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Abstract 

TDP‑43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aber‑
rant, misfolded and mislocalized deposits of the protein TDP‑43, as in the case of amyotrophic lateral sclerosis 
and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have 
been reported to have primary or secondary TDP‑43 proteinopathy, such as Alzheimer’s disease, Huntington’s disease 
or the recently described limbic‑predominant age‑related TDP‑43 encephalopathy, highlighting the need for new 
and accurate methods for the early detection of TDP‑43 proteinopathy to help on the stratification of patients 
with overlapping clinical diagnosis. Currently, TDP‑43 proteinopathy remains a post‑mortem pathologic diagnosis. 
Although the main aim is to determine the pathologic TDP‑43 proteinopathy in the central nervous system (CNS), 
the ubiquitous expression of TDP‑43 in biofluids and cells outside the CNS facilitates the use of other accessible target 
tissues that might reflect the potential TDP‑43 alterations in the brain. In this review, we describe the main develop‑
ments in the early detection of TDP‑43 proteinopathies, and their potential implications on diagnosis and future 
treatments.
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Background
TDP-43 proteinopathies consist of a group of neurode-
generative diseases defined by the pathological presence 
of misfolded proteins and insoluble deposits of the trans-
active response DNA-binding protein of 43  kDa (TDP-
43) in the central nervous system (CNS), in association 
with progressive neuronal loss and gliosis [1]. Pathologi-
cal TDP-43 dysfunction and aggregation is associated 
with devastating diseases such as amyotrophic lateral 
sclerosis (ALS) and frontotemporal dementia (FTD), 
which are responsible for a high socioeconomic and 
health burden [2, 3].

A crucial issue in neurodegenerative diseases, espe-
cially in TDP-43 proteinopathies, is the fact that the same 
clinical phenotype can be related to different proteinopa-
thies, and at the same time TDP-43 proteinopathy can be 
found in other different clinical disorders [4]. Thus, there 
is a pressing need to develop objective biomarkers related 
to the pathophysiology of the disease, as a potentially 
useful tool to assist in the correct early clinical diagno-
sis and a starting point for upcoming therapies targeting 
TDP-43 pathology [5].

To date, the diagnostic confirmation of the underlying 
TDP-43 proteinopathy requires a histopathological post-
mortem study of the brain or spinal cord. It is then essen-
tial that we can identify the underlying proteinopathy in 
the heterogeneous overlapping clinical neurological dis-
orders at pre-symptomatic or early disease stages. The 
experience from the most abundant and extensively stud-
ied neurodegenerative disease, Alzheimer’s disease (AD), 
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with specific protein-based neuroimaging positron emis-
sion tomography (PET) radiotracers and the successful 
measurement of amyloid beta species (Aβ42, Aβ40), tau 
and phosphorylated tau 181 (p-tau181) in cerebrospi-
nal fluid (CSF), has paved the way to the development of 
anti-amyloid therapies and other disease-modifying ther-
apies [6]. Those successful studies have inspired future 
research on accurate protein-based biomarkers and treat-
ments for other proteinopathies.

In this review, we recapitulate most of the recent 
advances in search for in vivo detection of TDP-43 pro-
teinopathies for clinical use, classifying the different 
approaches into four main categories: (1) detection of 
soluble TDP-43 in biofluids, (2) functional and structural 
neuroimaging directly or indirectly associated with TDP-
43, (3) detection of aberrant TDP-43 in cells and tissues 
outside the CNS, and (4) indirect detection of TDP-43 
loss-of-function splicing by cryptic exon neoepitopes.

Review methods
We searched original articles, reviews, clinical reports, 
systematic reviews and meta-analyses available in Pub-
Med-indexed journals by the date of January 9, 2024, 
using the following keywords: “TDP-43”, “TDP43”, 
“TARDBP”, “TDP-43” [AND] “proteinopathy”, “TDP-43” 
[AND] (“amyotrophic lateral sclerosis” [OR] “frontotem-
poral dementia” [OR] “frontotemporal lobar degenera-
tion”), “TDP-43” [AND] “biomarkers”, “TDP-43” [AND] 
(“plasma” [OR] “blood” [OR] “serum”), “TDP-43” [AND] 
(CSF [OR] “cerebrospinal fluid”), “TDP-43” [AND] “posi-
tron emission tomography”,”TDP-43” [AND] (“MRI” 
[OR] “neuroimaging”), “TDP-43” [AND] (“muscle” [OR] 
“adipose tissue” [OR] “fat” [OR] “adipocyte” [OR] “liver”), 
“TDP-43″ [AND] (“skin” [OR] “fibroblasts”)”, “TDP-43″ 
[AND] (“lymphocytes” [OR] “lymphomonocytes” [OR] 
“PBMC”), and “TDP-43″ [AND] “ALS” [AND] “nerve”. 
Articles in English, Spanish and French were considered 
for review. A few articles of interest published in Ger-
man, Japanese, Chinese and Russian were disregarded.

