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Abstract

Parkinson’s disease (PD) is a synucleinopathy-induced chronic progressive neurodegenerative disorder, worldwide
affecting about 5 million humans. As of yet, actual therapies are symptomatic, and neuroprotective strategies are an
unmet need. Due to their capability to transdifferentiate, to immune modulate and to increase neuroplasticity by
producing neurotrophic factors, adult stem cells (ASC) might fill this gap. Preclinical research in 6-hydroxydopamine
(6-OHDA) and/or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) lesioned animals established persistent
improvements of motor behavior after ASC-treatment. Histological/histochemical measurements in these animals
evidenced an intracerebral applied ASC-induced increase of Tyrosine Hydroxylase-positive (TH+) cells with increased
striatal dopamine levels, suggesting cell rescue. Likewise, clinical experience with subventricular applied ASCs in PD
patients, although limited, is encouraging, evidencing neurorescue especially during the early phase of the disease.
In multiple system atrophy (MSA) or progressive supranuclear palsy (PSP) patients, though, only marginal reduced
progression of natural progression could be established after subventricular or intravasal ASC implantations.
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Introduction
Parkinson’s disease (PD) is the most common chronic pro-
gressive neurodegenerative disorder after Alzheimer’s dis-
ease [1], world-wide affecting nearly 5 million people aged
50 years or more, and expected to double over the next
20 years [2]. It comes with a twofold higher mortality rate,
mainly due to pneumonia, shortening life expectancy with
nearly 10 years [3,4]. The result of the α-synucleinopathic
degeneration of the nervous system, starting in the periph-
eral nervous system and lower brainstem and progressively
extending over the upper brainstem and neocortex, symp-
tomatology in PD comprises dysfunctions of the whole
nervous system. It may start with a range of non-motor
symptoms such as disorders of the autonomic nervous sys-
tem, olfaction, sleep, mood and subtle cognitive deterior-
ation, before a degeneration of the dopamine producing
cells in the upper brainstem (nigral substance) may mani-
fest with motor parkinsonism, the clinical hallmark of this
disease, and way before involvement of the neocortex
induces dementia [5]. PD is mainly recognized when
first symptoms of motor parkinsonism (hypokinesia,
bradykinesia, rigidity, tremor and the loss of postural
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reflexes) develop as the result of the loss of the major-
ity of the dopaminergic neurons of the pars compacta
of the substantia nigra with a striatal dopaminergic de-
pletion of over 80% [6]. As of yet, treatment in PD is
based on the pulsatile (oral) or continuous (subcutane-
ous, intrajejunal) suppletion of the striatal dopamine
deficiency with dopamine agonists and/or the dopamine
precursor levodopa, mostly in combination with a periph-
eral dopa decarboxylase inhibitor and/or in combination
with inhibitors of mono-amine oxidase B (MAO-B) and/
or catechol-O-methyl transferase (COMT), in order to re-
store striatal dopaminergic denervation [7].
Actual therapy only symptomatically affects motor

parkinsonism, though. Therapies affecting non-motor
symptomatology, and above all protective or restorative
treatments are unmet needs in PD. In order to reach
these needs, recently, experiments with cell based ther-
apies to rescue or replace dopamine-secreting cells, or
with cells able to secrete paracrine factors modulating
brain tissue repair were initiated [8-12].
In this review, these experimental stem cell based

therapeutic strategies will be discussed. As the applica-
tion of embryonic stem cells and induced pluripotent
stem cells comes with an unacceptable risk of tumor in-
duction [13-16], this review will only cover experiments
dealing with expanded, whether or not genetically
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/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

mailto:h.demunter@hetnet.nl
http://creativecommons.org/licenses/by/2.0


de Munter et al. Translational Neurodegeneration 2013, 2:13 Page 2 of 10
http://www.translationalneurodegeneration.com/content/2/1/13
modified, autologous or allogenic bone marrow-derived
and/or neural progenitor stem cells.

