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Main text

The disruption of protein folding homeostasis in moto-
neurons (MNs) and the accumulation of protein aggre-
gates are some of the main molecular hallmarks of 
amyotrophic lateral sclerosis (ALS). Evidence from spo-
radic and familial ALS (fALS) patients and from ALS 

models suggests that protein aggregation directly par-
ticipates in neurodegeneration. In turn, the loss of MN 
homeostasis triggers a coping mechanism, the integrated 
stress response (ISR) [1]. The ISR is initiated by four inde-
pendent stress-sensing kinases, each of them activated by 
distinct stresses: protein kinase R (PKR) by double-strand 
RNA, protein kinase RNA-like endoplasmic reticulum 
kinase (PERK) by protein misfolding at the endoplas-
mic reticulum (ER), general control nonderepressible 
2 (GCN2) by nutrient starvation, and heme-regulated 
inhibitor (HRI) by heme deprivation, mitochondrial 
stress and proteasome deficiency. Once activated, they 
phosphorylate the alpha subunit of eukaryotic initia-
tion factor 2 (eIF2a), leading to (1) a general reduction in 
translation of most mRNAs and (2) an enhanced transla-
tion of transcripts encoding stress response factors, like 
the ATF4 transcription factor. While these gene expres-
sion changes are in principle neuroprotective, under 
chronic stress the ISR can drive apoptosis [1]. In most 
ALS studies, the ISR kinase PERK was proposed as the 
main ISR trigger. Importantly, in ALS animal models ISR 
activation is most prominent in fast-fatigable MNs, the 
most vulnerable MN subpopulation [2]. While pharma-
cological ISR activators or suppressors have been devel-
oped to treat ALS [3], it is still unclear what stress(es) 
drive ISR activation in ALS and which is the most robust 
therapeutic strategy.
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Mutations in the SOD1 gene cause fALS and SOD1 
protein aggregation. We previously developed a neuronal 
ALS model based on the expression of the mutant allele 
SOD1 G93A, that recapitulates ISR activation and where 
the risk of neuronal death can be quantitatively scored. 
In this model, the ISR downstream inhibitor (ISRIB) [4] 
tuned neuronal ISR and enhanced neuronal survival [5]. 
Intriguingly, ISRIB also mitigated a distinct proteostatic 
mechanism, the unfolded protein response [5]. The neu-
roprotective effect of ISR inhibition was not recapitulated 
by PERK inhibition [5], suggesting that ISR stress-sensing 
kinase(s) other than PERK trigger ISR activation in ALS.

To investigate if ISR modulation affects the localization 
and neurotoxicity of mutant SOD1 protein, we explored 
the effect of ISRIB on SOD1 clustering. Overexpres-
sion  of mutant  SOD1 in HEK293 cells led to protein 
cluster formation in approximately 50% of cells (Fig. S1). 
Using a semi-automated image analysis tool (FociCount) 
(Fig.  S2), we quantitatively confirmed that ISRIB pre-
vented mutant SOD1 clustering (Fig. 1a, Fig. S3a) with-
out changing SOD1 steady-state levels (Fig. S3b).

By relieving the translational inhibition imposed by 
eIF2a phosphorylation, ISRIB prevents the formation 
of stress granules (SGs), messenger ribonucleoprotein 
assemblies formed upon abrupt translational shutdown 
[4]. Since SGs contribute to the aggregation of FUS and 
TDP43 ALS neurotoxic proteins [6], we asked whether 
SOD1 foci were related to SGs. Mutant SOD1 failed 
to promote the clustering of the SG marker G3BP2 in 
HEK293 cells (Fig. S3c). Moreover, SOD1 clusters did not 
colocalize with arsenite-induced SG foci, confirming that 
SOD1 foci are not SG-related (Fig. S3c). Thus, basal or 
the stress-induced ISR is necessary for SOD1 clustering.

To identify the ISR kinase(s) required for SOD1 clus-
tering, we generated CRISPR-Cas9 gene editing con-
structs that prevent the expression of human ISR kinases 

(Fig. S4c, d) and analyzed their effect on WT and mutant 
SOD1 clustering. Surprisingly, WT and mutant SOD1 
clustering ability was affected by distinct ISR kinases. In 
the case of WT SOD1, PERK gene editing increased the 
fraction of SOD1-expressing cells containing foci (Fig. 1b 
and Fig. S5). Differently, GCN2 gene editing strongly 
reduced mutant SOD1 clustering ability (Fig. 1b and Fig. 
S6). These effects were indeed due to the loss of their 
kinase activity since two GCN2 or PERK kinase inhibi-
tors: PERKib (GSK2606414) and GCN2ib (GCN2iB) 
had the same effect. As anticipated, PERKib prevented 
PERK autophosphorylation/activation and ATF4 transla-
tion in cells treated with the ER stress pharmacological 
inducer thapsigargin (Thap) (Fig. S4b). Similarly, upon 
treatment with the histidine analog histidinol (HisOH), 
GCN2ib prevented GCN2 autophosphorylation and the 
ensuing translation of ATF4 protein. These effects were 
specific  since neither of the inhibitors prevented the 
activation of the non-cognate ISR kinase (Fig. S4b). In 
line with the CRISPR/Cas9-based observations, PERKib 
enhanced the appearance of WT SOD1 foci and tended 
to increase the number of cells with SOD1G93A foci 
(Fig. 1c, Fig. S7a), while GCN2ib strongly reduced SOD1 
clustering (Fig. 1d, Fig. S7b).