Structure and function of TDP‑43
TDP-43 was first characterized in 1995 as a novel protein 
binding to transactive response (TAR) DNA sequence 
motifs of human immunodeficiency virus type 1, with a 
critical role in the activation of viral gene expression [7]. 
In 2006, Neumann et al. found deposits of ubiquitinated 
and hyperphosphorylated TDP-43 aggregates in brain 
tissues from sporadic ALS and ubiquitin-positive, tau-
negative frontotemporal lobar degeneration, previously 
known as U-FTLD [8]. This breakthrough marked the 
beginning of more than two decades of intensive research 
on TDP-43 structure, function and potential mechanisms 
of disease.

Encoded by the gene TARDBP (1p36.22), TDP-43 is 
an RNA/DNA-binding protein, classified within the het-
erogeneous nuclear ribonucleoprotein (hnRNP) fam-
ily. The canonical TDP-43 is composed of 414 amino 
acids and has a structural organization characterized 
by a N-terminal domain (NTD, residues 1–102) includ-
ing a nuclear localization sequence (NLS), two RNA-
recognition motifs RRM1 (residues 106–177) and RRM2 
(residues 192–259), and a C-terminal domain (CTD, 
residues 274–414), which is in turn subdivided into 
two glycine-rich regions and an amyloidotic core with 
a hydrophobic region (residues 318–340) and a prion-
like glutamine-asparagine (Q/N)-rich region which are 
structurally prone to form amyloid-like fibrils [9]. TDP-
43 was also thought to contain a nuclear export sequence 
within RRM2 (residues 239–250); however, most recent 
evidence supports that TDP-43 predominantly exits the 
nucleus by passive diffusion [10] (Fig. 1, upper panel).

TDP-43 participates in different cellular processes: 
regulation of RNA metabolism (RNA processing, cryp-
tic splicing, RNA transport and microRNA biogenesis), 
stress response, protein quality control system, mito-
chondrial autophagy, vesicle transport and axonal trans-
port [1]. Besides, TDP-43 controls the expression of 
synaptic proteins, such as synaptotagmin and synapsin 
I, and is present in postsynaptic dendrites, where it is 
involved in local protein translation [11].

Physiological and pathological species of TDP‑43
The predominant subcellular localization of TDP-43 
in physiological condition is the nucleus. Upon differ-
ent situations and insults, TDP-43 is translocated into 
the cytoplasm to develop a number of functions in, e.g., 
mRNA stability and transport, regulation of translation, 
processing of micro-RNA and stress response [12]. As 
a result, TDP-43 may be found in different cytoplasmic 
subcellular compartments, including endoplasmic reticu-
lum, mitochondria, and liquid–liquid phase separation 
(LLPS) membraneless organelles, such as RNA granules 
and stress granules [13]. TDP-43 structure is prone to 
dimerization and oligomerization via its NTD [14]. This 
process of dimerization is required for splicing activ-
ity [15]. Eventually, when TDP-43 function is no longer 
required or cell stress has ended, the protein returns into 
the nucleus via importin α/β recognition of the NLS [16].

Under pathologic conditions, TDP-43 is observed 
permanently translocated to the cytoplasm, leading to 
nuclear depletion of TDP-43, causing impairment of its 
nuclear functions [17]. Loss of physiological dimerization 
of TDP-43 has resulted in a critical determinant for TDP-
43 oligomerization and aggregation [18]. As a matter of 
fact, mutations in TARDBP affecting the NLS, such as 
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A90V, prevent the nuclear import of TDP-43, leading to 
cytoplasmic sequestering and aggregation [14].

