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Abstract

Neurodegenerative diseases are characterized by a progressive dysfunction of the nervous system. Often associated
with atrophy of the affected central or peripheral nervous structures, they include diseases such as Parkinson’s
Disease (PD), Alzheimer’s Disease and other dementias, Genetic Brain Disorders, Amyotrophic Lateral Sclerosis (ALS
or Lou Gehrig’s Disease), Huntington’s Disease, Prion Diseases, and others. The prevalence of neurodegenerative
diseases has increased over the last years. This has had a major impact both on patients and their families and has
exponentially increased the medical bill by hundreds of billions of Euros. Therefore, understanding the role of
environmental and genetic factors in the pathogenesis of PD is crucial to develop preventive strategies. While some
authors believe that PD is mainly genetic and that the aging of the society is the principal cause for this increase,
different studies suggest that PD may be due to an increased exposure to environmental toxins. In this article we
review epidemiological, sociological and experimental studies to determine which hypothesis is more plausible. Our
conclusion is that, at least in idiopathic PD (iPD), the exposure to toxic environmental substances could play an
important role in its aetiology.

Keywords: Idiopathic Parkinson’s disease, Environmental toxins, Gene-environment interactions, Braak’s staging and
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Introduction
PD affects around 1% of the general population a rate that
increases with age reaching up to 5% of the 80 years old
population [1]. Its annual incidence is between 16 and 19
per 100,000 per year [2]. It affects all races equally, with
slight male predomination. In Europe PD prevalence is 1,6/
100 inhabitants, with a wide variability between different
countries [3]. Although multiple genetic forms of the
disease have been observed [4], they account for less
than 10-15% of the total cases and their importance
vary between different regions [5]. If iatrogenic and
vascular parkinsonisms are included together with com-
plex degenerative diseases and atypical parkinsonisms, the
total prevalence increases to 2,3/100. During the twentieth
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century, the general incidence of PD increased 1.63 times.
This increase occurred mostly during the first half until
1980 and affected developed countries [6,7]. Similarly,
other neurodegenerative diseases have dramatically in-
creased in some regions and decreased in others [8]. Inter-
estingly, this increase is most evident in developed
countries and within these countries in those regions
using agrochemical compounds [9-11]. Some studies
claim that such an increase is due to the aging of the
population, associated with mitochondrial dysfunction
and a reduced protective response to oxidative stress,
other studies point to the interaction between environ-
mental toxins and diverse genetic backgrounds as the
main triggers of PD. In this work, we show evidence
supporting these two different hypotheses in relation
with the most recent findings on PD pathophysiology
with special emphasis on iPD.
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A historic perspective on Parkinson’s disease and its relation
with toxic and protective environmental substances
The English physician James Parkinson in his work “An
essay on the Shaking Palsy” described PD for the first
time in 1817. This correlates well with the beginning of
the industrial and chemical revolution in Europe during
the late 18th century and the 19th century. To our know-
ledge, only the Ayuverda (the medical system practiced
in India around 5000 years before Christ) and the first
Chinese manuscript on medicine, Nei Ping, written
2500 years ago, describe some of the symptoms ob-
served in PD and potential treatments [12,13]. Apart
from this reference to PD-related symptoms, no other
physician in any of the occidental countries had previ-
ously described the complex amalgam of symptoms
typical of this disorder. This suggests that either these
different symptoms had always been misdiagnosed as
separate entities throughout history, not recognized as
part of a syndrome, or the prevalence of PD until the
beginning of the 19th century had been extremely low.
While possible, the first hypothesis seems quite im-
probable to us. Many PD symptoms are quite striking
and would have been described and published before
Parkinson’s assay. Therefore, we believe that a dra-
matic increase of PD cases occurred in parallel to the
industrial revolution. In this case, the question is, why?
Some authors have related the increase of PD inci-

dence to the aging of the population [14,15]. Aging has
been associated to the impairment of the antioxidant
body system and mitochondrial function [16]. It is known
that age-related non-genetic PD appears between the 5th

and 6th decade of life. Logically, an increase in life expect-
ancy would lead to an increased incidence and prevalence
of PD. However, in the last 1000 years life expectancy at
15 years of age (i.e. discounting birth and child mortality)
has always been above these values [17,18]. Interestingly, a
general increase in PD incidence was observed during the
first half of the twentieth century from 11,4/100.000
inhabitants between 1935 and 1944 to 18,2/100.000
inhabitants in both young and old populations between
1967 and 1979 [6,7]. Since then it has remained more or
less constant due to a compensation effect. There has
been a decrease in the incidence rate in the population
under 69 years of age and an increase in the population
over 70 years [6]. Altogether, these data suggests that the
increase in PD incidence cannot be due to the aging of the
population alone.
Accordingly, the appearance of iPD has been related