Adult stem cells (ASC)
Adult stem cells comprise mesenchymal stem cells
(MSCs), hematopoietic stem cells (HSCs) and ectoder-
mal stem cells (ESCs). The majority of the cited preclin-
ical and clinical studies use expanded and/or induced
mesenchymal stem cells.
Re-implanted adult autologous stem cells, easily

harvested out of the iliac crest and whether or not ex-
panded, as a rule, will migrate towards diseased tissue, a
phenomenon called homing [17,18]. Those stem cells
have the potency to modulate immune responses [19,20]
and to both transdifferentiate into target cells in order to
replace damaged cells [21-24], and secrete paracrine
(trophic) factors relevant for cell protection and cell re-
pair by the inhibition of apoptotic pathways [25-27]. So,
even before differentiation [28,29], mesenchymal stem
cells, might express brain-derived neurotrophic factor
(BNDF), glial cell-derived neurotrophic factor (GDNF)
and stromal-derived factor (SDF-1α). BDNF is shown to
have a neuroprotective effect on cultured rodent neu-
rons via the Pl3kinase/Akt pathway by inhibiting neural
death initiated by trophic factor withdrawal or by the ex-
posure to nitric oxide [30]. GDNF provides neural pro-
tection against proteasome inhibitor-induced dopamine
neuron degeneration [31], although its biological effect
on the clearance of mature formed α-synuclein aggrega-
tion could not be observed, probably due to its short
duration of administration [31]. SDF-1α, in low doses,
promotes dopamine release from 6-OHDA-exposed
PC12 cells (cell line derived from a pheochromocytoma),
presumably by preservation and enhanced survival of
these cells, as these phenomena are blocked by adminis-
tration of anti-SDF-1α antibodies [32]. A high concen-
tration of SDF-1α, however, rather enhances apoptosis
[33]. SDF-1α acts through CXCR4 (chemokine receptor
type 4) resulting in a down regulation of caspase-3 and
an activation of the PI3/Akt pathway [34]. SDF-1α also
enhances the survival of neural progenitor cells through
the receptors CXCR7 and CXCR4 by up regulation of
the ERK1/2 (Mitogen-Activated Protein kinase 3) endo-
cytotic signaling pathway [35].
The route of administration (intravasal, intraparenchymal)

during the re-implantation of the stem cells seems to have a
major impact on the specific transdifferentiation and/or se-
cretion patterns of them, as the actual environment influ-
ences the further developments of these cells. However, by
inducing stem cells before re-implantation it is also possible
to induce these developments already in vitro. Indeed, by ex-
posing these cells to trophic factors, including epidermic
growth factor (EGF) and basic fibroblast growth factor
(bFGF) [36], by transducing them with a viral vector, and/or
by binding them to pharmacologically active microcarriers,
containing trophic factors such as NT-3 (Neurotrophin-3)
[37], it is possible to further differentiate the stem cells, prior
to the re-administration to the target organs [38,39]. So,
in vitro, adult stem cells may be predisposed to differentiate
into dopamine producing cells [21,40], thus offering a po-
tential alternative for dopamine substitution therapies, or
into cells secreting neuroprotective and/or neurorestorative
trophic factors, thus protecting for dopaminergic cell death
respectively stimulating neurorestoration [41].
Due to the lung trap [42] and the blood–brain-barrier

[43,44], intravasal application of stem cells for disorders
of the central nervous system is suggested less effective
as compared to intracerebral administration [23,45].

Preclinical experience with ASC in motor parkinsonism
In experimental animals, motor parkinsonism (but not
PD) might be induced by intra-nigral 6-hydroxydopamine
(6-OHDA) as well as by subcutaneous carbobenzoxy-leu-
leu-leucinal (MG-132) and/or subcutaneous or intravasal 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [46,47].
MPTP models have the advantage that the lesions are in-
duced through a less invasive (subcutaneous or intravasal)
route of administration as compared with the stereotactic
surgical approach when applying 6-OHDA. To optimally in-
vestigate neural protection, the non-human primate MPTP
model seems to be preferred [46]. Tables 1 and 2 present
the results of preclinical interventions using cell-based strat-
egies in the 6-OHDA, MPTP and the proteasome inhibitor
MG-132 animal models. In all the presented animal studies
immune suppression was used to prevent rejection of the
cells. However, the use of immune suppression may influ-
ence not only the behavior of the Stem Cells [48] but also
the severity of the lesions in animal models [49,50].
As might be appreciated, in the studies reviewed in

Tables 1 and 2, the following stem cells were used:

– Expanded bone marrow-derived mesenchymal cells
(of the mesodermal lineage) of rat [32,37,51-53],
mouse [54] or human origin [55-58];

– Expanded and enriched, or epigenetically induced
bone marrow-derived mesenchymal stem cells
[37,51,55,56], enabling functional development
before actual transplantation;

– Expanded neural stem cells of the ectodermal lineage,
derived from the subventricular zone of the rat [59]
or from a cultivated fetal human cell line [60,61].