In addition, caspase-mediated cleaved species of the 
protein of ~ 35 and ~ 25  kDa have been observed in 
brain tissues of ALS and FTD-TDP patients [19]. These 
C-terminal fragments (CTFs) lack their NLS and become 
sequestered in the cytoplasm, where they expose their 
prion-like amyloidogenic regions, leading to protein 
aggregation and cytotoxicity [20]. Of note, CTFs are 
characteristic in brain pathology, but are rarely detected 
in the spinal cord, where TDP-43 deposits comprise the 
full-length protein, suggesting CTFs may not be a pre-
requisite for neurodegeneration [21]. Oligomers and 
amyloid-like fibrils of TDP-43 pathological species are 
deposited in the cytoplasm and in neurites (Fig. 1, lower 
panel). TDP-43 undergoes post-translational modifica-
tions as well, of which the most studied are phospho-
rylation and ubiquitination. Constant sites for aberrant 
phosphorylation on full-length TDP-43 and CTFs are 
located in the CTD (serines 379, 403/404 and 409/410) 
and their detection is considered a hallmark of disease in 
TDP-43 proteinopathies [10]. Therefore, pathological cri-
teria for TDP-43 proteinopathy include the presence of 
intracytoplasmic inclusions of native, cleaved and phos-
phorylated TDP-43 species, in association with ubiquitin 
and p62 [22]. Both phosphorylation and ubiquitination 
are considered late phenomena that represent an attempt 
by the cellular machinery to evade protein aggregation 
and cytotoxicity [9].

TDP‑43 proteinopathies and clinically related 
disorders
A number of diseases involve TDP-43 as their primary 
neuropathology, in which a relevant pathogenic role has 
been postulated [4]. Main diseases related to TDP-43 
pathology comprise most sporadic forms of ALS and 
about 50% of FTD (FTD-TDP), especially behavioral 
variant and semantic primary progressive aphasia [23, 
24] as well as cognitive impairment associated with lim-
bic-predominant age-related TDP-43 encephalopathy 
[25] and Perry syndrome [26]. TDP-43 proteinopathy 
in skeletal muscle cells is a common finding in sporadic 
inclusion body myositis (IBM) [27]. Facial onset motor 
and sensitive neuropathy (FOSMN) has also been associ-
ated with TDP-43 proteinopathy, and is currently consid-
ered a clinical variant of ALS [28]. Most genetic forms of 
FTD and ALS are also related to TDP-43 proteinopathy, 
including mutations in TARDBP itself and also in other 
genes like C9ORF72, progranulin (GRN) and others [29, 
30]. Interestingly, TDP-43 pathology is mainly absent in 
familial ALS due to mutations in superoxide dismutase 1 
(SOD1) [31] and fused in sarcoma (FUS) [32].

The term “secondary TDP-43 proteinopathy” refers 
to the detection of pathological species of TDP-43 in 
other neurodegenerative diseases, in which TDP-43 is 
expected to play a part, either pathogenic or reactive, in 
response to the corresponding primary proteinopathy. 
This phenomenon is not exclusive to TDP-43, with exam-
ple of amyloid beta and alpha-synuclein co-pathology 

Fig. 1 Physiological and pathological species of TDP‑43. Upper: Schematic view of physiological structure of TDP‑43, including the N‑terminal 
domain (NTD), two RNA recognition motifs (RRM) and the glycine‑rich C‑terminal domain (CTD). Lower: Pathological species of TDP‑43 
and the antibodies that are mostly used for the detection of different fragments and aggregates, and the part of the protein they recognize
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in dementia with Lewy bodies (DLB) [33]. Secondary 
TDP-43 pathology occurs in AD [34], chronic traumatic 
encephalopathy [35], DLB [36] and Huntington’s disease 
(HD) [37], etc.

Additionally, TDP-43 proteinopathy has been found in 
up to 24% of cognitively normal aging brains [38], espe-
cially in the oldest population (over 90 years), and located 
in the amygdala [39]. The amygdala is a key structure for 
behavior, expression and interpretation of emotions, and 
eating habits [40], all of which are potentially impaired 
in FTD and FTD-ALS [41], and it is not surprising that 
the amygdala and other limbic regions (such as the insu-
lar cortex and the hippocampus) are common sites of 
deposit of TDP-43 proteinopathy [42].

The classification of neurodegenerative disorders based 
on proteinopathies faces the great challenge of clinical 
and neuropathological overlap. For example, considering 
FTD, there are some predictable relationships between 
the clinical phenotype and the pathological substrate 
throughout phenotypic development, such as parkin-
sonism in tau-FTD or semantic disorder in FTD-TDP 
[43]. However, FTD-TDP and FTD-tau may be clini-
cally indistinguishable, with overlapping behavioral and 
language impairment [44]. On the other hand, TDP-43 
proteinopathies can express a variety of motor, cognitive, 
and behavioral clinical features, known as the “FTD-ALS 
spectrum” [45].

In summary, we believe that the great heterogeneity of 
TDP-43 proteinopathies, together with the lack of a spe-
cific signature of their disease pathophysiology, strongly 
calls for the development of new, accurate, in  vivo pro-
tein-based biomarkers, with the aim of settling an opti-
mal clinical classification, an earlier diagnosis for patients 
and, eventually, the start of new research on disease-
modifying therapies for TDP-43 proteinopathies.

