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Erythropoietin prevents PC12 cells from beta-
amyloid-induced apoptosis via PI3K⁄Akt pathway
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Abstract

Background: Several studies indicated that Erythropoietin (Epo) may provide remarkable neuroprotection in
some neurological diseases. It also showed the significant decrease of Epo immunoreactivity in the cerebral cortex
and hippocampus in aged rats, suggesting the role of Epo in the pathogenesis of age-related neurodegenerative
diseases such as AD.

Methods: The protective effect of Epo was studied in differentiated PC12 cells treated with Abeta. The viability of
the cells, the apoptosis of the cells and the level of Bax, Bcl-2, cleaved caspase-3 and cleaved PARP expression
were detected by MTT, Hoechst 33258 staining and Western blotting respectively.

Results: 20 μM Abeta (25-35) could induce a decreased viability and a increased apoptosis in PC12 cell in a time-
dependent manner. However, 20 μM Abeta (35-25) had no effect on cell viability and apoptosis. Western blot
analysis also showed that Abeta(25-35) treatment could decrease the expression of Bcl-2 (P < 0.05) and increase the
expression of Bax (P < 0.05), Cleaved casapase-3 (P < 0.05), and Cleaved PARP (P < 0.05). The pretreatment of Epo
could effectively reverse all the above changes induced by Abeta(25-35) (P < 0.05). Furthermore, the protective effect
of Epo could be blocked by PI3K inhibitor LY294002 (P < 0.05).

Conclusions: Epo prevented cell injuries in PC12 cells exposed to the Abeta(25-35) and this effect may depend on
the PI3K⁄Akt pathway. Our study provided an important evidence for the potential application of Epo in the
therapy of Alzheimer’s disease.
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Background
Apoptosis is a particular type of programmed cell death
controlled by precise intrinsic genetic programme in
order to regulate cell population. Among the mechan-
isms of cell death, apoptosis has been proposed to
explain the cell loss observed in many neurodegenera-
tive disorders including Alzheimer’s disease (AD) [1-3].
AD is a neurodegenerative disorder of the central ner-
vous system (CNS), which correlate with the appearance
of neurofibrillary tangles (NFTs) and senile plaques
(SPs) [4]. The major component of SPs is beta-amyloid
peptide (Abeta), which is believed to be the most prob-
able cause of AD [3,5]. Many studies have shown that

Abeta can directly induce neuronal death via apoptosis
[2,6,7].
Erythropoietin (Epo) was originally characterized as the

principal regulator of erythropoiesis [8]. Many experi-
mental studies have shown that both Epo and its specific
receptor (erythropoietin receptor, EpoR) expressing in
the CNS, provide remarkable neuroprotection in many
neurological diseases [9-13]. Recent research has demon-
strated significant decreases in Epo immunoreactivity in
the cerebral cortex and hippocampus of aged rats [14]
which suggested the role of Epo in the pathogenesis of
age-related neurodegenerative diseases such as AD.
Therefore, we studied the possible relationship between
Epo and Abeta-induced cell apoptosis. In the present
study, we observed that Abeta(25-35) peptide at 20-μM
concentrations could induce apoptosis in PC12 cells and
Epo could reverse these changes through PI3K/Akt
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signaling pathway. Our results identifed a potential mole-
cular targets for AD therapy.