But for three studies with intravenous [32,54] and/or
intranasal [53] application, all stem cells are applied
intranigral and/or intrastriatal.
Outcome measures comprised motor behavior (rota-

tional behavior) as well as histological/histochemical
measures. The main findings on the rotational motor



Table 1 Placebo-controlled stem cell applications in rodent animal models of parkinsonism

Striatal 6-OHDA lesioned rats

Authors animals
(Sprague–Dawley
rats)

Product expanded
allogenic ASCs
Cyclosporin A

Applic/Observ time Characteristics/Dosages/
Application

Outcome (* = p < 0.05/
** = p < 0.01/*** = p < 0.001)

Bouchez, Sensebe
et al. [51]

rMSCs 14/35 days 1. No intervention (n = 6) • Rotational behavior
(turns/min)

2. Intrastriatal saline (n = 7) 1. No-intervention group:
23.8 ± 2.1

3. Intrastriatal 1.8×105

rMSCs (n = 7)
2. Control saline-treated
group: 25.1 ± 1.7

Female rats riMSCs 4. Intrastriatal 1.8×105

riMSCs (n = 7)
3. MSC-treated group:
14.1 ± 3.3*

4. Enriched rMSC-treated
group: 10.8 ± 1.7*

• TH-positive neurons:

1. No-intervention group:
24.2 ± 6.7%

4. Enriched riMSC-treated
group: 52.5 ± 8.2%*

Wang, Yasuhara
et al. [32]

Fibroblasts 2 hr/28 days 1. Intravenous saline (n = 7) • Amphetamine-induced
rotational behavior

2. Intravenous 107 fibroblasts
(n = 6)

1. Control group:
8.5 ± 3.5 turns/min

Female rats rMSCs 3. Intravenous 107 rMSCs
(n = 6)

2. Fibroblast group:
8.2 ± 3.3 turns/min

3. rMSC group:
1.2 ± 0.7 turns/min*

• Cylinder test

1. Control group:
64.7 ± 17.3%

2. Fibroblast group:
60.2 ± 16.1%

3. rMSC group:
29.3 ± 13.7%*

• Preservation of TH+cells:
3* > 2 > 1

Danielyan, Schafer
et al. [53]

rMSCs (EGFP labeled) 7,9/110–136 days Intranasal saline day 7 and 9
(n = 7)

• Stepping ratio (contralateral/
ipsilateral) MSC-treated
group 2 (0.7)** > group 1 (0.1)

1. Intranasal 5x105 MSC day
7 and 9 (n = 9)

• Amphetamine-induced
rotational behavior

MSC-treated group 4* < group 3

Female rats 2. Intranasal saline day 7
and 9 (n = 10)

• Histology

Intranasal 5×105 MSC day 7
and 9 (n = 12).

a. Group 4: 24% of MSCs
survived in central nervous
system for at least 4.5 months

b. TH+ cell survival:
Group 2* > 1 and 4* > 3

c. Inflammatory cytokines
Group 2* < 1 and 4* < 3

Blandini, Cova
et al. [58]

hMSCs 5/28 days 1. Intrastriatal saline (n = 9) • Apomorphine-induced
rotational behavior

Male rats 2. Intrastriatal 1×105 hMSCs
(n = 8)

1. No effect
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Table 1 Placebo-controlled stem cell applications in rodent animal models of parkinsonism (Continued)

2. Reduced rotational behavior*

• Expression of GDNF increased
in hMSCs group

• Apoptosis decreased in
hMSCs treated group

Cova, Armentero
et al. [57]

hMSCs 5/28 days SHAM unilateral lesion • Dose-dependent neurorescue
effects (hMSCs vs saline) in
unilateral 6-OHDA lesioned,
but not SHAM lesioned,
rats with