Current strategies for in vivo detection of TDP‑43 
proteinopathy
Currently, TDP-43 proteinopathy remains a post-mortem 
diagnosis. The detection of TDP-43 depends on the assay 
used for the different protein species (Fig.  1b). Conse-
quently, N-terminal antibodies might detect aggregates 
of full-length TDP-43, while C-terminal antibodies are 
able to recognize cleaved cytotoxic fragments as well [46] 
(Fig.  1b). Recognition of pTDP-43 is also available via 
antibodies against phosphorylated serines 409/410 [47].

Given the unavailability of direct access to neuronal tis-
sue for biopsies and the need for early detection mark-
ers, researchers are exploring various avenues to identify 
TDP-43 proteinopathy in vivo from early disease stages, 
including brain imaging, CSF analysis, blood samples, 
and examination of extraneuronal cells and tissues [48] 
(Fig. 2).

TDP‑43 quantification in biofluids
Classically, two main approaches to detecting pathologi-
cal species of TDP-43 in biofluids have been considered: 
antibody-based assays and proteomics. Although patho-
logic deposits of TDP-43 are observable in human post-
mortem brains, detection in patient biofluids such as 
CSF and serum using antibody-based assays has proven 
challenging. One the one hand, difficulties primarily arise 
due to the tendency of most antibodies to bind both the 
pathologic and the physiological forms of TDP-43 [48]. 
On the other hand, soluble TDP-43 might tend to aggre-
gate and that might alter the amount detected in the sol-
uble fractions that are classically analyzed. Indeed, some 
groups have found that it is in the insoluble protein frac-
tion and not in the soluble fraction of the samples where 
TDP-43 levels are higher in ALS patients [49]. Another 
potential cause of the variation in the measurements of 
the TDP-43 levels could be that, unlike other neuronal-
specific proteins used as biomarkers in biofluids, TDP-
43 is a ubiquitously expressed protein. That means that 
many other cells in the body, even the blood cells them-
selves, might contribute to the amount of free TDP-43 
found in the blood, in response to different types of dam-
age. This could also mean that the levels of TDP-43 might 
not represent directly the alteration of the CNS alone, 
but it could also represent systemic or other organ dam-
age. That is why further studies are needed to understand 
the sources of TDP-43 in biofluids, which will come also 
from studying the role of TDP-43 outside the nervous 
systems, which is not that extensively studied. Careful 
considerations of the role of TDP-43 systematically and 
in response to body alterations are needed during the 
analysis of TDP-43 and to help in the interpretation of 
the results of TDP-43 levels in biofluids.

Those measurements of physiological and pathologic 
species of TDP-43 have been normally done in the CSF 
for being considered a direct exudate from the CNS, in 
the serum and/or plasma, and in the extracellular vesicles 
(EVs) extracted from serum or plasma. A summary of all 
the reviewed studies on the detection in biofluids is pre-
sented in Table 1.

Plasma and serum
Early attempts to detect abnormal TDP-43 levels in 
plasma aimed to potentially distinguish between FTD-
TDP and FTD-tau, considering AD patients as a neuro-
logical control for TDP-43 proteinopathy. Foulds et  al. 
used enzyme-linked immunosorbent assay (ELISA) with 
monoclonal anti-TDP-43 recognizing the NTD. Their 
results revealed significantly elevated average TDP-43 
levels in both FTD and AD patients compared to healthy 
controls, regardless of age or disease onset [71]. Fur-
ther research from the same group found a positive, no 
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significant trend between plasma pTDP-43 levels and 
FTD-TDP compared to FTD-tau patients with confirmed 
histopathology [50]. Ichikawa et al. found increased levels 
of TDP-43 in elderly with late-life depression compared 
to age-matched controls, suggesting that some patients 
with depression might be in a prodromal state of FTD 
[52]. In one study, FTD patients carrying either C9ORF72 
repeat expansions or GRN mutations exhibited higher 
levels of pTDP-43 in plasma compared to other patients 
diagnosed with FTD and to healthy controls [72]. Con-
versely, another study measured soluble TDP-43 in 
serum using a more sensible system, the Simoa® TDP-43 
kit, reporting slightly decreased TDP-43 levels in FTD-
TDP compared to FTD-tau and healthy controls [56].