Materials and methods
Cell culture and drug treatment
Abeta(25-35) (Sigma-Aldrich, St. Louis, MO) or Abeta(35-25)
(Sigma-Aldrich, St. Louis, MO) was dissolved in water to
obtain a 2 mM stock solution. Aliquots were stored at -20°
C and thawed at 37°C for 5 ~ 7 d for use. Differentiated
rat pheochromocytoma PC12 cells (provided by the Insti-
tute of Biochemistry and Cell Biology, Chinese Academy
of Science, Shanghai) were plated in 100-mm culture
dishes (Corning Incorporated, Corning, NY, USA) in
DMEM containing 10% (v/v) heat-inactivated FBS, 5%
horse serum, 1% penicillin, and 1% streptomycin. The cells
were grown at 37°C in a humid 5% CO2 environment, and
the medium was routinely replaced every 2 d. The media
were replaced with serum-free media 12 h prior to drug
treatment. The cells were then treated with Abeta(25-35) or
Abeta(35-25) for 24 h. Epo (R&D systems, USA) at various
concentrations were added into the cultures 1 h prior to
the 24-h Abeta(25-35) exposure. 20 μM LY294002 (Sigma-
Aldrich, St. Louis, MO, dissolved in DMSO) were added
into the cultures 1 h prior to the Epo treatment.

Analysis of cell viability
Cell viability was assessed by MTT assay. Briefly, PC12
cells were seeded in 96-well culture plates at a density of 1
× 104 cells per well. After the treatment of Abeta(25-35),
Abeta(35-25), Epo or LY294002, the cells were subjected to
the assay as previously reported [15,16].

Hoechst 33258 staining
For Hoechst 33258 staining, cells were fixed with 4% par-
aformaldehyde. Cell nuclei were stained with fluorescent
dye Hoechst 33258 (Sigma, St. Louis, MO) at a final con-
centration of 5 μg/ml in PBS, for 20 min at room tempera-
ture in a dark chamber, and then observed in a
fluorescence microscope (OLYMPUS 1 × 70, Japan) and
photographed.

Western blotting
The Western blotting analysis procedure was conducted
as previously reported [16]. After the treatment, cells were
washed twice with cold phosphate buffered saline and
lysed on ice with cell lysis buffer(10 mM Tris, pH 7.4, 100
mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM NaF, 20
mM Na4P2O7, 2 mM Na3VO4, 0.1% SDS, 0.5% sodium
deoxycholate, 1% Triton-X 100, 10% glycerol, 1 mM
PMSF (made from a 0.3 M stock in DMSO), 60 μg/mL
aprotinin, 10 μg/mL leupeptin, 1 μg/mL pepstatin) for 30
mininutes. The soluble fraction was obtained by centrifu-
gation at 14000 g for 20 min at 4°C. The concentration of
the protein was determined by the BCA assay (Pierce

Biotechnology, Rockford, IL). Equal amounts of the pro-
tein (20 μg) were separated in an 8-10% SDS-polyacryla-
mide gel; the resolved proteins were electrotransferred
onto PVDF or nitrocellulose membranes (Bio-Rad, Her-
cules, CA). The membranes were subsequently blocked
with 5% nonfat milk in TBST for 1 h at room temperature
and incubated with appropriate concentrations of primary
antibody (1:200 for Bax and Bcl-2 (Santa Cruz Biotechnol-
ogy, Inc, CA, USA), 1:5000 for beta-actin (Sigma-Aldrich,
St. Louis, MO), 1:1000 for Cleaved caspase-3 and PARP
(Cell Signaling Technology, Beverly, MA)) at 4°C over-
night. The membranes were then washed 3 times with
TBST and probed with the corresponding secondary anti-
bodies conjugated with HRP (Cell Signaling Technology,
Beverly, MA) at room temperature for 1 h. After washing,
the signals were developed using the ECL Advanced Wes-
tern Blotting Detection kit (Amersham, UK). Band intensi-
ties were quantified by densitometric analysis by using an
AxioCam digital camera (ZEISS, Germany) and the KS400
photo analysis system (Ver. 3.0).

Statistics
Data are expressed as mean ± standard deviation (S.D.)
and were analyzed using SPSS 11.0 statistical software
(SPSS Inc., Chicago, IL, USA). Each procedure was per-
formed in duplicate in 3 ~ 5 independent experiments.
Statistical analyses were performed using one-way
ANOVA, followed by the two-tailed Student’s t test.
Multiple comparison tests were applied when appropri-
ate, and statistical significance was assumed at P < 0.05.

