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Abstract

In addition to senile plaques and cerebral amyloid angiopathy, the hyperphosphorylation of tau protein and
formation of intraneuronal neurofibrillary tangles (NFTs) represents another neuropathological hallmark in AD brain.
Tau is a microtubule-associated protein and localizes predominantly in the axons of neurons with the primary
function in maintaining microtubules stability. When the balance between tau phosphorylation and
dephosphorylation is changed in favor of the former, tau is hyperphosphorylated and the level of the free tau
fractions elevated. The hyperphosphorylation of tau protein and formation of NFTs represent a characteristic
neuropathological feature in AD brain. We have discussed the role of Aβ in AD in our previous review, this review
focused on the recent advances in tau-mediated AD pathology, mainly including tau hyperphosphorylation,
propagation of tau pathology and the relationship between tau and Aβ.
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Introduction
In parallel with senile plaques and cerebral amyloid
angiopathy, the hyperphosphorylation of tau protein and
formation of intraneuronal neurofibrillary tangles (NFTs)
represents another characteristic neuropathological fea-
ture in AD brain (see Figure 1). Tau is a microtubule-
associated protein (MAP). Aberrantly phosphorylated
tau is the main constituent of the aggregated paired heli-
cal filaments (PHF) that comprises NFT. Despite de-
cades of intense research that strongly implicates NFT
in underlying pathogenesis of AD and other neurode-
generative diseases (so called tauopathies) [1], there has
been controversy as to whether NFTs or Aβ plaques are
the primary cause of AD, and the interrelationship be-
tween these two pathologies remains largely elusive [2].
We have re-evaluated the role of Aβ in AD in our previ-
ous review [3]. In this review, we further discussed the
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recent advances in tau-mediated AD pathology with fo-
cusing on the propagation of tau pathology, tau hyperpho-
sphorylation and the relationship between tau and Aβ.

Physiological functions of tau
MAP tau localizes predominantly in the axons of neu-
rons with the primary function in maintaining microtu-
bules (MTs) stability. It is necessary for neurite outgrowth.
Tau presents six main isoforms in the human brain
(ranging between 352 and 441 amino acid residues),
according to the alternative splicing, and differs by
having 3 or 4 semi-conserved repeats of 31 residues
in the MT-binding assembly domain and 0-2 insertions in
the N-terminal projection domain [4,5]. Between the pro-
jection domain and the microtubule-binding domain lies a
basic proline-rich region. MT-binding domain is impor-
tant for promoting microtubule assembly, although it
binds to microtubules only with low affinity. The various
isoforms appear differentially during development. The
ratio of 3R and 4R tau isoforms is 1:1 in most regions of
the adult brain, and deviations from this ratio are charac-
teristic of neurodegenerative tauopathies [6].
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Figure 1 Tau-mediated neurodegeneration. Physiologically tau protein can bind and thereby stabilize microtubules (MTs). The attachment of
tau to MT is regulated by its phosphorylation level. Phosphorylation of tau mediated by kinase (Cdk5, GSK3β, MARK and ERK2) may lead to the
detachment of tau from MT and hereby cause MT depolymerization. Conversely, phosphatase (PP1, PP2A, PP2B and PP2C) will reduce the
phosphorylation level of tau and restore the binding ability of tau for MT. Such equilibrium between the roles of kinases and phosphatases is
disrupted under pathological condition, and increase in the kinase activity and decrease in the phosphatase activity will cause tau
hyperphosphoryation. Hyperphosphorylated tau protein is misfolded and forms β-sheet-containing structure paired helical filaments (PHFs). These
structure transitions will lead to more organized aggregates, and eventually develop neurofibrillary tangles (NFT) inside neurons. NFT will impair
normal axonal transport, disrupt synaptic plasticity, and finally induce cell loss.
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The MT-binding ability of tau is post-translationally
regulated primarily by serine/threonine-directed phos-
phorylation, which can effectively modulate the binding
affinity of tau for MTs [7], although other post-transla-
tional modifications, such as glycosylation, may also
have a direct impact on the dynamic equilibrium of tau
on and off the MTs. Dynamic tau phosphorylation
occurs during brain embryonic development [8]. It is
substantially increased during the development of the
fetal brain while decreased gradually in the adult brain
[9]. Furthermore, tau has profound effects on axonal
transport, function and viability of neurons and their
highly extended processes [10]. Tau is key to the sophis-
ticated transport machinery that allows signaling mole-
cules, trophic factors and other essential cellular consti-
tuents, including organelles (for example mitochondria
and vesicles), to travel along the axons. Tau also interacts
with various other proteins in addition to tubulin, inclu-
ding the SH3 domains of Src family tyrosine kinases
[11,12].These results strongly suggest that tau has a
potential role in cell signaling. In addition, recent
studies also demonstrated that tau plays functional
roles in nucleolar organization and chromosome sta-
bility [13,14].