to industrial and rural environments due to the higher
exposure to environmental toxins [10,19]. Natural pesti-
cides have been used since more than 5000 thousand
years. The first known pesticide was elemental sulfur
dusting used about 4,500 years ago. Also, the Rig Veda,
which is about 4,000 years old, mentions the use of
poisonous plants for pest control [20]. However, it was
not until the 15th century that toxic chemicals such as
arsenic, mercury, and lead were applied to crops to kill
pests. Later, nicotine sulfate was extracted from tobacco
leaves for use as an insecticide in the 17th century. Re-
markably, only in the 19th century two pesticides related
to PD, pyrethrum, derived from chrysanthemums, and
rotenone, which is derived from the roots of tropical vege-
tables, started to be used [21].
Other more recent epidemiological studies have broad-

ened the link between PD and other environmental factors
including drinking well water, rural living, farming, diet
and exposure to agricultural chemicals [22-24]. The envir-
onmental contribution to PD’s pathophysiology has been
also analysed. Farm and industrial compounds seem to in-
crease the risk of Parkinsonism [11,22,25-28]. Farm ac-
tivity is associated with agriculture and exposure to
pesticides [24]. Organochlored pesticides were identi-
fied as a risk factor in a German case-control study
[27] and another study with similar conclusions was
conducted with dithiocarbamates [28]. Levels of organ-
ochlorines have been found to be elevated in the brains
of persons with iPD [29]. A study of French elderly in-
dividuals found an association between past occupa-
tional exposures to pesticides, low cognitive performance,
and increased risk of developing Alzheimer’s disease or
iPD [9]. In a more recent epidemiological study, Tanner
and colleagues have tried to identify a common character-
istic of those pesticides that present a higher correlation
to the appearance of PD [30]. They conclude that pesti-
cides inhibiting the mitochondrial Complex I and increas-
ing oxidative stress are more prone to induce iPD upon
exposure. Together with pesticides and herbicides it has
been observed that some xenobiotics like annonacin in-
duce Parkinsonian symptoms in humans and a loss of
nigrostriatal neurons in animals [31].
iPD has also been linked to the exposure to different

metals and industrial compounds. Many studies per-
formed in the 90’s identified manganese, lead, copper,
iron, zinc, aluminium or amalgam (reviewed in [24]).
Higher incidence of iPD has been reported in manganese
miners [32]. It was shown that manganese, a component
of various pesticides, also reproduces parkinsonian symp-
toms after long and chronic exposures (between 6 months
and 16 years). Also, concern was raised that widespread
introduction of the manganese-containing fuel additive
methylcyclopentadienyl manganese tricarbonyl to the U.S.
gasoline supply may increase population exposure to man-
ganese and thus increase risk of parkinsonism in sensitive
populations [33]. A more recent study has also shown a
positive correlation between ß-Hexachlorocyclohexane
blood levels and iPD [34].
The positive relation between exposure to environ-

mental toxins and neurodegenerative diseases is not
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limited to PD. For example, the Chamorros population
of Guam and Rota in the western Pacific has an unusually
high prevalence of motor neuron disease, a syndrome that
includes amyotrophic lateral sclerosis, parkinsonism, and
progressive dementia. It was proposed that this syndrome
of parkinsonian dementia is related to the consumption of
flour made from cycad seeds [35] or to inhalation of
pollen from cycad plants [36]. Later findings suggest that
a neurotoxic non-protein amino acid, beta-methylamino-
L-alanine synthesized by a symbiotic cyanobacterium highly
present on cycad seeds and pollen is actually responsible
for this effect [37].
Remarkably, in some populations there has been a de-

creasing prevalence of certain types of neurodegenerative
diseases that coincide with the disappearance of an envir-
onmental factor unique to these populations [38,39].
Together with exposure to environmental toxins, PD

has been related to head trauma [40-43], inflammation
[44,45] and constipation [46]. While head trauma and
inflammation are associated with vascular and post-
encephalitic parkinsonisms with a lower progression
rate (around 50%) to higher nervous structures [47],
constipation is associated with iPD and patients present
pathology progression. We hypothesize that, in these
cases, a decreased frequency of bowel movements might
increase the time that environmental toxins remain in the
intestine and can interact with the organism.
As a counterbalance, certain factors have been associ-

ated with a decreased risk of developing PD. Cigarette
smoking, coffee drinking and high levels of urate in
blood have been negatively correlated with the appear-
ance of PD [48-50]. The mechanisms underlying such
protection are still unclear.
Therefore, the question is, can the interaction with en-

vironmental toxins explain the distribution and appear-
ance pattern of PD clinical symptoms and pathology in
non-genetic cases?