1.Intrastriatal saline

2. Intrastriatal 3.2×104 hMSCs
(n = 6-10)

Male rats 3. Intrastriatal 1.8×105 hMSCs
(n = 6-10)

a) Reduction*/** ongoing
toxin-induced degeneration
of dopaminergic terminals

6-OHDA unilateral lesion

1. Intrastriatal saline b) Enhanced neurogenesis*/**
(neural progenitor cells) in the
periventricular zone2. Intrastriatal 3.2×104 hMSCs

(n = 6-10)

3. Intrastriatal 1.8×105 hMSCs
(n = 6-10)

c) Persistent release of specific
cytokines

Delcroix, Garbayo
et al. [37]

rMSCs 14/64 days 1. Intrastriatal saline (n = 6) • Rotational behavior (turns/min):

2. Intrastriatal 1.5×105 rMSCs
(n = 6)

1. saline treated group: 18.5

3. Intrastriatal 1.5×105

riMSCs + P (n = 6)
2. rMSCs-treated group: 17.5

Female rats riMSCs 4. Intrastriatal 1.5×105

riMSCs + P + NT3 (n = 6)
3. riMSCs + P treated group: 8.5*

4. riMSCs + P + NT3 treated
group: 3.0*

riMSCs + P • Preservation of TH+cells :
4* > 3 > 2 > 1

Levy, Bahat-Stroomza
et al. [56] Male rats

hMSCs 35/125 days 1) Intrastriatal saline in 5
(n = 7)

• Rotational behavior (turns/min)
(post-lesional 100%)

hiMSCs (neural phenotype) 2) Intrastriat. 5×105 MSC’s
(n = 7)

1) saline-treated group: 88%

3) Intrastriat. 5×105 neural
iMSC’s (n = 7)

2) hMSCs-treated group: 90%

3) hiMSCs-treated group: 42%*

Sadan, Bahat-Stromza
et al. [55]

hMSCs 1 hr/42 days 1) Intrastriatal saline (n = 10) • D-amphetamine-induced
rotational behavior

Male rats hiMSCs (BDNF/GDNF) 2) Intrastriatal 1.5 or
4.5×105 hMSCs (n = 21)

1. saline group: increase
4.74 ± 1.07 turns/min

2. MSCs group: increase
2.86 ± 0.54 turns/min

3. Intrastriatal 1.5 or
4.5×105 hiMSCs (n = 21)

3. iMSCs group: increase
2.16 ± 0.37* turns/min

• TH-positive area (treated
versus untreated site)

2. hMSCs group: treated site >
untreated site

3. hiMSCs group: treated
site* > untreated site

Zhu, Ma et al. [59]
Male rats

rNSCs 35/155 days 1. No intervention (n = 13) • Rotational behavior:

2. Intranigral(SNc) 5×104

rNSCs (n = 20)
1. Group without intervention:
233.9 ± 70.43

3. Intrastriatal 5×104 rNSCs
(n = 5)

2. rNSCs SNc group:
189.3 ± 63.24***
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Table 1 Placebo-controlled stem cell applications in rodent animal models of parkinsonism (Continued)

3. rNSCs Intrastriatal group:
169.3 ± 47.28*

• TH-positive cells in the
SNc: 2 > 1

• EGFP-labeled NSCs
identified as TH+cells
in 2 and 3

Ramos-Moreno, Castillo
et al. [61] Female rats

hNSCs 45/165 days 1. Intrastriatal saline (n = 15) • D-amphetamine-induced
rotational behavior:

hiNSCs 2. Intrastriatal 3×105 hNSCs
(n = 17)

1. Control group: 18 turns/min

(expressing Bcl-XL) 3. Intrastriatal 3×105 hiNSCs
Bcl-XL expression (n = 21)

2. hNSCs-treated group:
17 turns/min

3. hiNSCs-treated group:
3 turns/min***

• Apomorphine-induced
rotational behavior:

