
Phillips and Picard ﻿
Translational Neurodegeneration           (2024) 13:46  
https://doi.org/10.1186/s40035-024-00435-8

REVIEW Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Translational
Neurodegeneration

Neurodegenerative disorders, metabolic 
icebergs, and mitohormesis
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Abstract 

Neurodegenerative disorders are typically “split” based on their hallmark clinical, anatomical, and pathological features, 
but they can also be “lumped” by a shared feature of impaired mitochondrial biology. This leads us to present a sci-
entific framework that conceptualizes Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis 
(ALS), and Huntington’s disease (HD) as “metabolic icebergs” comprised of a tip, a bulk, and a base. The visible tip con-
veys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each dis-
order. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may 
be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, 
activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, 
dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors spe-
cific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite 
of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally 
impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular 
neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recali-
brated by activating “mitohormesis”, which is optimally achieved using strategies that facilitate a balanced oscillation 
between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent 
preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.

Keywords  Alzheimer’s disease, Parkinson’s disease, Amyotrophic lateral sclerosis, Huntington’s disease, Splitting, 
Lumping, Mitochondria, Mitotypes, Hormesis, Mitohormesis

Background

The cause is secret, but th’ effect is known.
- Ovid [1].

Despite decades of investment and research, neurode-
generative disorders are becoming increasingly common. 
As of 2017, the global prevalence of Alzheimer’s disease 
(AD) and other dementias stood at 45 million people 
[2]. Another 8.5 million people were living with Parkin-
son’s disease (PD) [2]. Both AD and PD are doubling in 
prevalence every 20–30 years [3, 4]. Amyotrophic lateral 
sclerosis (ALS) afflicts 4.1–8.4 of every 100,000 people, 
or roughly 500,000 people globally [5]. The prevalence of 
ALS is increasing by approximately 70% every 25  years 
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[6]. Lastly, Huntington’s disease (HD) afflicts 4.9 of every 
100,000 people, or roughly 400,000 people globally [7]. 
The prevalence of HD increased by approximately 80% in 
the last 35 years. Although much of the rise in prevalence 
is explained by earlier diagnoses, population aging, and 
population growth, there may be a significant contribu-
tion from modifiable environmental factors [8, 9]. Unless 
we stem this rising tide, the ensuing socio-economic 
impact is poised to exceed the management capacity of 
many healthcare systems.

Splitting and lumping
Rather than investing further resources into lines of 
research that have (so far) failed to stem the tide, it is 
worth considering how our chosen methods of clas-
sifying neurodegenerative disorders influence how we 
approach and treat them. In 1857, Darwin distinguished 
between two kinds of individuals, whom he called “split-
ters” and “lumpers” [10]. Splitters are people who make 
classifications based on distinct characteristics, which 
leads to multiple classification schemes that reflect these 
distinctions. Lumpers, by contrast, make classifications 
in a broad manner, which allows for ranges of charac-
teristics to be classified into fewer entities. Ideally, a 

compromise between splitting and lumping might con-
stitute the best approach to conceptualizing many of the 
medical disorders encountered in healthcare. However, 
due to a lengthy history of medical reductionism, the bal-
ance is currently heavily tilted towards splitting, which 
leads to difficulties when it comes to “putting the patient 
back together” [11].

Neurodegenerative disorders are typically split based 
on their hallmark clinical, anatomical, and pathological 
features (Fig.  1) [12]. Splitting enables clinical diagnosis 
and management by identifying common clinico-patho-
logical patterns, conveying prognostic information, and 
facilitating symptom-based treatments. However, it leads 
to several problems. First, splitting does not sufficiently 
emphasize the broader array of neurological symptoms 
in these disorders, particularly the non-cognitive symp-
toms of AD [13, 14], the non-motor symptoms of PD 
[15, 16], and the cognitive and behavioural symptoms 
of ALS and HD [17, 18]. Many of these symptoms arise 
from neurodegenerative changes outside the hallmark 
regions [14, 16, 19, 20]. Second, splitting does not explain 
why degenerative changes frequently occur in non-neu-
rological tissues, particularly the skeletal muscles and 
heart [21–24]. We lack an understanding as to how these 

Fig. 1  Splitting perspective of neurodegenerative disorders. AD Alzheimer’s disease, VD vascular dementia, DLB dementia with Lewy bodies, FTD 
frontotemporal dementia, PD Parkinson’s disease, MSA multiple systems atrophy, PSP progressive supranuclear palsy, CBD corticobasal degeneration, 
ALS amyotrophic lateral sclerosis, PLS primary lateral sclerosis, PMA progressive muscular atrophy, HD Huntington’s disease, TDP-43 transactive 
response DNA binding protein 43, HTT Huntingtin
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disorders manifest outside the nervous system. Third, 
splitting biases treatment efforts towards targeting and 
suppressing the hallmark symptoms and aggregates [25, 
26]. However, these allopathic approaches have not pro-
duced clinically meaningful outcomes, and may lead to 
harm [27]. Essentially, splitting portrays neurodegenera-
tive disorders as focal neurological disorders amenable 
to targeted, suppressive treatments, but fails to address 
their etiology and multisystemic nature.

Alternatively, this splitting paradigm can be inte-
grated with a lumping perspective that emphasizes a 
shared feature of impaired mitochondrial biology, which 
has been documented across a wide range of neurode-
generative disorders, including AD, PD, ALS, and HD 
(Fig. 2) [28–30]. Although traditionally described as cell 
“powerhouses”, mitochondria are more comprehensively 
described as cell “processors” that coordinate energy and 
metabolism throughout the body [31, 32]. Distributed 
mitochondrial networks sense and communicate bioen-
ergetic states to ensure that cellular behaviours match 
energy availability and demands [32]. Mitochondria also 

coordinate an array of processes, including epigenetic 
modifications, adenosine triphosphate (ATP) produc-
tion, reactive oxygen species (ROS) emission, hormone 
biosynthesis, and neurotransmitter metabolism [31–34]. 
Moreover, in the same way that organisms are composed 
of highly specialized organs and cell types that perform 
complementary functions, recent evidence has revealed 
a diverse family of cell-specific mitochondrial pheno-
types or “mitotypes” throughout the brain, each of which 
is energetically and metabolically optimized to meet the 
requirements of a particular subset of neurons and brain 
regions [35–38]. Based on this emerging understand-
ing of mitochondria, a lumping perspective recognizes 
the hallmark clinical, anatomical, and pathological fea-
tures of each neurodegenerative disorder as offshoots of 
a common bioenergetic and metabolic etiology, which 
maximally impacts subsets of mitotypes abundant in the 
afflicted brain regions. Lumping explains the diversity 
of symptoms and degenerative changes documented in 
other areas of the nervous system, the skeletal muscles, 
and heart, as all these tissues are rich in mitochondria. 