Clinicopathological correlation in Parkinson’s disease
PD is traditionally defined by a series of clinical symp-
toms. These are predominantly motor disorders that give
rise to the rigid-akinetic syndrome. PD is the main aeti-
ology of rigid-akinetic syndromes. Nevertheless, non-
motor symptoms are widely distributed in PD patients.
The pathophysiological implications of PD-related al-

terations depend on the structures affected at each stage.
The main pathological findings in PD are the presence
of Lewy Bodies (LB) or neurites (LN) and the loss of
chatecholaminergic neurons in the locus coeruleus and
the substantia nigra (SN). The classical appearance of
the LB in pigmented neurons with hematoxylin/eosin
staining is that of one or more eosinophilic spherical
body with a dense core surrounded by a halo [51]. Lewy
bodies are intracytoplasmatic protein accumulations
consisting mainly in alpha-synuclein [52]. Based on their
findings and that from others at that time, Braak and col-
leagues suggested that, in iPD, the pathology follows a
specific progression pattern appearing first in the olfactory
bulb (OB) and the dorsal motor nucleus of the vagus
(DMV) [53,54], giving rise to Braak’s pathological staging
of PD (Figure 1). Interestingly, similar studies had shown
that LB and LN could be observed in the peripheral ner-
vous system (PNS) including the enteric nervous system
(ENS) [55,56], the sympathetic ganglia [55], the subman-
dibular glands [57] and the cardiac plexus [58] among
others. Further pathological studies observed that other
central nervous system sites (i.e. the intermediolateral col-
umn and the lamina I of the posterior horn from the
spinal cord) also show LBs and LNs in the initial stages of
the disease. The order of appearance of the pathology
throughout all these sites made Braak’s group incorporate
this to their staging and established a new pathological
staging including the sympathetic and parasympathetic
systems and the ENS. The spatio-temporal pattern of this
staging suggests that iPD-related alterations appear first in
the ENS and the OB progressing into and throughout the
CNS. This progression correlates well with the evolution
of the clinical symptoms observed in iPD patients.
Corresponding to structural alterations, there are motor

and non-motor symptoms in iPD. The onset of motor fea-
tures correlates with the loss of dopamine input to the
posterior putamen, corresponding to the motor region of
the striatum. The main classical features of PD are there-
fore mainly related to the dysfunction of the motor circuit.
As the disease progresses and the loss of dopaminergic
neurons increases, the dopaminergic input to other areas
of the striatum and the cortex (prefrontal and limbic cir-
cuits) decreases, giving rise to clinical symptoms charac-
teristic of the dysfunction of higher cerebral structures.
Less frequent motor-symptoms that can be found in

PD patients are hypophonia, taquiphemia, drooling, dys-
phagia, fatigue (can also be considered a non-motor
symptom), hypomimia, impaired fine motor dexterity
and motor coordination, impaired gross motor coord-
ination, akathisia and palilalia. Most of these less fre-
quent motor-symptoms seem to be expressions of the
same pathophysiological alterations described above
for the main motor symptoms.
Non-motor symptoms are believed to derive from the

degeneration of non-dopaminergic (i.e. noradrenergic,
serotoninergic and cholinergic) cellular systems. This can
be applied to dementia, depression, sleep and vegetative
disorders. It is known that almost 90% of PD patients ex-
perience non-motor manifestations during the course of
disease [59] and are a significant economic burden [60]
(with a substantial impact on the health-related quality of
life). Further clinical studies show that a loss of olfaction,
rapid eye movement (REM) sleep behaviour disorders and