1. Control group: 6.5 turns/min

2. hNSCs-treated group:
2 turns/min**

3. hiNSCs-treated group:
2.5/min**

• Paw mobility test:
3** > 2* > 1

Abbreviations: 6-OHDA 6 hydroxydopamine, ASCs Adult stem cells, MSCs Mesenchymal stem cells, NSCs Neural stem cells, h human r rat, i induced or transduced,
EGFP Enhanced Green Fluorescent Protein, BDNF Brain-Derived Neurotrophic Factor, GDNF Glial cell Derived Neurotrophic Factor, NT-3 Neurotrophine-3,
P Pharmacologically active microcarriers, Bcl-XL anti-apoptotic granulocyte-colony stimulating factor enhancing the expression of key genes involved in
dopaminergic patterning, differentiation and maturation); SNc Substantia Nigra pars compacta, TH+ Tyrosine Hydroxylase Immunoreactive positive cells.
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behavior showed a significant reduction of turns/minute.
But for 4/7 studies [32,51,53,58], in all studies with ex-
panded MSCs [32,51,53,58], as well in all studies with
expanded and enriched or epigenetically induced MSCs
[37,51,55,56], and expanded neural stem cells [59,61],
this reduction was established.
The administration of expanded, not-induced stem

cells in these studies varied widely in relation to the on-
set of the toxin-induced motor parkinsonism. Stem cells
were applied within 2 hours [32,55], within 5 to 14 days
[57,58], or 30 days after the lesion [54,56,59-61].
Overlooking the effects in these studies on rotational
behavior, the period in between application and
lesioning seems to influence the clinical outcome: the
earlier the application, the better the resulting clinical
effects. Remarkably, after intravasal administration of
ASCs, whether applied in the acute phase [32] or
3 weeks after lesioning [32], only a few ASCs (about
2%) could be detected in the nigral substance, the ma-
jority was trapped in the lungs. Nevertheless, also in
these experiments, a significant beneficial effect on
motor behavior could be established [32]. Here, it
seems relevant to mention that after intrastriatal
(intracaudate) application in the non-human primate
MPTP model, 1% of the implanted stem cells could be
identified at the injection site, whereas over 80% was
found to be migrated to and along the impaired
nigrostriatal pathways [60].
As for the histological/histochemical findings, after in-

tracerebral stem cell application, in all experiments,
more striatal TH-positive neurons were seen in the
treated as compared to the non-treated, control lesioned
animals, suggesting ASC-induced increased neuronal
plasticity (neurorescue) with increased modulation of
cell survival (and an increased striatal dopamine level), en-
hanced neurogenesis (progenitor cells in the subventricular
zone), and a decreased modulation of inflammation, gliosis
and death-signaling [51,52,55,57,59,62]. The same preser-
vation of TH-positive cells was also observed after intra-
venous [32] and intranasal MSC application [53].

Clinical experience with ASC in motor parkinsonism
As of yet, only three studies were reported, dealing with
the effects of, intracerebral or intravasal applied, allo-
genic or autologous adult stem cells in patients suffering
motor parkinsonism in PD, multiple system atrophy
(MSA) or progressive supranuclear palsy (PSP) [63-65].
The results are summarized in Table 3. In most but not
all PD patients, the subventricular application of both,
allogenic and autologous bone marrow-derived mesen-
chymal stem cells did improve clinical scores of motor
behavior, as expressed in a significant decrease of



Table 2 Placebo-controlled stem cell applications in animal models of parkinsonism

Striatal MPTP and subcutaneous proteasome inhibitor (MG-132) lesioned animals

Authors
animals

Product expanded
allogenic ASCs
Cyclosporin A

Applic/Observ time Characteristics/Dosages/Application Outcome(* = p < 0.05 /
** = p < 0.01 / *** = p < 0.001)

Chao, He et al. [54] mMSCs Directly after last MPTP
injection/1 month

1. Intraperitoneal saline (n = 24) • SN TH+ cells: 3** > 2

2. Intraperitoneal MPTP + IV saline
(n = 24)

• SN microglial cells: 3* < 2

Male C57BL/6 mice 3. Intraperitoneal MPTP + IV 105 mMSCs
(n = 24)