Next, we tested if PERK and GCN2 inhibition affected 
SOD1 distribution in primary neurons. In neurons over-
expressing WT SOD1, the protein was evenly distributed 
through soma and processes; quite differently, mutant 
SOD1 protein was discontinuously distributed through 
soma, dendrites, and axons. Treatment of WT SOD1-
expressing neurons with PERKib subverted the protein 
distribution into a discontinuous pattern (Fig. S8), while 
blocking the ISR with ISRIB or GCN2ib restored the 
homogeneous distribution of mutant SOD1 (Fig.  1e). 
These results put forward an unanticipated role of GCN2 
in mutant SOD1 behaviour.

Fig. 1 a SOD1 immunofluorescence in HEK293 cells overexpressing mutant SOD1; percentage of cells with SOD1 foci. b HRI, PKR, PERK or GCN2 
knock‑down effect on the percentage of HEK293 cells with SOD1 foci. HEK293 cells co‑transfected with plasmids expressing SOD1 (WT or G93A) 
and the Cas9 endonuclease with gRNAs targeting HRI, PKR, PERK or GCN2 or a non‑targeting gRNA (control). c, d PERK and GCN2 pharmacological 
inhibition (PERKib, GCN2ib) effect on SOD1 (WT, G93A) foci formation in HEK293 cells. FociCount SOD1 foci analysis (Fig. S2), 3 independent 
experiments, ≥ 100 cells/condition/experiment, one‑way ANOVA and Sidak´s post-hoc test. e SOD1 and MAP2 immunofluorescence in primary 
neurons expressing mutant SOD1 +/‑ISRIB or GCN2ib ; clustered distribution pattern quantification. One‑way ANOVA and Sidak´s post hoc test, 3 
independent experiments, > 25 neurons/condition/experiment. f Longitudinal tracking of neurons expressing mCherry (Ch) and Ch‑tagged mutant 
SOD1 (G93ACh). Green arrows point to neurons tracked till the end of the experiment. Red arrows indicate neurons that died before. g Cumulative 
death hazard of neurons co‑expressing G93ACh or Ch and gRNAs‑containing CRISPR/Cas9 plasmids for GCN2 targeting (GCN2g1, GCN2g2) 
or px458 empty vector (ctrl). h Cumulative death hazard of neurons expressing G93ACh +/‑ GCN2 pharmacological inhibitor (A92). Cox Proportional 
Hazard analysis; pooled data from 3–5 experiments (Tables S1‑S2). n; number of neurons. i EMG activations in TA from WT and G93A mice 
+/‑ GCN2ib (10 and 12 weeks of age). j Longitudinal EMG analysis in TA and SOL from WT and G93A mice +/‑ GCN2ib. Red/green boxes highlight 
differences in GCN2ib‑treated G93A mice. Two‑way Repeated Measures (RM) ANOVA. Statistic analysis details in Additional file 1. Supplementary 
Statistical Analysis. Median and 25th ‑75th percentile (“+”indicates outlier). k–m Effect of GCN2 inhibition on clinical score, motor phenotype, 
and weight gain. WT n = 4 mice, WT + GCN2ib n = 6 mice, G93A n = 6 mice, G93A + GCN2ib n = 6 mice. Two‑way RM ANOVA and Tukey´s post-hoc 
test. Statistic analysis details in Additional file 1. Supplementary Statistical Analysis. *P < 0.05, **P < 0.01, **P < 0.001

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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The role of GCN2 in mutant SOD1-induced neurode-
generation was analyzed by longitudinal survival analy-
sis (Fig.  1f ) [5]. We generated and validated constructs 
expressing the endonuclease Cas9 with two different 
guide RNAs (gRNAs) targeting the coding sequence of 
rat GCN2 (Fig. S4e, f ). Then, we co-transfected primary 
neuronal cultures with these constructs (or a control 
plasmid expressing a non-targeting gRNA) and plas-
mids expressing a recombinant version of SOD1G93A 
bearing a C-terminal mCherry tag (G93ACh) [5]. As an 
additional control, CRISPR-Cas9 constructs were co-
transfected with a plasmid expressing mCherry (Ch). 
As shown in Fig.  1g, GCN2 knock-down with two dif-
ferent gRNAs enhanced the survival of neurons overex-
pressing G93ACh, while it did not affect the survival of 
Ch-expressing neurons (Fig. S9a). Accordingly, pharma-
cological inhibition of GCN2 (Fig. S9b) reduced the risk 
of death of G93ACh-expressing neurons (Fig. 1h) and, to 
a lower extent, the risk of death of Ch-expressing neu-
rons (Fig. S9c). Therefore, GCN2 plays an important role 
in mutant SOD1 neuronal distribution and toxicity.