Fig. 2  Lumping perspective of neurodegenerative disorders. AD Alzheimer’s disease, PD Parkinson’s disease, ALS amyotrophic lateral sclerosis, HD 
Huntington’s disease
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It also implies that approaches geared towards allopathic 
targeting and suppression are of limited benefit in the 
setting of impaired mitochondrial biology, which funda-
mentally requires a restorative approach [9, 39]. Essen-
tially, lumping neurodegenerative disorders by their 
impaired mitochondrial biology enables them to be con-
ceptualized as multisystemic disorders in need of multi-
systemic, restorative therapies.

Perspective
We will discuss how the current splitting paradigm can 
be integrated with a lumping perspective, which con-
verges upon impaired mitochondrial biology as the 
etiology and core disease in the most common neuro-
degenerative disorders. This integration will expand 
upon previous similar proposals by providing a scientific 
framework that portrays how this common (lumped) dis-
ease process drives the hallmark (split) features of each 
disorder. This framework will then be utilized to identify 
and discuss preventative and therapeutic strategies that 
show promise in repairing and recalibrating mitochon-
drial biology. Supportive evidence will be mostly derived 
from human studies, emphasizing interventional studies 
where possible.

Neurodegenerative disorders as metabolic 
icebergs
Each neurodegenerative disorder may be conceptualized 
as a “metabolic iceberg” comprised of a tip, a bulk, and a 
base (Fig. 3). The hallmark clinical, anatomical, and path-
ological features are illustrated in the tip, which emerge 
as downstream effects of the core disease, impaired mito-
chondrial biology, in the bulk, which in turn is triggered 
by a particular suite of environmental and genetic factors 
in the base. This section will outline a comprehensive sci-
entific framework for conceptualizing the pathogenesis of 
any neurodegenerative disorder. Subsequent sections will 
apply this framework to the common neurodegenerative 
disorders that plague modern healthcare, specifically AD, 
PD, ALS, and HD.

Tip of the iceberg
The tip of the metabolic iceberg conveys the clinical, 
anatomical, and pathological features for each neuro-
degenerative disorder, the most visible of which are the 
“hallmark” features. The highest and most visible level, 
the level of the organism, encapsulates the hallmark 
neurological symptoms for each disorder, which are diag-
nosed and managed by clinicians. The middle level, the 
level of body systems, organs, and tissues, describes the 
hallmark neurodegenerative regions, which may be iden-
tified on neuroimaging and occasionally addressed with 
surgical techniques [40, 41]. The lowest level, the level of 

the cell, comprises the hallmark neuronal protein aggre-
gates, which may be identified by circulating biomarkers 
and are typically addressed with targeted, suppressive 
approaches [25, 26].

Bulk of the iceberg
The bulk of the metabolic iceberg represents impaired 
mitochondrial biology throughout the body, which 
lies below the clinical waterline and remains relatively 
unexplored. Impaired mitochondrial biology may be 
subdivided into several levels, with several facets attrib-
uted to each [31]. The highest and most complex level 
encapsulates impaired cellular metabolism, which maxi-
mally impacts neurons in the hallmark neurodegenera-
tive regions [42–45], but also affects other metabolically 
active non-neuronal cells throughout the brain and body, 
such as glia and myocytes [46–48]. The second level 
describes impaired cell-specific mitotypes (characteristics 
of mitochondria relevant to a specific cell type), such as 
an altered mitochondrial content and distribution within 
neurons. The third level comprises impaired mitochon-
drial behaviours (goal-directed processes involving the 
whole mitochondrion), which include disruptions in 
mitochondrial fusion and fission, motility, biogenesis 
(mitogenesis), and autophagy (mitophagy). The fourth 
level describes impaired mitochondrial functions (inte-
grated processes involving multiple mitochondrial com-
ponents), such as decreased ATP synthesis, increased 
ROS emission, dysregulated calcium regulation, and 
altered steroidogenesis. The fifth level comprises 
impaired mitochondrial activities (processes involving 
individual mitochondrial components), which include 
reduced enzymatic activities in the tricarboxylic acid 
(TCA) cycle and electron transport chain (ETC). The 
lowest level denotes impaired mitochondrial features 
(static molecular components), such as altered mito-
chondrial shape and size, as well as damage to cristae and 
mitochondrial DNA (mtDNA).

Base of the iceberg
The base of the metabolic iceberg is represented by envi-
ronmental and genetic factors that damage mitochondria 
or force maladaptive adjustments in their biology. Obser-
vational evidence in humans implicates environmental 
factors related to modern lifestyles as the key drivers of 
impaired mitochondrial biology, particularly in sporadic 
AD, PD, and ALS [8, 9]. First, substantial evidence impli-
cates modern industrial toxins, such as heavy metals, air 
pollutants, pesticides, and chemicals, as major contribu-
tory factors to the neurodegenerative process [8]. These 
toxins accumulate in mitochondria and induce oxidative 
damage [49]. Second, growing evidence implicates the 
modern dietary lifestyle, which is characterized by a high 
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intake of processed, carbohydrate-rich foods combined 
with multiple daily meals and snacks [9]. This dietary 
lifestyle is evolutionarily unprecedented and leads to a 
combination of chronic energy overload and insufficient 
recovery time that drives oxidative damage in mitochon-
dria [50]. Third, modern cognitive, physical, and psychoso-
cial behaviours lead to deficiencies in authentic cognitive, 
physical, and psychosocial interactions, as well as dis-
rupted sleep and rest states. These behavioural factors 
get “under the skin” through an array of psychobiological 
pathways that energetically converge upon mitochondria 
[51]. Interventional evidence derived from human, ani-
mal, and cell models also demonstrates that an array of 
genetic factors can drive impaired mitochondrial biology 
and trigger familial forms of AD, PD, and ALS, as well as 

HD [52–55]. Most of these are gene mutations, which 
express toxic protein products that directly damage mito-
chondria. However, a loss of normal protein function can 
also compromise mitochondria by forcing maladaptive 
adjustments in their biology.

Iceberg pathogenesis
The metabolic iceberg framework conveys a comprehen-
sive overview of the pathogenesis of each neurodegen-
erative disorder. This process commences at the base, 
proceeds through the bulk, and eventually surfaces at the 
tip. Based on this framework, a detailed understanding of 
the tip enables clinical diagnosis and management, but it 
provides limited tractable information to guide preven-
tion or therapy. Conversely, an understanding of the bulk 

Fig. 3  The metabolic iceberg view of neurodegenerative disorders. This framework conveys the pathogenesis of each neurodegenerative disorder, 
which commences at the base, proceeds through the bulk, and eventually surfaces at the tip
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and the base sheds light on strategies that may act in the 
interest of prevention and therapy by inducing “salugen-
esis” [39].