Phagocytosis and Complement
inhibition: 3* < 2

Park, Bang et al. [62] hiMSCs 1 day after last MPTP and
3-NP injection/28 days

1. Intraperitoneal saline-treated (n = 10) • Group 2 and 3: 48% loss of
nigral cells;

2. Intraperitoneal MPTP + 3-NP (n = 8) • Group 3 compared to group 2:

Male C57BL/6 mice 3. Intraperitoneal MPTP + 3-NP and
IV 1×106 hiMSCs in 200 μl (n = 8)

a. 2% of hiMSCs in SN, and
4% in the Striatum

b. Motor behavior improved*
during 10 days

c. Increased modulation of
cell survival* and decreased
modulation of death-signaling**
pathways, with 20% cell survival**

d. Decreased modulation of
inflammation** and gliosis***,
with a marked decrease of
activated microglia** and
astrocytes***

Bjugstad, Teng
et al. [60]

hiNSCs 4 and/or 6 months after last
MPTP injection/4 (n = 3)
and 7 months (n = 4)

Bilateral intrastriatal and unilateral
intranigral implantation of
each 106 hiNSCs (n = 7) in the
intramuscular MPTP lesioned
monkey

• >80% of hiNSCs immigrated
along the impaired nigrostriatal
pathway

African green
Monkeys

• < 1% of a total of 2x106 hiNSCs
implanted within the caudate
nucleus (intrastriatal) was
identified at this site.

Park, Lee et al. [52] hMSCs 21 days/3, 4, 6, 7,
10 weeks

1. MG-132 lesioned rats • 1.7% hMSCs detected in the
nigral substance

2. MG-132 lesioned rats treated
during 3 weeks with weekly
intravasal application of 106 hMSCs

• Survival of nigral and striatal
TH+cells* after hMSCs

• Increased striatal dopamine
level* after hMSCs

Male rats • Reduction* in microglia
activation after hMSCs

Abbreviations: ASCs Adult stem cells, IV Intravenous, MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, MSCs Mesenchymal stem cells, NSCs Neural stem cells,
h human m mouse, i induced or transduced, MG-132 carbobenzoxy-Leu-Leu-leucinal, a proteasome inhibitor. SN Substantia Nigra, TH+ Tyrosine Hydroxylase
Immunoreactive positive cells.
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UPDRS scores in ON and OFF conditions. Interestingly,
these effects did appear faster and more outspoken the
earlier these interventions were applied, mimicking the re-
sults in preclinical experiments. Also Magnetic Resonance-
tractography of degenerated dopaminergic projections did
show significant improvements in those patients.
In MSA and PSP patients, compared to placebo-

treated patients, in some patients, a temporary im-
provement [60] or reduced deterioration in motor and
cognitive functions [60] witnessed a reduction in nat-
ural progressive deterioration with subventricular or
intravasal ASC implantations. This reduced disease
progression in these patients was also found reflected
in MRI (Magnetic Resonance Imaging)- and FDG PET
(fluorodeoxyglucose positron emission tomography)-
imaging, showing less atrophy and less decreased glu-
cose metabolism in cortex and cerebellum.

Discussion
PD is a chronic progressive, diffuse α-synucleinopathic
disease of the central nervous system in which (symp-
tomatic) therapeutic strategies aim to compensate for
the striatal dopamine deficiency in order to mainly de-
crease motor symptomatology. As of yet, protective/
repairing therapeutic strategies in PD are an unmet
need.



Table 3 Open label and placebo-controlled stem cell applications in clinical parkinsonism

Authors Patients Product Observ. time
(months)

Characteristics/Dosages/Application Outcome (* = p < 0.05 / ** = p < 0.01)

Venkataramana,
Pal et al. [65]

Allogenic 3, 6, 12 1. PD patients with bilateral subventricular
intracerebral application of 2×106 /kg
bodyweight MSCs in 2 ml (n = 8)

UPDRS in ON/OFF:

PD patients MSCs 2. MSA + PSP patients with bilateral
subventricular intracerebral application
of 2×106 /kg bodyweight MSCs in
2 ml (n = 4)

a. In PD patients: permanently improved*
compared with baseline during both ON
(18%: 51.2 versus 62.3) and OFF (31.2%:
59.5 versus 86.5). Effect stronger in patients
with disease duration < 5 years (ON 45.5%/
OFF 56.7%) as compared to patients with a
duration > 10 years (ON 6.3% OFF 12.4%).