Figure 1 Braak’s staging of Parkinson’s disease pathology progression. (A-D) Illustrations showing the intracerebral progression of PD
pathology. (E) Schematics of the pathology progression from the ENS. (F) Correlation between PD staging and the appearance of the pathology
in different intracerebral structures. Modified from Braak et al. [53].
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constipation anticipate motor-problems [61]. All this sug-
gests that PD is a progressive disease, which might originate
at the olfactory bulb and the ENS. Recent follow-up studies
have successfully investigated the use of hyposmia/anosmia
or REM sleep behaviour as early signs for PD and to test
pre-motor symptoms of the disease [61-64]. Interestingly,
the ENS and the OB are the nervous system structures most
exposed to environmental toxins. Therefore, it seems pos-
sible that the effect of these substances on these structures
could trigger the appearance and progression of the disease.
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Genetic forms of Parkinson’s disease
Despite all this body of evidence, the relatively low inci-
dence of PD suggests that the individual genetic back-
ground plays an important role in the pathogenesis of
the disease. What are the genetic alterations that predis-
pose to the development of PD and why?
Already a century ago it was noticed that PD patients

had affected relatives [65]. The role of genetic inherit-
ance in PD has been increasingly important during the
past couple of decades because of different studies. Des-
pite the complexity of achieving good quality epidemio-
logic studies due to diagnostic difficulties, different studies
have confirmed that PD is more common between family
members [66-70]. Generally, the risk of having the disease
among relatives is 2 to 3 times greater than in the general
population [4]. Also, studies on homozygotic twins have
shown that although there is no significant concordance
in late onset disease cases [71], it becomes significant in
early onset cases. Therefore, one could say that early PD is
usually genetically determined.
In the last decades, there has been an increase in the

number of PD family based studies [4,67,72-82]. Most of
these show an autosomic pattern, either dominant or re-
cessive. These studies have been able to identify some
genetic mutations and chromosomal loci responsible for
familiar PD. The most studied and known mutations are
annotated in Table 1. Interestingly, a recent meta-analysis
on more than 800 published genetic associations studies
revealed eleven loci showing genome-wide significant asso-
ciation with disease risk: BST1, CCDC62/HIP1R, DGKQ/
GAK, GBA, LRRK2, MAPT, MCCC1/LAMP3, PARK16,
SNCA, STK39, and SYT11/RAB25. In addition, they identi-
fied novel evidence for genome-wide significant association
with a polymorphism in ITGA8 [83]. The list of hits is
available under www.pdgene.org.
Animal genetic models of the disease have been im-

portant to better understand the mechanisms underlying
Table 1 Known genetic mutations in PD

Locus Chromosome’Location Gene Inh

PARK1 & PARK4 4q21-q23 α-synuclein AD

PARK2 6q25.2-q27 parkin usu

PARK3 2p13 unknown AD

PARK5 4p14 UCH-L1 AD

PARK6 1p35-p36 PINK1 AR

PARK7 1p36 DJ-1 AR

PARK8 12p11.2-q13.1 LRRK2 AD

PARK10 1p32 unknown Un

PARK11 2q36-q37 unknown Un

NA 5q23.1-q23.3 Synphilin1 Un

NA 2q22-q23 NR4A2 Un

Abbreviations: NA not assigned, AD autosomic dominant, AR autosomic recesive, IP
PD pathophysiology. Different animal models mimicking
the genetic alterations observed in PD patients have
been developed in organisms such as mice, worms, flies
or zebrafish [85-88]. These include the knock-out,
over-expression or expression of mutated forms of PARK-1
(i.e. alpha-synuclein or its A53T, A30P, and E46K mutations)
or the knock-down of DJ-1, PINK or LRRK2 (G2019S and
R1441C/G mutants) [85,89] among others. However, most
of these models failed to reproduce overt nigrostriatal dopa-
minergic loss having wider effects throughout the CNS. In
some cases, these genetic alterations even had a neuropro-
tective effect (e.g. over-expression of wild-type alpha-
synuclein) [90,91]. Moreover, genetic mutations in PD ac-
count for less than 10% of the patients and cannot explain
many of the clinical and pathological signs observed in
idiopathic PD patients. Thus, it seems that environmental
toxins might be playing a more important role than previ-
ously thought.

Evidence obtained using toxic models of PD
Based on the above-mentioned observations, numerous
groups have tested the effect of environmental toxins on
animal and in vitro cellular models. The most common
models used up to date are:

Animal models
These have been extensively reviewed in the literature
[92-94] and we will briefly describe some of them here.