Neurodegenerative disorders commence at the base. 
Chronic exposure to a particular “suite” of environmen-
tal and genetic factors damages mitochondria or forces 
maladaptive adjustments, which elicits a particular tra-
jectory of impaired mitochondrial biology that eventually 
surfaces with the hallmark features of AD, PD, ALS, or 
HD. Under the metabolic iceberg framework, sporadic 
AD, PD, and ALS are primarily driven by environmental 
factors. Many of these factors are broadly implicated in 
the etiology of multiple disorders, such as lead exposure 
in AD, PD, and ALS [56–58]. Others are more specifi-
cally linked to the etiology of a particular disorder, such 
as air particulate matter exposure in AD [56], rotenone 
exposure in PD [57], and electrical exposure in ALS [58]. 
Familial forms of AD, PD, and ALS, and all cases of HD, 
are primarily driven by genetic factors that impair mito-
chondrial biology. Most of these are gene mutations, 
which act as highly specific triggers of a particular disor-
der [52–55].

Neurodegenerative disorders proceed through the 
bulk for years or decades. During this time, the suite of 
instigating factors induces multifaceted, multisystemic 
impairments in mitochondrial biology that maximally 
impact subsets of mitotypes abundant in the eventual 
hallmark neurodegenerative regions particular to AD, 
PD, ALS, or HD. Mitochondria in these regions begin 
to exhibit impaired biology on multiple levels, including 
decreased ATP production and increased ROS emission 
leading to oxidative damage [59], which may represent 
the earliest event in pathogenesis [60]. Given that mito-
chondria constitute the main intracellular source of ROS 
[61], mitochondrial oxidative damage elicits an upsurge 
in ROS emission, which may be followed by a vicious 
cycle of ROS-induced ROS release that drives further 
oxidative damage [62]. The ROS overflow also triggers 
neuroinflammation and lysosome dysfunction, both of 
which can, in turn, induce further mitochondrial dam-
age [63–65]. Depending on the particular suite of initi-
ating environmental and genetic factors, the trajectory 
of impaired mitochondrial biology maximally impacts 
subsets of mitotypes abundant in the hallmark neuro-
degenerative regions particular to AD, PD, ALS, or HD, 
which leads to a relatively pronounced failure of energy 
and metabolism in these regions. This is consistent with 
findings from positron emission tomography (PET) stud-
ies showing that deficits in mitochondrial energy metab-
olism occur early in the hallmark regions, often years 
before the clinical symptoms [42–45].

The hallmark features of AD, PD, ALS, or HD surface 
at the tip. These features represent a late-stage effect 

that follows years or decades of impaired mitochon-
drial biology in the hallmark neurodegenerative regions. 
Perhaps controversially, the metabolic iceberg largely 
positions the hallmark neuronal protein aggregates as 
downstream consequences of impaired mitochondrial 
biology. This conceptualization is supported by studies 
demonstrating that mitochondria-mediated oxidative 
stress both precedes and promotes the deposition of the 
aggregates [66–71]. However, the iceberg framework can 
also accommodate evidence that the aggregates can, in 
turn, damage mitochondria in a reciprocal manner [72]. 
Beyond the hallmark regions, mitochondria in other 
areas of the nervous system are impaired, which leads to 
the broader array of neurological symptoms observed in 
these disorders, including the non-cognitive symptoms 
of AD [13, 14], the non-motor symptoms of PD [15, 16], 
and the cognitive and behavioural symptoms of ALS and 
HD [17, 18]. Impaired mitochondrial biology outside the 
nervous system also leads to degenerative changes in the 
skeletal muscles, heart, and other metabolically active 
tissues, followed by more generalized symptoms such as 
muscle wasting and weight loss [73].

AD as a metabolic iceberg
AD may be conceptualized as a metabolic iceberg, with 
the hallmark clinical, anatomical, and pathological fea-
tures emerging as late-stage effects of impaired mito-
chondrial biology (Fig.  4). We propose that chronic 
exposure to a particular suite of environmental and 
genetic factors elicits a trajectory of impaired mitochon-
drial biology that maximally impacts subsets of mito-
types abundant in the hippocampus, entorhinal cortex, 
and cerebral cortex, which eventually surfaces as the hall-
mark features of AD.

AD: base of the iceberg
Human observational studies implicate environmental 
factors related to modern lifestyles as primary drivers 
of impaired mitochondrial biology in AD [8, 9]. Mod-
ern industrial toxins include heavy metals (such as alu-
minum, lead, copper, and arsenic), air pollutants (such as 
particulate matter and ozone), pesticides (such as organ-
ochlorines and organophosphates), flame retardants, and 
plasticizers [56]. The modern dietary lifestyle is the pri-
mary driver for the rising rates of mid-life obesity, type 
2 diabetes, and hypertension, each of which increases 
the risk of developing AD [74]. Alcohol is an established 
risk factor [75]. Fewer years of formal education, physi-
cal inactivity, depression, chronic social isolation, and 
sleep disturbances are also associated with an increased 
risk of developing AD [74, 75]. Beyond these environ-
mental factors, a number of genetic factors link impaired 
mitochondrial biology to the pathogenesis of AD [52]. 
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Apolipoprotein E4 (APOE4), a major genetic risk factor 
for AD, targets and disrupts mitochondrial ATP produc-
tion and ROS emission [76]. The mutant amyloid precur-
sor protein accumulates in the protein import channels 
of mitochondria, where it inhibits complex IV activity 
and increases ROS emission [77]. Mutant presenilins 1 
and 2 disrupt mitochondrial calcium signalling, which 
leads to decreased ATP production, increased ROS emis-
sion, and cell death [78].

AD: bulk of the iceberg
Human neuroimaging and post-mortem studies show 
that impaired mitochondrial biology occurs early in the 
pathogenesis of AD [79]. PET studies have detected glu-
cose hypometabolism in the hippocampus, entorhinal 
cortex, and cerebral cortex, which may occur 30–40 years 

prior to the clinical symptoms [42]. Cerebral hypome-
tabolism develops in concert with impaired brain insulin 
signalling, which has led to AD being described as “type 3 
diabetes” [80]. Phenotypically, cortical neuron mitochon-
dria show reduced numbers, particularly within synapses 
[81, 82]. They also display a disturbed balance between 
fusion and fission, disrupted motility, and defective 
mitophagy [83–85]. Functionally, cortical neuron mito-
chondria exhibit decreased ATP synthesis and oxidative 
damage, which not only precede the clinical symptoms 
[86], but can also precede and promote the deposition 
of amyloid-β and tau [66, 67]. They also show evidence 
of calcium dysregulation [87]. Moreover, cortical neuron 
mitochondria demonstrate inhibited enzyme activities in 
the TCA cycle and ETC (particularly complex IV) [88]. 
Lastly, hippocampal and cortical neuron mitochondria 

Fig. 4  AD as a metabolic iceberg. AD Alzheimer’s disease, ATP adenosine triphosphate, TCA​ tricarboxylic acid, ETC electron transport chain, mtDNA 
mitochondrial DNA, APOE4 apolipoprotein E4
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display increased variability in shape, decreased size, 
altered cristae, and oxidative damage to mtDNA [89].