Results
Effects of Abeta(25-35) on cell viability and cell apoptosis
determined by MTT and Hoechst 33258 staining
respectively
The MTT assay was used to determine the effect of 20
μM Abeta (25-35) on the viability of the PC12 cell cul-
tures. As shown in the following graph, 20 μM Abeta
(25-35) induced a decrease in PC12 cell viability in a
time-dependent manner (Figure 1A). We also used the
control peptide 20 μM Abeta(35-25) to determine the
effect of 20 μM Abeta(35-25) on the cell viability As
shown in the following graph, 20 μM Abeta (35-25) had
no effect on PC12 cell viability (Figure 1B). Hoechst
33258 staining also showed 10 μM Abeta (25-35) and 20
μM Abeta(25-35) could induce PC12 cell apoptosis. How-
ever, 10 μM Abeta (35-25) and 20 μM Abeta (35-25) had
no effect on PC12 cell apoptosis (Figure 2A and 2B).

Effects of Epo on Abeta(25-35)-induced PC12 cell viability
and cell apoptosis determined by MTT and Hoechst
33258 staining respectively
We added 3 different concentrations of Epo (5, 10, 20 u)
into the serum-deprived media of PC12 cells 1 h prior to
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the 24-h 20 μM Abeta (25-35) exposure. As shown in the
following graph, various concentrations of Epo (5, 10, 20 u)
could effectively prevent a decrease of cell viability induced
by 20 μM Abeta (25-35) (P < 0.05) (Figure 3). Hoechst 33258
staining also showed 3 different concentrations of Epo (5,
10, 20 u) can effectively prevent cell apoptosis induced by
Abeta (25-35) (P < 0.05) (Figure 4A and 4B).

Effects of Epo on Abeta(25-35)-induced PC12 cell apoptosis
determined by Western blotting
Using Western blotting analysis, we found that the
Abeta(25-35) treatment of PC12 cells could decrease the
expression of Bcl-2 (P < 0.05) (Figure 5A) and increase
the expression of Bax (P < 0.05) (Figure 5A), Cleaved
casapase-3 (P < 0.05) (Figure 5B), and Cleaved PARP
(P < 0.05) (Figure 5C). Three different Epo concentra-
tions can prevent all the above changes induced by
Abeta(25-35) (P < 0.05) (Figure 5A-C).

PI3K/Akt involvement in the effects of Epo on
Abeta (25-35)-induced cell injuries
Stimulation of EpoRs by Epo has previously been shown
to activate the PI3K ⁄Akt signal transduction pathway

Figure 1 Effects of Abeta(25-35) on cell viability. The MTT assay
was used to determine the cell viability. As shown in the following
graph, 20 μM Abeta(25-35) induced a decrease in PC12 cell viability in
a time-dependent manner (P < 0.05) (A), However, 20 μM Abeta(35-
25) had no effect on PC12 cell viability (P > 0.05) (B). (*P < 0.05 vs.
the controls). The data shown represent 5 independent experiments

Figure 2 Effects of Abeta(25-35) on cell apoptosis. Hoechst33258 was performed to detect the cell apoptosis (Con, Control group), showing
nuclear condensation and fragmentation (arrows) (A). 10 randomized representative fields were analyzed in one experiment. 10 μM and 20 μM
Abeta(25-35) could effectively induce PC12 cell apoptosis (P < 0.05) (A and B), and 20 μM Abeta(35-25) had no effect on PC12 cell apoptosis (A
and B). The data shown represent 5 independent experiments (*P < 0.05 vs. the controls) (B)
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[17,18], which regulates cell survival and proliferation
[19]. We treated the cells with PI3K inhibitor LY294002
and found the LY294002 treatment caused a slight
increase in cell apoptosis in PC12 cells with or without
Abeta(25-35) treatment (Figure 6A, B and Figure 7A-C)
This suggested that the PI3K/Akt pathway was involved
in Abeta(25-35)-induced cell apoptosis, When the PI3K
pathway was inhibited by LY294002 in PC12 cells, we
found that the effects of Epo on Abeta(25-35)-induced
cell injuries were diminished (P < 0.05) (Figure 8, Figure
6A, B and Figure 7A-C).