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
MPTP is a non-toxic compound that may be accidentally
produced during the manufacture of MPPP, a synthetic
opioid drug. In the 80ies, several cases of Parkinson after
the accidental ingestion of MPTP were described [95,96].
When ingested, it is metabolized into the toxic cation
1-methyl-4-phenylpyridinium (MPP+) by the enzyme
MAO-B of glial cells. MPP + is a potent mitochondrial
eritance Typical pheno-type Reference

Earlier onset, features of DLB’common [72,73]

ally AR Earlier onset with slow progression [74]

, IP Classic PD,’sometimes de-mentia [4]

Classic PD [75]

Earlier onset with’slow progression [76]

Earlier onset with’slow progression [67]

Classic PD [77]

clear Classic PD [78]

clear Classic PD [79]

clear Classic PD [80]

clear Classic PD [81]

incomplete penetrante, DLB Lewy Bodies Demence. Modified from [84].

http://www.pdgene.org
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Complex I inhibitor that primarily kills dopaminergic
neurons [97]. Models based on this substance have
been used to understand the effect of mitochondrial
inhibition, to test different neuroprotective strategies
or to observe the effect of dopamine absence in differ-
ent brain functions and areas [98,99]. As PD model, it
presents two main problems. First, MPTP induces an
acute or subacute neurodegeneration, different to the
chronic PD process and second, there is no LB forma-
tion [100] and no pathology progression has been ob-
served so far.

6-hydroxydopamine (6-OHDA)
6-OHDA Treatment led to the first known animal model
of PD [101,102]. 6-OHDA is injected into the medial
forebrain bundle of rat brain (destroying dopamine neu-
rons in the substantia nigra pars compacta with the sub-
sequent loss of dopamine nerve terminals in the striatum
[101,102]. The unilaterally lessoned animals circle toward
their lesioned side. This is driven by the asymmetric re-
lease of dopamine from the intact side of striatum [101].
6-OHDA generates quinones inside the neurons. These
quinones generate free radicals that inactivate biological
macromolecules. It is necessary to inject 6-OHDA directly
in the central nervous system (CNS), as it is not able to
cross the brain-blood barrier. As in the case of MPTP, this
model does not produce the characteristic LB nor does it
show pathology progression.

Paraquat
Paraquat is a herbicide that induces dopaminergic de-
generation and LB formation in the SN of mice [103].
Its parenteral administration produces its effect by indu-
cing superoxide radical formation. However, it is not
known whether this effect is local on SN neurons or also
other cell types might be affected. Moreover, pathology
progression has not been reported.

Rotenone
Rotenone is a naturally occurring pesticide derived from
the roots of certain plant species that acts through mito-
chondrial Complex I inhibition. Rotenone has been used
through non-natural ways of administration such as dir-
ect nigrostriatal infusion and systemic intraperitoneal or
intravenous administration to generate toxic models of
PD in rats and mice [104-107]. To achieve a more nat-
ural way of exposure to environmental toxins, two
groups have used orally administered rotenone to gener-
ate PD-like pathology and symptoms in mice [108,109].
Systemic chronic administration (more the 5 weeks) of

rotenone induces specific dopaminergic neuron degener-
ation with the formation of LB-like alpha-synuclein in-
clusions [104]. Moreover, high doses of rotenone lead to
a striatal degeneration without SN impairment [110],
showing the same degeneration pattern as in manganese
and carbon monoxide exposure in primates and humans.
However, systemic administration of this substance
mimics a multisytemic degeneration rather than the
degeneration pattern observed in PD patients [111].
Oral administration of rotenone induces different ef-

fects depending on the concentration at which it is ad-
ministered. Inden and colleagues have shown that high
doses (>5 mg/kg) of orally administered rotenone affect
SN dopaminergic neurons one month after administra-
tion [108]. In a later study, we showed that at these high
doses, dopaminergic degeneration was due to the pres-
ence of rotenone in the systemic blood [109]. Interest-
ingly, in this same study we showed that long-time
exposure to low doses of orally administered rotenone
induced the appearance of PD-like pathology and its
progression from the ENS into the CNS accompanied by
dopaminergic loss in the SN. We did not observe sys-
temic Complex I inhibition or the presence or rotenone
in the blood or the brain. Thus, suggesting that, as the
ENS and the OB are the nervous structures most ex-
posed to environmental toxins, environmental toxins
acting locally on these nervous structures trigger the ap-
pearance of PD-like pathology and its progression into
the CNS through synaptically connected structures. In-
deed, in a recent study, we have shown that the resec-
tion of the vagal or sympathetic nerves (connecting the
ENS to the CNS) interrupts the progression of the path-
ology to the previously connected structures [112]. Inter-
estingly, the co-treatment with a compound inhibiting
alpha-synuclein aggregation also reduced the effect of
oral administered rotenone [113].