AD: tip of the iceberg
After years or decades of impaired mitochondrial biol-
ogy, the tip emerges as AD, which is typically diagnosed 
in the setting of progressive cognitive impairment cul-
minating in dementia [90]. This clinical progression 
may be accompanied by neurodegenerative changes in 
the hippocampus, entorhinal cortex, and cerebral cor-
tex, as well as biomarker evidence of amyloid-β and tau 
[91]. However, numerous non-cognitive symptoms may 
accompany the hallmark cognitive symptoms, which 
include loss of smell, pain syndromes, gait dysfunction, 
agitation, aggression, circadian rhythm disruptions, sleep 
disturbances, and weight loss [13, 14]. Accordingly, neu-
rodegenerative changes are present in other areas of the 
nervous system, such as the olfactory bulb and cervical 
spine [13, 14], and amyloid-β and tau aggregates may be 
detected in virtually all tissues outside the nervous sys-
tem, including the skeletal muscles, heart, adrenal glands, 
kidneys, liver, pancreas, stomach, bowel, spleen, lymph 
nodes, thyroid, aorta, lung, testes, and ovaries [21].

PD as a metabolic iceberg
PD may also be conceptualized as a metabolic iceberg, 
with the hallmark clinical, anatomical, and pathological 
features emerging as late-stage effects of impaired mito-
chondrial biology (Fig. 5). We propose that chronic expo-
sure to a particular suite of environmental and genetic 
factors elicits a trajectory of impaired mitochondrial 
biology that maximally impacts subsets of mitotypes 
abundant in the substantia nigra, striatum, and cerebral 
cortex, which eventually surfaces as the hallmark features 
of PD.

PD: base of the iceberg
Human observational studies implicate environmental 
factors related to modern lifestyles as primary drivers 
of impaired mitochondrial biology in PD [8, 9]. Modern 
industrial toxins include heavy metals (such as iron, lead, 
manganese, and mercury), pesticides (such as organo-
phosphates, rotenone, and paraquat), and solvents [57]. 
Notably, rotenone is a mitochondrial complex I inhibi-
tor that induces parkinsonism in animal models [92]. 
Another mitochondrial toxin and complex I inhibitor, 
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine,  triggers  
parkinsonism in humans [93]. The modern dietary  
lifestyle is associated with an increased risk of PD pro-
gression—foods typically low in carbohydrates (or, when 
carbohydrates are present, they are high in fiber) are 
associated with reduced progression, whereas foods asso-
ciated with more rapid progression are typically high in 

processed carbohydrates [94]. Lower coffee consumption 
is an established risk factor [95]. Physical inactivity and 
social withdrawal are also associated with an increased 
risk of PD development and progression [95, 96]. Beyond 
these environmental factors, a number of genetic factors 
link impaired mitochondrial biology to the pathogenesis 
of PD [53]. Mutations in parkin (PRKN) or phosphate and 
tensin homolog-induced kinase 1 (PINK1) prevent cells 
from responding to mitochondrial damage by altering 
the balance of fusion to fission and disrupting mitophagy, 
which leads to familial forms of PD [97, 98].

PD: bulk of the iceberg
Human neuroimaging and post-mortem studies show 
that impaired mitochondrial biology occurs early in 
the pathogenesis of PD [99]. PET studies have detected 
glucose hypometabolism in the substantia nigra, stria-
tum, and cerebral cortex [43]. Phenotypically, platelet 
mitochondria exhibit an altered distribution, preferen-
tially accumulating around the nucleus [100]. Neurons 
also show decreased levels of peroxisome proliferator-
activated receptor-γ coactivator-1α (PGC-1α), a key 
regulator of mitogenesis [101], and mitochondria dis-
play disturbances in fusion and fission, motility, and 
mitophagy in familial forms of PD [53]. Functionally, syn-
aptic mitochondria are extrapolated to have a 35%–40% 
decrease in ATP synthesis based on the reported decrease 
in complex I activity [102], as well as elevated markers of 
oxidative damage [103]. This mitochondria-mediated 
oxidative stress precedes and promotes the deposition of 
α-synuclein [68, 69]. Moreover, mitochondria from sub-
stantia nigra neurons, skeletal myocytes, and platelets 
show inhibited enzyme activities in the ETC (particu-
larly complex I) [104–106]. Lastly, platelet-derived mito-
chondria from PD cybrid cells exhibit abnormal features, 
which include an enlarged or swollen shape, pale matrix, 
and few remaining cristae [107], and substantia nigra 
neuron mitochondria in older people with parkinsonism 
display abundant deletions in mtDNA [108].

PD: tip of the iceberg
After years or decades of impaired mitochondrial biol-
ogy, the tip emerges as PD, which is typically diagnosed 
in the setting of motor symptoms consistent with parkin-
sonism [109]. These symptoms may be accompanied by 
neurodegenerative changes in the substantia nigra and 
striatum, as well as biomarker evidence of oligomeric 
α-synuclein [110]. However, numerous non-motor symp-
toms may accompany the hallmark motor symptoms, 
which include loss of smell, pain syndromes, depression, 
anxiety, urinary and gastrointestinal dysfunction, sleep 
disorders, cognitive impairment, apathy, and weight loss 
[15, 16]. Accordingly, neurodegenerative changes are 
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present in other areas of the nervous system, such as the 
peripheral, autonomic, and enteric nervous systems [15, 
16], and α-synuclein aggregates may be detected outside 
the nervous system, including in the digestive tract, skel-
etal muscles, heart, adrenal glands, kidneys, urogenital 
system, and skin [22].

ALS as a metabolic iceberg
ALS may also be conceptualized as a metabolic iceberg, 
with the hallmark clinical, anatomical, and pathologi-
cal features emerging as late-stage effects of impaired 
mitochondrial biology (Fig. 6). We propose that chronic 
exposure to a particular suite of environmental and 
genetic factors elicits a trajectory of impaired mito-
chondrial biology that maximally impacts subsets of 

mitotypes abundant in the brainstem and motor cortex, 
which eventually surfaces as the hallmark features of 
ALS.

ALS: base of the iceberg
Human observational studies implicate environmental 
factors related to modern lifestyles as primary drivers 
of impaired mitochondrial biology in ALS [8, 9]. Mod-
ern industrial toxins include heavy metals (such as lead, 
iron, manganese, and selenium)  and pesticides (such 
as organochlorines, pyrethoids, herbicides, and fumi-
gants) [58]. Electrical occupations involving repeated 
exposures to electrical shocks or electromagnetic fields 
are associated with an increased risk of developing 
ALS [111]. Smoking is an established risk factor [112]. 