Duan et al. Translational Neurodegeneration 2012, 1:24 Page 3 of 7
http://www.translationalneurodegeneration.com/content/1/1/24
Pathological aggregation of tau
Free tau, PHF and NFTs
When the balance between tau phosphorylation and
dephosphorylation is changed in favor of the former, tau
is hyperphosphorylated and the level of the free tau frac-
tion is elevated. Tau has been found to be phosphorylated at
over 30 serine/threonine residues and approximately half
of these are canonical sites for proline-directed protein
kinases(PDPKs), suggesting important roles for PDPKs and
protein phosphatases in the abnormal hyperphosphoryla-
tion of tau [15]. Hyperphosphorylated tau aggregates into
NFTs through pretangles (nonfibrillary tau deposits) and
PHF [16].

Phosphorylation and dephosphorylation of tau
Various other pathological events, including Aβ-mediated
toxicity, as well as oxidative stress and inflammation, may
be able to trigger or contribute (independently or in com-
bination) to an abnormal detachment of tau from the
MTs [17-20]. For example, it has been suggested that oxi-
dative stress could be responsible for detrimental covalent
modifications of tau, which include the formation of inter-
molecular disulphide bridges and tyrosine nitration. Such
modifications are likely to cause misfolding, hyperpho-
sphorylation and aggregation, and thereby contribute to
abnormal disengagement of tau from MTs, as well as to
the formation of aggregates. Although oxidative stress
is often regarded as an upstream event relative to tau
pathology, recent studies have revealed that patho-
logical tau may interfere with mitochondrial function
and induce oxidative stress [21-23]. In addition, lifetime
stress, endoplasmic reticulum stress and hypersecrete
glucocorticoids exposure also influence tau hyperpho-
sphorylation [24,25].

Kinases of tau
Several lines of in vitro data have shown that many
kinases are involved in phosphorylation of tau, though
it is not yet clear if it is also physiologically or patholo-
gically true in vivo. Nevertheless, cyclin-dependent
kinase 5 (CDK5), glycogen synthase kinase 3 (GSK3),
the microtubule-affinity-regulating kinase (MARK) and
extracellular signal-regulated kinase 2 (ERK2) have
received particular attention as potential targets for
disease-modifying therapies using inhibitory com-
pounds [7,26].
P35 and p39 proteins are expressed almost exclusively

in postmitotic neurons and have been identified as
CDK5 activators [27]. Elevated cellular calcium levels
trigger the calpain-mediated cleavages of p35 and p39 to
form the more stable p25 and p29 fragments [28,29]. In-
deed, calpain activation, p25 accumulation and elevated
CDK5 activity have all been observed directly in the AD
brain [30,31]. This has also been evident in the
transgenic mice that overexpress human p25 that exhibit
increased CDK5 activity, hyperphosphorylation of tau,
neurofilament and cytoskeletal disturbances [32]. Indu-
cible transgenic mice overexpressing p25 in the postna-
tal forebrain also exhibit neuronal loss and caspase-3
activation, accompanied by hyperphosphorylation of
endogenous tau, accumulation of aggregated tau, and
the progressively developed neurofibrillary pathology
[33]. Together, these data suggest CDK5-p25 pathway
is a crucial component of AD pathophysiology. Inter-
estingly, mice overexpressing p35 as well as tau and
CDK5 do not show increased tau phosphorylation,
and the cdk5/p35 could not cause neurodegeneration in
mouse brain, suggesting that cdk5/p35 might not be a
major protein tau kinase [34].
Cdk5 modulates tau hyperphosphorylation via the

inhibitory regulation of GSK3 [35]. GSK3 has two iso-
forms, GSK3α and GSK3β. In transfected mammalian
cells, GSK3α and GSK3β could contribute to the for-
mation of PHF [36,37]. Transgenic mice with elevated
GSK3β expressions show increased tau phosphoryl-
ation and deficits in spatial learning [38]. In newborn
AD transgenic mouse models, knockdown of GSK3α
and GSK3β reduces tau phosphorylation and tau misfold-
ing, while the knockdown of GSK3α, but not GSK3β, leads
to reduced senile plaques formation. These data de-
monstrate that GSK3β only modulates NFT forma-
tion, while GSK3α contributes to both senile plaques
and NFT pathogenesis [39].
MARK phosphorylates tau on non-Ser/Thr-Pro sites