MSA patients b. Some MSA/PSP patients temporarily
improved. The effect was not correlated
with disease severity and disease
duration.MR-tractography:

PSP patients a. PD patients, after implantation, did show
a trend of steadily improvement in
tractographical images in genu and
peduncles.

Open Label b. MSA/PSP patients showed further
reduction of tractographical images after
stem cell implantation.

Venkataramana,
Kumar et al. [64]

Autologous
MSCs

10-36 PD patients (n = 7) with an UPDRS ON/OFF
score 50.6/65.0 and a mean disease duration
of 14.7 yr treated with 106 MSCs/kg
bodyweight in the subventricular zone

UPDRS in ON/OFF:

PD patients a. In 3/7 patients there was a stable
improvement of ON/OFF scores of
38% respect 22.9% with unchanged
anti-parkinsonian medication.

Open Label b. In 3/7 patients after treatment, only
marginal clinical effects were observed

Anti-parkinsonian medication significantly
reduced in 2 patients.

Lee, kim et al. [63] Autologous
MSCs

1, 2, 3, 4, 5, 6, 8,
10, 12

Patients with Cognitive intact MSA-C
(with UMSARS scores between 30 to 50)

UMSARS score

a. MSCs-treated patients showed a
reduced* increase of UMSARS score
compared to placebo treated patients.

MSA patients 1. Placebo group: Intravenous or intra-arterial
placebo (n = 17)

b. Intra-arterial application of MSCs was
complicated with some MRI-detectable
ischemic lesions

Cognitive functions:

Significantly* worsened in the placebo,
but not in the MSCs-treated patients

Placebo
controlled

2. MSCs group: 4×106 MSCs intravenously
or intra-arterial (n = 14)

MRI and FDG PET:

Showed significantly increased* gray cerebral
cortical areas respectively more decreased
cortical and cerebellar glucose metabolism
in placebo-treated, as compared to
MSCs-treated patients.

Abbreviations: MSCs Mesenchymal stem cells, MSA multiple system atrophy, MSA-C multiple system atrophy, cerebellar type, PSP progressive supranuclear palsy,
MRI magnetic resonance imaging, UMSARS unified MSA rating scale, FDG PET fluorodeoxyglucose positron emission tomography.
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Generally speaking, stem cells, and specifically adult stem
cells, pending their environment after re-implantation or
pending their in-vitro induction, are supposed to not only
differentiate into functional (neuronal) cells, including
dopamine producing neurons, but to also easily expand
and thus to deliver enough cells for transplantation.
Although differentiation and proliferation of bone marrow-
derived stem cells are jeopardized by aging and chronic dis-
eases including diabetes [66], renal failure [67] and ALS
(Amyotrophic lateral sclerosis) [68], in PD patients, up to
the 15th passage, ASCs are fully comparable to those of
healthy age-matched individuals regarding phenotype,
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morphology and capacity to multi-differentiate [69], and
are also able to inhibit T lymphocyte proliferation induced
by mitogens.
Next to the multi-differentiated proliferative capacity,

adult stem cells, and especially expanded and induced
ASC’s, may secrete an array of trophic factors. As a mat-
ter of fact they may specialize to express mainly such
factors by induction in vitro through exposure to trophic
factors (including epidermic growth factor EGF and
basic fibroblast growth factor bFGF), by transduction with
a viral vector and/or by binding these ASCs to pharmaco-
logically active microcarriers, containing trophic factors
such as NT-3 prior to the application. When adding epi-
dermal growth factor (EGF) and basic fibroblast growth
factor (bFGF) to serum-free medium, in order to expand
and induce human ASCs, the secretion of neurotrophic
factors such as BDNF (normally neglectable) will increase
to 125 ± 12 pg/day/106 ASCs [70]. Thus induced ASCs
will function as a vehicle for adequate delivery of neuro-
trophic factors (BDNF and GDNF) when transplanted in
the central nervous system [55,70].
It is suggested that ASC-produced neurotrophic factors

such as GDNF and BDNF enhance neuroprotection with
an increased modulation of cell survival and a decreased
modulation of inflammation, gliosis and death signaling.
These trophic factors thus stimulate neurorescue by better
protection of α-synucleinopathic jeopardized neurons, in-
cluding DA producing neurons. This effect was also
reported in a MPTP animal model in which allogenic
neural stem cells were applied unilateral [71]. The jeopar-
dized DA producing neurons were rescued and this effect
was also observed in the opposite side of the SN in which
no stem cells were applied [71]. So, in PD patients, autolo-
gous ASCs, and especially expanded and/or induced
ASCs, due to their capacity to increase neuroplasticity,
theoretically not only offer an increased neuroprotection,
but also an increased neuro-repair in PD patients resulting
in a slowing down of natural progression in this debilitat-
ing disease.
In preclinical studies, the stimulated secretion of