Fig. 5  PD as a metabolic iceberg. PD Parkinson’s disease, ATP adenosine triphosphate, ETC electron transport chain, mtDNA mitochondrial DNA, 
PRKN Parkin, PINK1 phosphate and tensin homolog-induced kinase 1
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Exercise may be a two-edged sword, as people engaged 
in organized sport have a 51% lower risk of developing 
ALS, but professional athletes have a 59% higher risk 
[113]. Higher cardiovascular fitness, but not muscle 
strength, is also associated with an increased risk of ALS 
later in life [114]. Beyond these environmental factors, a 
number of genetic factors link impaired mitochondrial 
biology to the pathogenesis of ALS [54]. Mutations in 
chromosome 9 open reading frame 72 (C9orf72) com-
promise mitochondrial function and increase oxidative 
stress in motor neurons [115]. Superoxide dismutase 1 
(SOD1) normally breaks down superoxide; mutations 
in SOD1 can induce oxidative damage in motor neuron 
mitochondria and trigger the clinical symptoms of ALS 

[116]. Mutant fused in sarcoma (FUS), which also pro-
motes mitochondrial damage [117], can trigger aggres-
sive familial forms of ALS [118].

ALS: bulk of the iceberg
Human neuroimaging and post-mortem studies show 
that impaired mitochondrial biology occurs early in the 
pathogenesis of ALS [54]. PET studies have detected glu-
cose hypometabolism in the frontal, motor, and occipital 
cortices [44]. Phenotypically, motor neuron mitochondria 
display an altered distribution, preferentially gathering in 
the soma [119]. Disturbed mitochondrial transport along 
motor neuron axons and defective mitophagy are among 
the earliest pathophysiological events [120]. Functionally, 

Fig. 6  ALS as a metabolic iceberg. ALS amyotrophic lateral sclerosis, TDP-43 transactive response DNA binding protein 43, ATP adenosine 
triphosphate, TCA​ tricarboxylic acid, ETC electron transport chain, mtDNA mitochondrial DNA, C9orf72 chromosome 9 open reading frame 72, SOD1 
superoxide dismutase 1, FUS fused in sarcoma
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spinal cord neurons, lymphocytes, and skeletal myocytes 
exhibit decreased ATP synthesis, oxidative damage, and 
calcium dysregulation [121–123]. Mitochondria-medi-
ated oxidative stress can both precede and promote the 
deposition of transactive response DNA binding pro-
tein 43 (TDP-43) [70, 71]. Mitochondria in spinal cord 
neurons, lymphocytes, and skeletal myocytes also dem-
onstrate inhibited activities in citrate synthase and ETC 
complexes I–IV [121, 122, 124, 125]. Moreover, motor 
neuron mitochondria show abnormal features, includ-
ing a swollen appearance, markedly increased cristae, 
and oxidative damage to mtDNA [119, 121]. Altogether, 
these multifaceted mitochondrial alterations would be 
expected to lead to a series of energetically costly adjust-
ments, including compensatory hypermetabolism in the 
spinal cord and skeletal muscles [126, 127]. Despite these 
adjustments, impaired mitochondrial biology still ripples 
out at the level of the organism.

ALS: tip of the iceberg
After years or decades of impaired mitochondrial biol-
ogy, the tip emerges as ALS, which is typically diagnosed 
in the setting of limb or bulbar weakness supported by 
characteristic changes on electromyography [128]. These 
symptoms may be accompanied by neurodegenera-
tive changes in the brainstem and motor cortex, as well 
as biomarker evidence of TDP-43 [129, 130]. However, 
many additional symptoms may accompany the hall-
mark limb or bulbar weakness, which include executive 
dysfunction, language impairment, disinhibition, loss of 
empathy, apathy, muscle wasting, and weight loss [17]. 
Accordingly, neurodegenerative changes are present else-
where in the nervous system, such as other regions of 
cerebral cortex, the hippocampus, and cerebellum [19]. 
Outside the nervous system, TDP-43 aggregates may be 
detected in the skeletal muscles and heart [23].

HD as a metabolic iceberg
Although HD is commonly described as a monogenic 
disorder, it can still be conceptualized as a metabolic ice-
berg, with the hallmark clinical, anatomical, and patho-
logical features emerging as late-stage effects of impaired 
mitochondrial biology (Fig. 7). We propose that chronic 
exposure to mutant huntingtin (HTT) elicits a trajec-
tory of impaired mitochondrial biology that maximally 
impacts subsets of mitotypes abundant in the striatum 
and cerebral cortex, which eventually surfaces as the hall-
mark features of HD.

HD: base of the iceberg
The HTT gene codes for the HTT protein, which is ubiq-
uitously expressed throughout the body [131]. This pro-
tein is involved in many different processes related to 

immunity, gene expression, cellular metabolism, and a 
range of mitochondrial functions and activities [55, 132, 
133]. Beyond a certain threshold, a CAG repeat expan-
sion in the HTT gene leads to the expression of the 
mutant HTT protein, which can facilitate mitochondrial 
damage on many levels [55]. Moreover, since normal 
HTT protein is essential for mitochondrial bioenergetics 
and metabolism [134], a loss of normal function would 
also be expected to trigger maladaptive adjustments in 
mitochondrial biology [135]. Despite the pivotal role 
of mutant HTT in triggering and driving HD, growing 
evidence indicates that its symptomatic expression is 
significantly influenced by environmental factors [136, 
137], such that even monozygotic twins bearing the same 
number of CAG repeats may show considerable differ-
ences in the age of onset and nature of their HD symp-
toms [138, 139]. Malonate, a mitochondrial toxin and 
complex II inhibitor, can trigger striatal lesions in animal 
models that closely resemble those of HD [140]. Dietary 
lifestyle may influence symptom onset, since asympto-
matic mutation carriers with a higher calorie and dairy 
intake develop HD symptoms at an earlier age [141]. 
Cognitive and physical lifestyle factors may also be influ-
ential, given that sedentary behaviour is associated with 
an earlier onset and greater severity of symptoms [142].

HD: bulk of the iceberg
Human neuroimaging and post-mortem studies show 
that impaired mitochondrial biology occurs early in the 
pathogenesis of HD [55]. PET studies have detected glu-
cose hypometabolism in the striatum, which often occurs 
years before the clinical symptoms [45]. Phenotypically, 
striatal neuron mitochondria exhibit reduced numbers 
[143]. Striatal and cortical neuron mitochondria display a 
loss of balance between fusion and fission [143, 144], and 
striatal neurons in asymptomatic mutation carriers show 
decreased expression of the key mitogenesis regulator 
PGC-1α [145]. Functionally, ATP synthesis is decreased 
in the skeletal muscle of both asymptomatic and symp-
tomatic mutation carriers [146]. There is also evidence of 
increased oxidative damage in the cerebral cortex [144], 
as well as calcium dysregulation in lymphoblasts [147]. 
Striatal neuron mitochondria demonstrate decreased 
enzyme activities in ETC complexes II–IV [148], which 
is accompanied by inhibited complex I activity in skeletal 
myocytes [149]. Moreover, cortical and skeletal muscle 
mitochondria exhibit abnormal features, such as unusu-
ally large, dense mitochondria with altered cristae and 
oxidative damage to their mtDNA [149–151]. Altogether, 
these multifaceted mitochondrial alterations would 
be expected to lead to a series of energetically costly 
adjustments, including compensatory hypermetabo-
lism in the thalamus and cerebellum [152]. Despite these 
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adjustments, impaired mitochondrial biology still ripples 
out at the level of the organism.