In vitro cellular models
In vitro systems are very efficient screening tools for de-
tecting potential neurotoxic compounds among the multi-
tude of chemicals to which humans are exposed. They
also offer many opportunities to investigate the cellular
and molecular effects of toxins. Studies performed in pri-
mary neuronal cultures and both PC12 and SH-SY5Y cell
lines have been used to test different compounds poten-
tially involved in neurodegeneration. For example, alumin-
ium, copper and iron, as well as several pesticides were
shown to trigger structural transformation and fibrillation
of alpha-synuclein [114,115]. A dithiocarbamate fungicide
altered the function of the ubiquitin-proteasome system
by inhibition of the ubiquitin E1 ligase [116] and different
reports show that xenobiotics induce oxidative stress. Evi-
dence for oxidative stress was also found in vitro in pri-
mary cultures of cerebellar granule neurons after exposure
to numerous pesticides and insecticides [117] and [118],
in PC12 cells after exposure to trimethyltin [119], in
primary cultures of mesencephalic neurons after exposure
to ethylene-bis-dithiocarbamate fungicide [120], and in
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midbrain slice cultures after exposure to the pesticide
rotenone [106].
In vitro, environmental compounds have also been shown

to induce glial reactivity, a crucial step of the brain inflam-
matory pathway. After subchronic exposure to mercury
compounds, microgliosis and astrogliosis were found in ag-
gregating brain cell cultures, without any sign of neuronal
damage [121,122].

Is there a common toxic mechanism in all these models
that leads to neurodegeneration?
One of the common effects exerted by most of these
noxious compounds tested above is the inhibition of
mitochondrial NADH CoQ reductase, also known as
Complex I, and the production of free radicals, thereby
also increasing cellular oxidative stress. The first associ-
ation between a mitochondrial alteration and PD was
made in 1989. Two different groups showed a defect in
Complex I activity from SN neurons in PD patients
[123]. Later studies have shown that there is an approxi-
mately 35% defect in the mitochondrial complex I activ-
ity [124]. This deficiency is also present in platelets from
PD patients [125]. As mentioned above, a study pub-
lished in 2011 underlines the importance of Complex I
inhibition and oxidative stress in PD pathophysiology in
patients. In an epidemiological study, Tanner and col-
leagues observed in 110 PD cases and 358 controls that
PD was strongly associated with the use of a group of
pesticides that inhibit mitochondrial complex I, includ-
ing rotenone, and with the use of a group of pesticides
that cause oxidative stress, including paraquat [30].
Oxidative stress leads to the production of reactive

oxygen species (ROS) and has been linked to PD [126].
ROS can modify lipids and proteins (e.g. acetylation and
phosphorylation) thereby altering their normal folding
and degradation. Different studies have shown that in-
hibition of mitochondrial Complex I enhances oxidative
stress hence increasing autophagy [127]. Interestingly,
we have shown that rotenone induces the accumulation
and release of alpha-synuclein from enteric neurons into
the extracellular space [112]. Using an in vitro system
mimicking the sympathetic innervation of the gut, we
also showed that released alpha-synuclein can be retro-
gradely transported and accumulated in the soma of the
host neurons. All this is summarized in Figure 2.
This could also explain the results from some recent

pathological studies performed on PD patients that had pre-
viously received intrastriatal embryonic cellular transplants.
In these patients, grafted neurons showed alpha-synuclein
inclusions similar to those observed in the surrounding neu-
rons [128,129]. Recent in vivo and in vitro studies in mice
could give some hints on the mechanism underlying this
intra-neuronal transmission of the pathology. Desplats and
colleagues have shown that alpha-synuclein is transported
from the host to grafted neurons in mice and between cells
in co-culture [130]. Using Thy-1 α-synuclein transgenic
mice, they performed stereotaxic intrahippocampal injec-
tions of GFP-expressing mouse cortical neuronal stem
cells. In vitro, they used differentiated SH-SY5Y neuronal
cells over-expressing myc-tagged α-synuclein co-cultured
with non-transfected SH-SY5Y cells. After some time,
both grafted GFP cells and non-transfected SH-SY5Y
showed alpha-synuclein inclusions. These were tyramide
red or myc positive, thus demonstrating that they had
been intracellularly transported. They seemed to have an
enucleating effect. A later study performed by Alvarez-
Erviti and colleagues showed that alpha-synuclein overex-
pression in SH-SY5Y induced lysosomal dysfunction and
increased the release of exosomes containing alpha-
synuclein to the media [131].
Finally, environmental toxins can also induce the re-