and plays a crucial role in regulating tau’s function.
MARK selectively phosphorylates a KXGS motif, which
is presented in each MT-binding domain of tau. Overex-
pression of MARK promotes tau phosphorylation at
KXGS motifs and disrupts the microtubule array in vivo
[40]. Although little is known so far about the upstream
events that act through MARK to regulate tau phos-
phorylation, one recent study demonstrated that GSK3β
is substantially responsible for phosphorylating Ser-262
of tau through activation of MARK2 [41].
ERK2 is highly expressed in neurons and plays an

important role in regulating tau functions and tau phos-
phorylation. This kinase can promotes tau phosphory-
lation and hereby reduce the ability of tau in stabilizing
microtubules [7].
Besides the roles either directly or indirectly in modu-

lating tau phosphorylation, recent studies have revealed
that the kinases mentioned above are also associated with
APP cleavage. For instance, GSK3, especially GSK3α,
involves in APP processing, and the production of Aβ
peptides can be significantly reduced by interfering APP
cleavage at the gamma-secretase step with lithium, a
GSK3 inhibitor [42]. Inhibition of GSK3α may thus offer a
new approach to reduce the formation of both amyloid
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plaques and NFTs. CDK5-p25 can also modulate the pro-
duction of Aβ by increasing APP phosphorylation at
Thr668 [43].

Phosphatases of tau
It has been identified that a number of phosphatases,
such as protein phosphatase (PP) 1, PP2A, PP2B and
PP2C, could potentially drive the reverse and depho-
sphorylation of tau. Their activities were found to be
decreased about 20-30% in AD brain [44].
PP2A is co-localized with tau and microtubules in the

brain and is apparently the most active enzyme in
dephosphorylation of tau. In AD brain, both the expres-
sion and activity of PP2A are decreased. Tau can be ab-
normally hyperphosphorylated if I1PP2A, a 249-amino
acid long endogenous inhibitor of PP2A, is increased
[45]. One recent study reported that PP2A could be
inactivated via phosphorylation of its catalytic subunit at
Y307. This PP2A inactivation can be mediated by Aβ
deposition or estrogen deficiency in the AD brain. More-
over, the inactivation of PP2A consequently compromise
dephosphorylation of abnormally hyperphosphorylated
tau, therefore lead to neurofibrillary tangle formation [46].

Other post-translational modification of tau
In addition to tau phosphorylation, different types of
post-translational modifications including acetylation,
glycosylation, glycation, prolyl-isomerization, cleavage
or truncation, nitration, polyamination, ubiquitination,
sumoylation, oxidation and aggregation can regulation
the function of tau [47-49]. Of these modification, tau
acetylation is of great importance for tauopathy. Tau
acetylation has recently been found to prevent p-tau
from degradation and modulate the activities of kin-
ase, implicating a central role in tauopathy [50].

The toxicity of tau
NFTs are considered to be responsible for the toxic
effects of tau in AD for a long time, but recent findings
suggest that this might not be all the fact. Santacruz
et al. by using a strain of mice bearing a mutant human
tau gene combined with regulatory sequences that
allowed it to be turned off by the antibiotic doxycycline,
demonstrated that the animals’ memories are improved
and the neuronal losses are halted when the mutant tau
gene is switched off, but with no effect on NFT accumu-
lation [51]. One study also showed that inhibition of tau
phosphorylation is able to prevent the typical motor
deficits and markedly reduce soluble aggregated
hyperphosphorylated tau in the tau transgenic mice
[52], suggesting that PHF or other soluble lower-mass
hyperphosphorylated tau aggregates are neurotoxic.
Meanwhile, increasing evidence has revealed that tau-
mediated neurodegeneration may result from the
combination of gain-of-toxic function acquired by the
aggregates or their precursors and the detrimental
effects that arise from the loss of the normal function
(s) of tau in the disease state [53,54].