HD: tip of the iceberg
After years or decades of impaired mitochondrial biol-
ogy, the tip emerges as HD, which is typically diagnosed 
in the setting of involuntary hyperkinetic movements 
(chorea) supported by confirmatory genetic testing [153]. 
These symptoms may be accompanied by neurodegener-
ative changes in the striatum and cerebral cortex, as well 
as biomarker evidence of the mutant HTT protein [154, 
155]. However, many additional symptoms may accom-
pany the hallmark choreiform symptoms, which include 
poor social cognition, irritability, depression, anxiety, 

apathy, psychosis, skeletal muscle wasting, weight loss, 
and heart failure [18]. Accordingly, neurodegenerative 
changes are present elsewhere in the nervous system, 
such as the thalamus, cerebellum, and brainstem [20]. 
Outside the nervous system, skeletal and cardiac myo-
cytes show aberrations related to the expression of the 
mutant HTT protein [24].

Mitohormesis
In 1932, a biphasic response to harmful substances was 
described, called “hormesis” [156]. Hormesis captures 
the observation that high concentrations of harmful sub-
stances lead to cell damage, whereas low levels induce 
adaptive responses that improve the body’s defence 

Fig. 7  HD as a metabolic iceberg. HD Huntington’s disease, HTT Huntingtin, ATP adenosine triphosphate, ETC electron transport chain, mtDNA 
mitochondrial DNA
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mechanisms and resilience [157]. Hormesis is particularly 
applicable to the generation of ROS, which drive cellular 
damage and aging at high levels [158, 159], but at low lev-
els stimulate an adaptive mitochondrial stress response 
that ultimately enhances lifespan [160–162]. Given that 
mitochondria generate the majority of intracellular ROS, 
the hormesis concept was later recharacterized as “mito-
hormesis”, which highlights mitochondria as central 
coordinators of hormesis [163]. Mitohormesis encapsu-
lates the idea that exposing mitochondria to a challeng-
ing (but not excessive) stressor leads to a recalibration 
of mitochondrial biology that subsequently protects the 
organelles against higher, normally harmful exposures to 
similar stressors in the future [164, 165]. Common stress-
ors linked to mitohormesis include environmental toxins, 
dietary factors, cognitive stimulation, physical exercise, 
extreme temperatures, and hypoxia [157, 166–168]. Most 
of human evolution has been characterized by a mito-
hormesis-activating lifestyle [169], whereas many aspects 
of the modern lifestyle compromise mitohormesis.

We propose that mitohormesis may be optimally acti-
vated by strategies that facilitate a balanced oscillation 
between challenging (but not excessive) stressor phases, 
which temporarily disrupt mitochondrial biology, and 
complete (but not excessive) recovery phases, which 
provide adequate time for mitochondria to repair and 
recalibrate prior to the next stressor (Table 1). Previous 
similar proposals have focused on the benefits of the 
stressor phase (such as diet and exercise) in activating 
mitohormesis, with little or no emphasis on the crucial 
role of the recovery phase in optimizing it. The perspec-
tive presented here expands the mitohormesis concept by 
emphasizing that it is optimally activated by a balanced 
oscillation between mitochondrial stressor and recovery 
phases, rather than relying on one phase over the other. 
By manipulating these phases to achieve an optimal 

balance, it may be possible to sustainably harness mito-
hormesis as a preventative and therapeutic measure for 
people at risk of, or suffering with, neurodegenerative 
disorders.

Industrial toxins
Over the last 250 years of the industrial age, humans have 
been increasingly exposed to a variety of heavy metals, 
air pollutants, pesticides, and chemicals [8]. In evolu-
tion, multicellular organisms were frequently exposed to 
selective pressure from toxic elements such as oxygen, 
iron, copper, manganese, and zinc [170]. However, these 
toxic exposures occurred over millions of years, which 
provided ample time for primitive organisms to evolve 
protective mechanisms. By contrast, the relatively abrupt 
human exposure to industry-derived toxins has not pro-
vided adequate evolutionary time for adaptation to occur. 
Many industrial toxins selectively target and elicit oxida-
tive damage in mitochondria [49], which are vulnerable 
owing to a relative deficiency in DNA repair mechanisms 
[171]. Of particular concern are mitotoxicants with long 
half-lives, such as heavy metals and air particulate mat-
ter, which may not be removed from mitochondria [172]. 
Toxin-mediated mitochondrial damage facilitates an 
upsurge in ROS emission, which leads to a vicious cycle 
of ROS-induced ROS release and further damage [62]. 
Simultaneously, chronic exposure to these toxins does 
not provide mitochondria with sufficient time to repair 
and recalibrate, which might otherwise enable them to 
recover.

Although human studies demonstrate there may be 
no safe level for some industrial toxins [173], a non-
linear dose–response is also observed, consistent with 
the activation of mitohormesis [166, 174]. Specifically, 
while low-dose exposures to certain toxins increase the 
risk of disease, the risk increase slows down, flattens 

Table 1  Strategies that activate mitohormesis, which is optimally activated by a balanced oscillation between mitochondrial stressor 
and recovery phases

Lifestyle factors Stressor phase Recovery phase

Industrial toxins Exposure
Transient, low-dose exposures to heavy metals, air pollutants, 
pesticides, and chemicals

Non-exposure
Prolonged, near-zero dose exposures to heavy metals, air 
pollutants, pesticides, and chemicals

Dietary lifestyle Feeding
Evolutionary hunter-gatherer diets (minimally processed, 
carbohydrate-restricted)

Fasting
Fasting protocols (particularly intermittent fasting, coffee 
permitted)

Cognitive behaviours Cognitive stimulation
Cognitive training, activities that demand sustained attention 
and promote engagement

Sleep
Adequate sleep opportunity in a dedicated environment, 
sleep hygiene measures

Physical behaviours Exercise
Relatively intensive, strength-based exercise sessions

Deep rest
Contemplative practices (such as breathwork, mindfulness, 
and meditation), prioritizing sufficient rest and recovery 
from exercise and psychosocial engagement

Psychosocial behaviours Psychosocial engagement
Social activities, networks, supports, and relationships
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out, or even decreases with increasing doses [169, 175]. 
Although these “challenging”, low-dose exposures often 
induce a degree of mitochondrial damage, this does not 
necessarily translate to the appearance of disease and can 
lead to benefits as mitochondria recover and adapt [166]. 
Importantly, this adaptive response is optimally activated 
by transient exposures and may be diminished by chronic 
exposure.