lease of pro-inflammatory signals. Observed in other
neurological diseases like stroke, there is evidence for an
increased inflammatory response in PD patients with
microglial activation and inflammatory cytokine produc-
tion [132-135]. The inflammation of the brain in early
life caused by exposure to toxins, or environmental fac-
tors, has been suggested as a possible cause or contributor
to the later development of PD [136]. The inflammatory
process in such cases may involve activation of brain im-
mune cells (microglia and astrocytes), which release in-
flammatory and neurotoxic factors that in turn produce
neurodegeneration [44]. This concept first arose in the
suggestion that infection with influenza virus in the pan-
demic of 1918 produced an increased risk of PD. Infection
with certain microorganisms such as the soil bacterium
Nocardia asteroides has been proposed as a risk factor for
PD [137]. In animal experiments, exposure to the bacterial
endotoxin lipopolysaccharide induced dopaminergic neu-
rodegeneration [136,138,139]. However, it has been im-
possible to detect the presence of viral and bacterial DNA
or other components inside the nervous system of PD pa-
tients. We have now clear evidence of an increased in-
flammatory response in PD patients with microglial
activation and inflammatory cytokine production [132,140].
It has been proven that this process is due to i) the release
of pro-inflammatory cytokines under oxidative stress [141]
and ii) extracellular alpha-synuclein that can also promote
by itself the appearance of an inflammatory reaction [142].
The real role and magnitude of this inflammatory response
is unknown, but some authors maintain that they do play an
important role in PD pathophysiology by perpetuating the
process and causing further damages [143].
Therefore, it is likely that external factors trigger the ap-

pearance of the disease in these individuals. In fact, there are
striking similarities in the effect of both mutations and en-
vironmental toxins that could explain this increased sensitiv-
ity and give hints on the pathophysiological process in PD.



Figure 2 Possible pathophysiological mechanism implicated in PD-like pathology progression. Environmental toxins cause Complex I
inhibition that in return increases ROS production inducing modification and impairing lysosomic/autophagic activity. This results in alpha-synuclein
oligomerization and aggregation. Oligomerized or aggregated alpha-synuclein can i) interact with mitochondria inhibiting the mitochondrial
respiratory system thereby multiplying the effect of the toxin or ii) be transported into autophagosomes and secreted to the extracellular
environment inside or outside exosomes. Secreted alpha-synuclein is can be up-taken by presynaptic neurons and retrogradelly transported
to the soma where it accumulates. The most important question here is. Does alpha-synuclein exert any effect on the presynaptic neurons?
If so, we believe that there are two possible mechanisms: i) as an enucleating factor modifying the local alpha-synuclein and ii) impairing
presynaptic mitochondria mimicking the effect of the environmental toxins on the ENS. Both possibilities could explain the progression of
PD pathology as observed in patients.
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Gene-environment interactions
The known genetic mutations associated with PD can be
grouped in three categories: alpha-synuclein mutations
(E46K, A30P and A53T) and over-expression (mutations
in PARK-1), defects in protein degradation (mutations in
PARK-2 and PARK-5) and increases in oxidative stress
(mutations in PARK-6 and PARK-7). The latter one leads
to protein modifications, impairment of protein degrad-
ation and increases in alpha-synuclein release [76].
If we compare the alterations induced by PD-related

mutations and the exposure to pesticides, it becomes clear
that there are striking similarities. Impairment of mito-
chondrial function, protein modifications (phosphoryla-
tions and acetylations), alterations in protein degradation
or the release of pro-inflammatory signals are common to
many of these mutations. These alterations are also related
to each other. Mitochondrial dysfunction can induce alter-
ations in proteins and the release of pro-inflammatory
signals as well as lysosomal impairment [144]. Altered
proteins cannot be properly degraded and it is known
that, at least one (i.e. alpha-synuclein) can induce mito-
chondrial dysfunction. It has been shown that both
over-expression of alpha-synuclein and inhibition of
mitochondrial respiration impair the lysosomal system
and induce the release of alpha-synuclein to the extra-
cellular matrix. Extracellular alpha-synuclein can then
be up-taken by presynaptic neurons, where it accumu-
lates and might impair mitochondrial function [145-147].
It has also been shown that extracellular alpha-synuclein
induces an inflammatory reaction [148]. Finally, it is known
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that recruited inflammatory cells (i.e. microglia) further dam-
age neuronal cells and induce oxidative stress through the
release of superoxides and their phagocytic activity [143].
All this suggests that individuals carrying PD-related mu-