Propagation of tau pathology
NFTs have a hierarchical pattern of accumulation in vul-
nerable neurons. The neurons in layer II of the entorh-
inal cortex (EC-II) are considered as the first to be
affected. Later, the lesions appear to spread to limbic
and association cortices [55]. However, the exact mecha-
nism involved in the pattern of propagation is incom-
pletely understood. Recently, several studies have showed
that the intracellular protein aggregates of tau can spread
by a prion-like mechanism in the brain. The extracellular
tau aggregates can enter cells through endocytosis and
trigger the misfolding and aggregation of intracellular tau
in cell culture experiments [56-58]. In another study [59],
de Calignon et al. generated a transgenic mouse model in
which overexpression of human mutant tau (P301L) is
restricted to EC-II (named rTgTauEC mouse) to investi-
gate the disease progression. They found that tau path-
ology progresses from the EC neurons expressing the
human transgene to the nearby neurons, and then to neu-
rons located downstream in the synaptic circuit, for in-
stance the dentate gyrus, hippocampus, and cingulate
cortex [59]. These findings provide useful information for
understanding the hierarchical patterns of tau-mediated
neurodegeneration in AD.

Tau and Aβ
Both senile plaques and NFTs are predominant patho-
logic characteristics of AD. Connections between Aβ
toxicity and tau pathology have repeatedly been pro-
posed. However, the underlying mechanisms have not
yet been fully established, and this remains one of the
most challenging conundrums of AD research.
It is increasingly recognized that reduction in tau

levels can alleviate memory loss in the AD mouse model.
Mucke and his colleagues found that decreasing en-
dogenous tau prevents behavioral deficits in transgenic
mice with mutant APP, without altering their high Aβ
levels. Tau reduction also protected both APP transgenic
AD model and nontransgenic mice against excitotoxi-
city. The absence of tau somehow prevents the beha-
vioral deficits that would otherwise occur in animals
[60]. New lines of investigation support the notion that
tau malfunction, in addition to being independently cap-
able of producing neurodegeneration even in the absence
of Aβ deposits or other pathological events, could be a
key mediator of neurodegeneration in response to other
upstream events, including Aβ-induced neurotoxicity [20].
It has been shown that Aβ can bind to tau and form a
stable complex both in vitro and in AD brain [61]. The
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complex enhances tau phosphorylation via GSK-3β signal-
ing, suggesting that Aβ lies in the upstream of tau path-
ology. This has been further supported by the study of
Bolmont et al. in which intracerebral injection of brain
extracts from APP transgenic mice induced the formation
of NFT in mutant tau transgenic mice [62]. The mutant
tau and APP double transgenic mice exhibit more signifi-
cant increasing in tau pathology than the mutant tau
transgenic mice predominantly in the area with high amyl-
oid burden, while the double transgene do not lead to up-
regulation of amyloid load as compared with the mutant
APP transgenic mice. Aβ and phosphorylated-tau have
been observed to be co-localized in synaptic terminals of
AD brains [63]. Aβ can result in the transcriptional
up-regulation of a gene named dual-specificity tyrosine-
regulated kinase 1A (DYRK1A), further leading to tau
phosphorylation [64]. Moreover, microtubule disassembly,
one of pathological functions of tau, is initiated by prefi-
brillar Aβ [18]. Also, tau is required for the cytotoxicity of
hybrid oligomers formed by Aβ3(pE)–42 and Aβ1–42 [65].
Recent studies showed that tau deficiency in tau-/- mice
and truncated tau in transgenic mice both lead to disrup-
tion of postsynaptic targeting of Fyn kinase and attenu-
ation of Aβ toxicity, indicating that tau is a mediator of
Aβ toxicity [66].
All these suggest that Aβ may drive tau pathology, and

tau can mediate Aβ toxicity, implicating a cooperation
between Aβ and tau for AD pathology. In this regard, it
has been demonstrated that Aβ and tau could synergis-
tically impair mitochondrial respiration in a triple trans-
genic Alzheimer's disease mice [67,68]. However, the
exact mechanisms underlying such an interaction of Aβ
and tau need further investigation.

Conclusion
As a most common neurodegenerative disorder, AD char-
acterized by hyperphosphorylation of tau protein and
formation of NFTs are collectively termed “tauopathy”.
This review highlights the recent advances in tau-
mediated AD pathology, including tau hyperphosphoryla-
tion, propagation of tau pathologyand the relationship
between tau and Aβ. Tau plays an unequivocal role in
AD, but the mechanisms of tau that induce dysfunction
and death of neurons remain incompletely understood.
Future researches can focus on the precise mechanisms of
tau involved in the disease pathogenesis, which may
eventually lead to the development of new therapeutic
strategies for tauopathies of AD.
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