Interestingly, chronic exposure to near-zero doses of 
many industrial toxins may also lead to harmful effects 
on mitochondria [166]. This may be explained by the 
notion that chronic exposure to very low doses of toxins 
within a “sub-hormetic zone” may not sufficiently acti-
vate mitohormesis [169]. Even in the case of synthetic 
chemicals, an increased risk of disease has been associ-
ated with increasing doses within the sub-hormetic zone, 
but the risk flattens out as doses approach the hormetic 
zone. Again, a potentially important caveat to this obser-
vation is that some industrial toxins may be so highly 
toxic that no acceptable level exists [173]. Nonetheless, 
appreciable evidence indicates that attempting to main-
tain many industrial toxin exposures at near-zero levels 
may not be optimal for mitochondrial biology.

In the context of mitohormesis, unless a particular 
industrial toxin is proven to be highly toxic at any level, 
implementing public policies and personal behaviours 
aimed at balancing (1) transient, low-dose exposures 
(challenging, not excessive, stressor phases) with (2) pro-
longed, near-zero dose exposures (complete, not exces-
sive, recovery phases) should be considered as a potential 
preventative and therapeutic strategy for neurodegenera-
tive disorders.

Dietary lifestyle
Arguably, the most profound changes in lifestyle over 
the last 50  years have occurred in the content and fre-
quency of the human diet, which is characterized by a 
high intake of processed, carbohydrate-rich foods com-
bined with multiple daily meals and snacks [9]. The mod-
ern dietary lifestyle represents less than 1% of the 10,000 
or so years that most humans lived under an agrarian 
lifestyle, which itself has existed for less than 1% of the 
2–3 million years that humans evolved under a hunter-
gatherer lifestyle characterized by wild (pre-agrarian, 
unprocessed) foods and frequent periods of food scarcity 
[176]. Broadly speaking, the repeated consumption of 
processed, carbohydrate-rich foods constitutes a series 
of excessive stressor phases that lead to frequent blood 
glucose spikes, an overwhelming supply of nicotinamide 
adenine dinucleotide intermediates, and electron “over-
flow” along the mitochondrial ETC [177, 178]. In turn, 
electron overflow leads to excess ROS emission, a down-
ward spiral of ROS-induced ROS release, and further 

damage [62], which culminates in mitochondrial frag-
mentation [50]. Simultaneously, a daily ritual of multiple 
meals and snacks leads to a series of insufficient recov-
ery phases, given that the brief time intervals between 
meals do not provide mitochondria with adequate time 
to repair, recalibrate, and recover.

During feeding periods, the glucose spikes (and their 
sequelae) can be mitigated by low-carbohydrate diets, 
which restrict carbohydrates and increase fat to at least 
40% of energy intake, and particularly by ketogenic diets, 
which restrict carbohydrates even further and increase 
fat to at least 70% of energy intake [179]. Restricting car-
bohydrate intake leads to a series of “challenging” nutri-
tional stressor phases characterized by fewer and less 
severe blood glucose spikes, which mitigates electron 
overflow along the mitochondrial ETC and generates 
fewer ROS. A growing body of theoretical and clinical 
evidence also indicates that ketogenic diets can “rescue” 
brain and mitochondrial energy metabolism by generat-
ing ketones [180], a superior energy source for neurons 
that elicits fewer ROS, circumvents brain insulin resist-
ance, and increases the expression of neurotrophic fac-
tors [181, 182]. Numerous animal studies show that 
ketogenic diets can benefit mitochondrial biology by 
restoring ion channel function, replenishing TCA cycle 
intermediates, enhancing respiration, and exerting plei-
otropic neuroprotective effects, all of which would be 
expected to benefit people with neurodegenerative disor-
ders [183]. Consistent with these findings, human inter-
ventional trials indicate that modified ketogenic diets can 
improve cognition, function, and quality of life in people 
with AD [184–187], as well as the motor and non-motor 
symptoms of PD [188–191]. Although the interventional 
evidence in people with ALS and HD is currently limited 
to case studies, these studies also hint at benefits [192, 
193]. Beyond carbohydrate-restricted diets, the Medi-
terranean diet, which is typically based on unprocessed 
foods, may be beneficial for people with neurodegenera-
tive disorders [194]. However, it is important to recog-
nize that the vast majority of supportive evidence for the 
Mediterranean diet is derived from observational studies 
rather than interventional trials [195].

Outside the feeding periods, the incorporation of dedi-
cated intermittent fasting periods (12–48  h) can relieve 
the chronic nutritional overload [196]. Fasting deprives 
the ETC of electrons, which leads to reduced ROS emis-
sion and an enhanced mitochondrial capacity to repair 
and recalibrate [182]. Fasting also induces many addi-
tional mechanisms that may be beneficial in neurode-
generative disorders, including the generation of ketones, 
increased expression of neurotrophic factors, and the 
stimulation of mitogenesis and mitophagy. Interventional 
studies in animal models show that fasting induces many 
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beneficial metabolic changes and can slow the neuro-
degenerative process, leading to improved functional 
outcomes [197]. Benefits are also documented in animal 
models of monogenic disorders such as HD, including 
enhanced mitochondrial biology and clearance of the 
mutant HTT protein [198]. Despite these enticing find-
ings, fasting-based interventional studies in people with 
neurodegenerative disorders are rare and currently rel-
egated to case studies [192, 193].

In the context of mitohormesis, growing evidence 
suggests  that an evolutionary hunter-gatherer dietary 
lifestyle aimed at balancing (1) minimally-processed, 
carbohydrate-restricted feeding periods (challenging, 
not excessive, stressor phases) with (2) intermittent fast-
ing protocols (complete, not excessive, recovery phases) 
should be considered as a preventative and therapeutic 
strategy for neurodegenerative disorders.

Cognitive, physical, and psychosocial behaviours
Significant changes in behaviour over the last 50  years 
have arisen in the setting of technological advances, 
which have undermined human exposure to a variety of 
authentic cognitive, physical, and psychosocial activities, 
as well as sleep and rest states. The human brain evolved 
over millions of years to learn, move, and interact within 
authentic environmental and social contexts, which cul-
tivated positive psychosocial experiences associated with 
more abundant mitochondrial ETC proteins in the brain 
[199]. By contrast, the ease of living associated with tech-
nological advances in television, the internet, and digital 
media compromises the mitochondrial stressor phase. 
Simultaneously, chronic technology exposure disrupts 
natural sleep patterns and diverts bioenergetic resources 
away from natural resting states, which are essential for 
mitochondrial recovery [200, 201].

Preliminary evidence indicates  that cognitive chal-
lenges can lead to physiological changes that may acti-
vate mitohormesis [168, 202]. Many studies indicate that 
environmental enrichment based on cognitive, sensory, 
and motor stimulation induces neuron remodelling and 
enhances cognitive and physical performance in animal 
models of AD, PD, ALS, and HD [203]. Interventional 
studies also show that cognitive stimulation leads to ben-
efits in people with neurodegenerative disorders, which 
may be partially mediated by activated mitohormesis. 
A meta-analysis of 26 interventional studies found that 
multicomponent training, including lifestyle changes, 
enhances cognition in people with mild cognitive impair-
ment [204]. A systematic review and meta-analysis of 15 
interventional studies also discovered that playing board 
games preserves cognitive functions and brain structures 
in people with AD and dementia [205]. Furthermore, 

interventional studies demonstrate that multidiscipli-
nary rehabilitation programs based on cognitive training, 
physical activities, and social events can lead to multiple 
cognitive benefits and reduce striatal and cortical atrophy 
in people with HD [206, 207].