tations might be more sensitive to environmental toxins
and develop the disease at earlier stages of life.
In the last decade, there have been a number of studies

aiming at analysing environmental damages on different
genetic backgrounds. It has been shown that lipopolysac-
charides enhance dopaminergic death in mice over-
expressing human alpha-synuclein or its mutated forms
and in Parkin-deficient mice [143,149,150]. The same
kind of experiments using intraperitoneal injections of
different neurotoxins has led to contradictory results.
Paraquat, rotenone, maneb or MPTP had different ef-
fects on mice expressing human-alpha-synuclein or its
mutated forms (i.e. A53T and A30P). In mice expressing
A53T alpha-synuclein only a combination of maneb and
paraquat, but not each of them alone, lead to an in-
creased alpha-synuclein pathology throughout the CNS
when compared to wild-type littermates [151]. Paraquat
treatment on mice expressing human-alpha-synuclein or
human-A53T-alpha-synuclein under a TH promoter in-
creased alpha-synuclein pathology [152]. However, dopa-
minergic degradation was observed only in wild-type
mice. This same treatment on DJ-1 mice showed that
the dopaminergic neurons of these mice have an in-
creased sensitivity to paraquat [153]. Similarly, LRRK-2
knock-out mice were as sensitive to neurotoxins as their
wild-type littermates. Remarkably, it seems that, while
increasing alpha-synuclein levels and the presence of
alpha-synuclein pathology, these genetic backgrounds
had either a protective or no effect on the susceptibility
to environmental toxins.
Genetic studies have also shown that there are certain

epigenetic modifications in the DNA, both nuclear and
mitochondrial, of blood leucocytes and neurons from
PD patients [154]. The majority of epigenetic alterations
consist on methylations and alterations in the micro-
RNA expression [154-156]. Some authors have tried to
reverse these effects through the use of histone deacety-
lase inhibitors with different results (reviewed in [157]).
It may well be that short exposure to pesticides can trig-
ger permanent epigenetic modifications playing a role in
the development of the disease.

Conclusion: can we imply an environmental origin of PD?
Overall, all this body of evidence strongly suggest that
environmental insults may play an important role in the
appearance and progression of PD pathology. This is es-
pecially true for iPD. In these patients, the progression
of the pathology may start from the ENS and OB and
follows a predictable spatiotemporal pattern. Interest-
ingly, these are the two nervous structures most exposed
to environmental toxins and in vitro and in vivo studies
suggest that environmental toxins acting on the ENS
could initiate the pathology and trigger its progression
through the release and transcellular transport of alpha-
synuclein. This kind of progression mechanism could
also explain the pattern observed in other neurodegener-
ative diseases. Supporting this hypothesis, a prion-like
behaviour of an amyloid was characterized in Alzhei-
mer’s disease in a recent study from Nussbaum and col-
leagues [158].
Despite this positive correlation with environmental

toxins, to hypothesize that PD could be triggered only
by exposure to environmental toxins would be, to say
the least, naive. The onset of most diseases is due to a
combination of external aggressors and individual gen-
etic susceptibility to this aggression. This is clearly also
the case for PD. The low incidence of PD suggests that
differences in the individual genetic background and
gene-environment interactions play an important role in
the whole process. Results coming from different studies
using neurotoxins in transgenic mice remain controver-
sial. However, it may well be that the toxic models used
up-to-date are not the ideal ones. Systemic injections of
neurotoxins do not mimic the natural ways of exposure
to these substances. The use of oral administered or in-
haled neurotoxins may lead to different kind of results.
We find very interesting that all neurotoxins used on dif-
ferent PD-related backgrounds induced an up-regulation
of alpha-synuclein and an increase in LB-like inclusions.
This is normally correlated to an increased exocytosis of
alpha-synuclein [130,131] that, as mentioned above, has
been shown to play a role in the progression of PD path-
ology. On the other hand, analysis of other types of genes
(i.e. genes responsible for the protection against oxidative
stress and genes coding for detoxifying enzymes) in differ-
ent regions from those “a priori” expected (i.e. the ENS,
the OB and the intestine) could reveal new mutations
responsible for a higher susceptibility to the effect of
environmental toxins. However, the new available data
strongly suggests that the implications of these toxins
in idiopathic PD are not merely testimonial. To con-
sider PD mainly as a genetic disease subjected to
minor external influence is akin to neglecting the ef-
fect of tobacco on lung cancer.
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