GDNF and BDNF by ASCs is found to result in a higher
number of striatal TH-positive neurons in the rat le-
sioned striatum as compared to placebo-treated rats, ac-
companied with a higher striatal dopamine level and
decreased rotational behavior [58,70]. Other ASC-
produced trophic factors, such as basic fibroblast growth
factor bFGF and epidermal growth factor EGF, seem to be
more relevant for neurorestoration (synthesis of extracel-
lular matrix). In rodents, the intranigral application of
(adenovirus mediated) glial cell line derived neurotrophic
factor (GDNF), one week before the ipsilateral nigral 6-
OHDA lesioning, did rescue 70% of the nigral TH-positive
cells as compared to 30% in the not-pretreated, lesioned
(control) animals, resulting in a significantly reduced
rotational behavior: 5.4 ± 15.2 turns/15-minutes versus
40.8 ± 25 turns/15-minutes (p < 0.05) [72]. Note however
that each intracerebral needle-induced manipulation per
se might initiate the secretion of the same neurotrophic
factors and/or cytokines mimicking a clinical effect, which
may confound the results of a placebo treatment [73,74].
In the preclinical studies, reviewed above, two studies

were performed in which ASCs were locally applied
within 2 hours after the application of a 6-OHDA unilat-
eral lesion in rodents [32,55]. Both studies, reported a
significant improvement in rotational behavior and in
survival of TH positive neurons within 4–6 weeks. In
the studies applying ASCs, and especially expanded non-
induced ASCs, later on, in a more chronic phase of a le-
sion, no significant reduction in rotational behavior
could be established [28]. In translation, the clinical ef-
fects of implantation of expanded MSCs in PD patients
might profit their application in an early phase of
their disease. Indeed, in PD patients, the clinical ef-
fects of stem cell application seem to relate with dis-
ease duration [60].
Finally, as ASCs are large cells, unable to cross the

blood–brain barrier [44], intracerebral application seems
to be superior to intravasal application, as only 1-2% of
thus applied cells will reach the central nervous system
[52]. Intranasal administration of MSCs, however, might
offer an alternative, as this way of application in unilat-
eral 6-OHDA-lesioned rodents did result in both, a sig-
nificantly improved motor behavior and a significant
decrease in inflammatory cytokines (suggesting a strong
cell protective effect by inhibiting inflammation cas-
cades) with 24% of the cells surviving for at least
4.5 month in the central nervous system [53].

Conclusions
In conclusion

– ASCs are capable of migrating to the lesioned cells/
organs throughout the body, a phenomenon, which
is called homing.

– ASCs are easily to harvest out of the iliac crest.
Their number might be increased by expanding
them, and their functions might be developed prior
to re-application by inducing them. Unlike ASCs in
patients with other chronic diseases, in PD patients
those cells are not impaired.

– Expanded and/or induced ASCs may stabilize motor
(and non-motor) parkinsonism in patients suffering
PD and may be also Parkinson-plus syndromes, by
increasing neural plasticity rather than by
differentiating into neurons. Early in the disease,
ASCs will promote neurorescue/neuroprotection by
increasing immune modulation and reducing
inflammation), especially when expanded
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(undifferentiated) ASCs are administered. Later in
the disease, they mainly will promote
neurorestoration, especially when induced
(differentiated) ASCs are given.

– Neurotrophic factors such as BDNF and GDNF (mainly
interfering with destructive pathways) play a major role
in neuroprotection, whereas other growth factors such
as EGF and bFGF (promoting synthesis of extracellular
matrix) are more important in neurorepair. The best
time to start with ASCs administration is in the very
early phase of Parkinson’s disease.
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