Physical exercise can activate mitohormesis and 
improve many facets of mitochondrial biology [208]. 
In humans, even a single hour of challenging exercise 
induces significant ROS emission, oxidative damage, 
and mitochondrial impairments [209], including vari-
able numbers of swollen mitochondria [210]. Following 
exercise, however, numerous cellular and mitochondrial 
adaptations occur, including anti-inflammatory, repair, 
and degradation processes [168, 211]. A wealth of inter-
ventional data indicates that  exercise improves multiple 
outcome measures in people with neurodegenerative 
disorders, which may partly relate to the activation of 
mitohormesis. A systematic review of 28 randomized 
controlled trials found that intensive exercise performed 
over 2–3  days a week induces benefits in cognitive and 
physical function, functional independence, and neu-
ropsychiatric symptoms in people with AD [212]. An 
updated systematic review of 33 randomized controlled 
trials demonstrated that intensive exercise leads to bet-
ter functional capacity in PD [213]. Moreover, a system-
atic review of 7 randomized controlled trials showed 
that exercise enhances functional ability and pulmonary 
indices in ALS [214]. Furthermore, a review of 6 stud-
ies discovered that exercise induces benefits in cogni-
tion, motor symptoms, and mitochondrial content in HD 
[215]. Importantly, while insufficient exercise is a risk fac-
tor for many neurodegenerative disorders, excessive car-
diovascular exercise (with insufficient recovery) can also 
lead to numerous adverse health outcomes [216], which 
may include an increased risk of developing ALS [113].

It has been suggested that mitochondria function as an 
intersection point within the body by sensing and trans-
lating psychosocial stressors into a range of biological 
modifications, including adaptive (or maladaptive) mito-
chondrial recalibrations [217]. Supportive evidence for 
this idea was provided by a recent systematic review of 
23 animal studies, which showed that acute psychosocial 
stressors induce mitochondrial damage within hours, 
which in turn elicits a variety of protective mitochondrial 
recalibrations [218]. Conversely, chronic stress exposure 
facilitates maladaptive adjustments among mitochondria. 
Human observational studies also display an association 
between higher levels of social engagement and better 
late-life cognition [219], which may be partially medi-
ated by activated mitohormesis. A systematic review 
of 39 observational and interventional studies found 
that a range of social activities, networks, supports, and 
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relationships may improve cognitive function in older 
adults [220]. A smaller systematic review showed that 
social support interventions may reduce depression and 
benefit quality of life and self-esteem in AD [221].

Sleep has been described as a “mitorestorative” state 
that specifically protects and rejuvenates mitochondria 
[222]. Consistent with this hypothesis, sleep deprivation 
culminates in maladaptive metabolic and mitochondrial 
adjustments, including impaired neuronal ETC activ-
ity [223]. Sleep, by contrast, enhances the clearance of 
toxic metabolites from the brain, including ROS, as well 
as abnormal protein aggregates, such as amyloid-β [224]. 
Sleep also induces mitophagy, which keeps the mito-
chondrial pool healthy [225]. Human interventional stud-
ies show that better sleep leads to changes that would 
be expected to benefit people with neurodegenerative 
disorders, which may be partially mediated by enhanced 
mitochondrial recovery. A recent meta-analysis of 65 
randomized controlled trials showed that improved sleep 
leads to better mental health, including improvements 
in depression, anxiety, rumination, stress, and psychosis 
[226].

Engaging in contemplative practices may facilitate a 
restorative state of “deep rest”, which channels energetic 
resources towards processes that optimize cellular func-
tion while diverting them away from energy-demanding 
stress states [201]. During a state of deep rest, energetic 
demands are low, which enables mitochondria to repair 
and recalibrate through mitogenesis and other restora-
tive processes. A range of deep rest practices that would 
be expected to benefit people with neurodegenerative 
disorders may partly relate to enhanced mitochondrial 
recovery. A meta-analysis of 12 randomized controlled 
trials found that breathwork can be effective for mitigat-
ing stress and enhancing mental health [227]. A narrative 
review of 10 interventional studies also demonstrated 
that mindfulness or meditation may lead to less cogni-
tive decline, a decrease in perceived stress, and positive 
changes in brain functional connectivity, volume, and 
blood flow in people with AD, dementia, or dementia-
related memory conditions [228]. Moreover, a systematic 
review of 9 interventional studies discovered that mind-
fulness leads to cognitive benefits in PD [229].

In the context of mitohormesis, growing evidence 
indicates that an authentic lifestyle aimed at balanc-
ing (1) cognitive stimulation, exercise, and psychosocial 
engagement sessions (challenging, not excessive, stressor 
phases) with (2) dedicated sleep and deep rest practices 
(complete, not excessive, recovery phases) offers promise 
as a preventative and therapeutic strategy for neurode-
generative disorders. More research is required regarding 
their effectiveness.

Conclusions
In keeping with Ovid’s statement that obvious effects 
often have hidden causes, we must carefully consider the 
cascade of events that underlie neurodegenerative dis-
orders. The longstanding split of these disorders based 
on their hallmark clinical, anatomical, and pathological 
features leads to the perception that they are focal neu-
rological disorders amenable to targeted, suppressive 
treatments. Splitting is useful for diagnosis and manage-
ment. However, treatments based on splitting alone have 
struggled to produce clinically meaningful outcomes. 
Using an alternative scientific framework, neurodegen-
erative disorders can be lumped by a shared feature of 
impaired mitochondrial biology. Lumping more accu-
rately depicts these disorders as multisystemic disorders 
in need of multisystemic, restorative therapies. Since 
lumping emphasizes hidden causes rather than visible 
effects, it may get us further along the path of recogniz-
ing the modifiable etiological factors of neurodegenera-
tion that are crucial for guiding prevention and therapy.

In this article, we have presented a conceptualization 
of neurodegenerative disorders as metabolic icebergs, 
which conveys the hallmark clinical, anatomical, and 
pathological features (tip) as late-stage effects of impaired 
mitochondrial biology (bulk), which in turn is induced 
by a suite of environmental and genetic factors (base). 
Mitohormesis-activating strategies can be sustainably 
harnessed to facilitate a balanced oscillation between 
mitochondrial stressor and recovery phases, leading to 
the repair, recalibration, and recovery of mitochondria 
throughout the body. Ultimately, we may find success in 
treating the rising tide of neurodegenerative disorders 
by addressing the hidden energetic and metabolic causes 
beneath the clinical waterline, rather than by focusing 
exclusively on the visible effects that naturally emerge, in 
time, above it.
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