elevating NEP expression and activity [68]. Hence,
epigenetic drugs that increase histone acetylation by inhi-
biting HDAC could be useful in the disease treatment.
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Strategies targeting AP burden by epigenetic regulations,
may represent new opportunities for therapeutic interven-
tion to AD.

Conclusion

Epigenetic effects can present throughout life and envi-
ronmental factors can influence the individuals repeat-
edly along their whole life. A wide range of clinical
diseases may be associated with chronic hypoxia includ-
ing obstructive sleep apnea, cerebrovascular diseases,
systemic hypertension, cardiovascular disease, chronic
obstructive pulmonary disease, pulmonary hypertension,
congestive heart failure and others [69]. Given to the
possibility that chronic hypoxia is associated with AD,
more attention should be paid to this pathological event
and the underlying mechanisms. In addition, we
hypothesize that prevent chronic hypoxic condition may
be helpful for the reduction of AD. Unlike genetic muta-
tions in FAD, epigenetic alterations are reversible, which
are easier to modulate the process. Therefore, understan-
ding the mechanisms of epigenetic alteration during AD
pathogenesis caused by environmental factors, is essential
for searching new treatment strategy for the disease.
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