Finally, we evaluated the therapeutic potential of GCN2 
inhibition by treating the  SOD1G93A transgenic ALS 
mouse model with a pharmacological GCN2 inhibitor. 
The small molecule GCN2ib was intraperitoneally deliv-
ered to WT and G93A male mice at 10  mg/kg (twice 
a day) from 6 to 16 weeks of age. We tracked the den-
ervation process by detecting spontaneous activation 
potentials (SAPs) through electromyographic (EMG) 
recordings. EMG analysis documents the higher vulner-
ability of fast-fatigable MNs in the tibialis anterior (TA, 
a muscle mainly innervated by fast-fatigable MNs) when 
compared to slow-resistant MNs (more represented in 
the soleus, SOL). Starting at 10 weeks of age, a signifi-
cant number of SAPs was detected in G93A TA muscles 
compared to WT mice. GCN2ib treatment delayed the 
appearance of SAP in TA muscles of G93A mice, which 
only became significant at 14 weeks. A similar trend was 
observed in SOL recordings from G93A mice. No effect 
in EMG recordings was found in GCN2ib-treated WT 
mice (Fig.  1i, j) (Additional file  1:  Supplementary Sta-
tistical Analysis in Fig.  1j). Accordingly, GCN2ib treat-
ment delayed the clinical score and the motor phenotype 
of G93A mice until 14 weeks old (Fig.  1k, l; Fig. S10). 
Moreover, GCN2ib treatment increased the weight gain 
of both WT and G93A mice (Fig. 1m; Fig. S10). To evalu-
ate if GCN2 inhibition enhanced survival of spinal cord 
MNs, choline acetyltransferase-positive (ChAT+) neu-
rons (MNs) were analyzed in independent WT and G93A 
mouse littermates treated and sacrificed at 12 weeks of 
age. In GCN2ib-treated G93A mice the number of MNs 
tended to be higher than that in vehicle-treated G93A 
mice (Fig. S11). Altogether, these results indicate that 

GCN2 pharmacological inhibition delays disease pro-
gression in ALS mice.

Our findings support the notion that stress-induced 
ISR contributes to the neurotoxicity of mutant SOD1 
proteins. Indeed, ISR activation facilitates ALS neuro-
toxicity in other fALS experimental models. In the case 
of pathological (GGG GCC ) expansions in the C9ORF72 
intron, repeat-associated non-AUG translation of dipep-
tide repeats (DpR) is enhanced by ISR activation [7]; in 
turn, DpR peptides trigger the ISR. In the case of TDP43 
or FUS fALS, ISR-induced SGs act as “seeds” for protein 
aggregation, promoting cytosolic toxicity and/or nuclear 
loss-of-function neurotoxicity [6]. Similarly, our work 
demonstrates that ISR inhibition changes the behavior/
toxicity of fALS neurotoxic proteins, dampening the ini-
tial trigger for motoneuron death.

Remarkably, PERK inhibition promotes WT (but not 
mutant) SOD1 clustering. Tampering with basal or 
ALS-induced PERK activity may alter ER homeostasis, 
affecting WT SOD1 redox regulation and promoting its 
aggregation [8]. However, PERK inhibition [5] cannot 
improve the survival of mutant SOD1-expressing neu-
rons and fails to improve disease progression in trans-
genic mutant SOD1 mice [9], indicating that PERK is not 
the main/sole driver of ISR in ALS [8].

GCN2 is activated by uncharged tRNAs or by ribosome 
stalling. As a plausible trigger of these stresses, low amino 
acid levels have been documented in serum and cerebro-
spinal fluid of ALS patients. Moreover, glucose hypome-
tabolism induces GCN2 activation and neurotoxicity in 
a C9ORF72 model [10], suggesting that GCN2 inhibition 
could be therapeutic for different ALS subtypes.

The discovery of GCN2 as a key determinant of mutant 
SOD1 behavior and neurotoxicity opens up a new per-
spective, where understanding how ISR determines pro-
teostasis, and exploring GCN2 neuroprotective effect in 
other ALS models will serve to harness its therapeutic 
potential.
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