Discussion
Abeta is the major component of SPs, which are consid-
ered to play a causal role in the development and pro-
gress of AD [20,21]. The molecular mechanisms

Figure 3 Effect of Epo on cell viability induced by 20 μM Abeta

(25-35). The MTT assay was used to determine the cell viability. As
shown in the following graph, Various concentrations of Epo (5, 10,
20 u) could effectively prevent a decrease of cell viability induced
by 20 μM Abeta(25-35) (P < 0.05) (B). (*P < 0.05 vs. the controls). The
data shown represent 5 independent experiments

Figure 4 Effect of Epo on cell apoptosis induced by 20 μM Abeta(25-35). Hoechst33258 was performed to detect the cell apoptosis (Con,
Control group). We found 3 different concentrations of Epo (5, 10, 20 u) could effectively prevent cell apoptosis induced by Abeta(25-35) (P <
0.05) (A and B). The data shown represent 5 independent experiments (*P < 0.05 vs. the controls) (B)
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underlying Abeta-mediated neurotoxicity remain unclear.
Recently, many in vitro and vivo studies have shown that
Abeta can directly induce neuronal death via the
mechanism of apoptosis [2,3,22]. Epo is widely known for
its role as a hematopoetic hormone. Epo binds to specific
receptors present in the human brain can be synthesized
by astrocytes as well as neurons [23]. Epo was shown to
be capable of crossing the blood-CSF barrier via recep-
tor-mediated transport [24,25] and to act as a neuro-
trophic factor supporting the differentiation and
regeneration of neurons [26]. Its protective effect under
conditions of neuronal injury was also reported [27,28].
Therefore, we proposed that the Epo system in the CNS
can act as an endogenous system for protecting against
neurodegenerative diseases such as AD. Among the frag-
ments studied so far, the Abeta(25-35) represents the
shortest fragment of Abeta, processed in vivo by brain
proteases [29]. This peptide is the functional domain of
Abeta required for neurotoxic effect, retaining the

toxicity of the full-length peptide [30,31]. It is highly
cytotoxic to neuronal cells [32-34] and is widely used in
both in vitro and in vivo experiments [35,36]. In the pre-
sent study, we used Abeta(25-35) to observe the toxic effect
of Abeta and the protective effect of Epo. Abeta(35-25), a
11 amino acid with a reverse sequence of Abeta(25-35) was
used as a control. We discovered that aggregated 20 μM
Abeta(25-35) could decrease cell viability in a time-depen-
dent manner (Figure 1A), However, 20 μM Abeta (35-25)

had no effect on PC12 cell viability (Figure 1B.). Hoechst
33258 staining showed Abeta(25-35) can induce PC12 cell
apoptosis while Abeta(35-25) had no effect on PC12 cell
apoptosis (Figure 2A and 2B). Epo could attenuate the
decreased cell viability (Figure 3) and increased cell apop-
tosis (Figure 4A and 4B) induced by Abeta(25-35).
Apoptosis is a tightly regulated process which involves

changes in the expression of a distinct set of genes [37].
Bcl-2 is a key member of the anti-apoptotic Bcl-2 family,
which plays a key role in regulating mitochondrial-

Figure 5 Effect of Epo on 20 μM Abeta(25-35)-induced cell apoptosis. Western blotting analysis indicated that the Abeta(25-35) treatment of
PC12 cells could decrease the expression of Bcl-2 (P < 0.05) (A), and increase the expression of Bax (P < 0.05) (A), Cleaved casapase-3 (P < 0.05)
(B), and Cleaved PARP (P < 0.05) (C). Three different Epo concentrations could prevent all the changes induced by Abeta(25-35) (P < 0.05) (A-C).
Three independent experiments were performed in duplicate (*: P < 0.05 vs. the controls and #: P < 0.05 vs. 20 μM Abeta(25-35))
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mediated apoptotic cell death [38-40]. Over-expression of
Bcl-2 can protect neuronal cells from neurotoxic insult.
In contrast, Bax belongs to the pro-survival subfamily,
which promotes apoptosis by translocating into the mito-
chondrial membrane and facilitating cytochrome c
release [41]. In the present study, we found 20 μM Abeta
(25-35) exposure could induce an increase of Bax expres-
sion and decrease Bcl-2 expression in serum-deprived
cultured PC12 cells (Figure 5A), and Epo could effectively
attenuate these changes (Figure 5A).
Caspases are a family of cysteine proteases and are cri-

tical mediators of cell apoptosis, which play an impor-
tant role in the apoptotic process [42]. Caspase-3 acts as
an apoptotic executor, it can activate DNA fragmenta-
tion factor, which in turn activate endonucleases to
cleave nuclear DNA, and ultimately leads to cell death
[43,44]. Activation of caspase-3 appears to be a key
event in execution of the apoptotic cascade in CNS dis-
eases such as AD and Down’s syndrome [45,46]. In this
study, we also found 20 μM Abeta(25-35) exposure could
induce an increase of Cleaved caspase-3 expression (Fig-
ure 5B), and Epo could effectively attenuate these
changes (Figure 5B).
Significant evidence indicates that caspase-3 is either

partially or totally responsible for the proteolytic cleavage
of many key proteins, including PARP. PARP is a nuclear
DNA-binding protein of 110 kDa that is constitutively
expressed in eukaryotes and that comprises up to 1% of
the total nuclear proteins [47,48]. PARP is important for
cell viability, and cleavage of PARP facilitates cellular dis-
assembly and serves as a marker of cells undergoing apop-
tosis [49]. In this study, we also found 20 μM Abeta(25-35)
exposure could induce an increase of Cleaved PARP
expression and Epo could effectively attenuate these
changes (Figure 5C) with the same trend as the expression
of Cleaved caspase-3 (Figure 5B).
Epo elicits its effects by binding to specific cell surface

receptors. Evidence shows that Epo can induce activation
of JAK-2/STAT-5 [50,51], PI3K/Akt kinase [19], MAPK
[52,53], and PKC [54]. In the present study, we examined
the effects of Epo on Abeta(25-35)-induced cell apoptosis in
PC12 cells. We found Abeta(25-35)-mediated cell apoptosis
could be appropriately attenuated by Epo (Figure 5A-C).
Further, we found that LY294002, a PI3K inhibitor, atte-
nuated the effect of Epo on Abeta(25-35)-induced-cell inju-
ries (Figures 8, 6, 7), indicating that the protective effect of
Epo is dependent on PI3K signaling. Our findings provide
new molecular insight into the neuroprotective effect of
Epo and suggest its possible therapeutic role in the man-
agement of AD.

Figure 6 Involvement of PI3K/Akt in the effects of Epo on
Abeta (25-35)-induced cell apoptosis determined by
Hoechst33258 staining. As shown in the following graph, We
treated the cells with PI3K inhibitor LY294002 and found the
protective effects of Epo on the Abeta(25-35)-induced cell apoptosis
were diminished (P < 0.05). Three independent experiments were
performed in duplicate (*: P < 0.05 vs. the controls and #: P < 0.05
vs. 20 μM Abeta(25-35))
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Conclusions
In this report, we report that Epo prevented cell injuries
in PC12 cells exposed to the beta-amyloid peptide and
that this effect may depend on the PI3K⁄Akt pathway.
The present study provides new molecular insight into
the neuroprotective effect of Epo and suggests its possi-
ble therapeutic role in the management of AD.
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