For ALS patients, some studies replicated methods 
by Foulds et al. in plasma compared to healthy controls, 
finding a significant increase of TDP-43 levels com-
pared to controls, as well as a positive correlation with 

age, in both patients and controls [54, 73]. The relation-
ship between TDP-43 and age is further discussed in this 
review (section “Upcoming challenges”). The average 
TDP-43 levels showed correlation to clinical progres-
sion [59], but no changes were found across the FTD-
ALS spectrum phenotypes [55]. On the other hand, 
another study in Indian patients using immunodetection 
by ELISA found exactly the opposite, that is, lower levels 
of TDP-43 in ALS patients compared to healthy controls 
[53]. The authors suggested that the TDP-43 levels can be 
lower in plasma as the protein is sequestered inside cells.

The same methods were applied to identify other pri-
mary or secondary TDP-43 proteinopathy in differ-
ent neurodegenerative diseases. Jamerlan et  al. claimed 
higher plasma TDP-43 levels in semantic variant of pri-
mary progressive aphasia compared to healthy and neu-
rological controls [58]. Plasma TDP-43 levels in both 
IBM and other inflammatory myopathies (polymyositis 

Fig. 2 An overview of the different TDP‑43 detection approaches considered for diagnostic use, including quantification of free TDP‑43 in biofluids 
(i.e., plasma/serum and CSF) and extracellular vesicles, structural and functional neuroimaging with magnetic resonance imaging and positron 
emission tomography, and detection of TDP‑43 pathology in cells and tissues outside the CNS (blood cells, skin fibroblasts), and other tissues, such 
as muscle and nerve
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and dermatomyositis) were significantly higher compared 
to healthy controls, though data dispersion was remark-
able [51]. Sampedro et al. studied plasma TDP-43 levels 
in a cohort of 36 patients with Huntington’s disease, in 
which TDP-43 is considered a secondary proteinopathy. 
They found that increased TDP-43 levels were related 
to cortical thinning and microstructural degeneration, 
especially in frontal and anterior temporal regions, which 
could correlate to the severity of cognitive, motor and 
behavioral symptoms [57].

CSF
The initial investigations of TDP-43 in the CSF as a bio-
marker for ALS used the same anti-TDP-43 antibody rec-
ognizing the NTD, showing a significant increase of total 
TDP-43 concentration [60]. Noto et al. used a monoclo-
nal anti-TDP-43 targeting the CTD in the CSF of ALS 
patients showed increased TDP-43 in ALS compared to 
controls. Interestingly, this study associated lower levels 
of TDP-43 with less survival time [61]. A small study in 
ALS and Guillain-Barré syndrome with anti-NTD and 
anti-CTD antibodies showed increased TDP-43 levels 
in the CSF of ALS patients [62], reinforcing the rela-
tionship between TDP-43 levels in CSF and TDP-43 
proteinopathy.

Junttila et al. showed increased levels of TDP-43 in the 
CSF of ALS and FTD compared to controls, with nota-
bly higher levels in males than in females, and no differ-
ences between C9ORF72 carriers and noncarriers [65]. 
However, the CSF level of pTDP-43 is increased in FTD 
patients with C9ORF72 repeat expansions or GRN muta-
tions, compared to other FTD patients and healthy con-
trols [72]. By contrast, another study found no significant 
differences in TDP-43 levels in the CSF samples from a 
cohort of 54 sporadic ALS patients and 32 controls from 
northern India [68].

Several studies approached detection of tau and 
p-tau181 in the CSF as a biomarker of clinical inter-
est to discriminate FTD-tau and FTD-TDP [63, 64, 66]. 
Unfortunately, this "tau-negative" diagnostic approach is 
not applicable as a biomarker for the broader spectrum 
of TDP-43 proteinopathy diseases, and p-tau181 is not 
specific for frontotemporal lobar degenerations associ-
ated with tau, which are also influenced by amyloid depo-
sition [34]. Bourbouli et al. found increased TDP-43 and 
tau levels in both ALS and FTD compared to healthy 
controls, and propose a combined index with TDP-43, 
tau and p-tau181 to improve data dispersion and increase 
discrimination between ALS-FTD spectrum and healthy 
controls [67].

In all of the studies reviewed here, the mean total 
TDP-43 protein concentration was considered as their 
primary endpoint. However, as there is often significant 

dispersion of the data, results require cautious interpre-
tation. The variability of TDP-43 and pTDP-43 levels 
between patients makes it challenging to establish appro-
priate cut-off values to achieve optimal diagnostic results.

EVs
TDP-43 is transmitted across axon terminals inside EVs 
[74]. Mutant TDP-43 is transported by EVs in TARDBP 
transgenic animal models, and that was suggested to play 
a role in the pathogenesis of TDP-43 proteinopathy [75] 
or be a neuronal strategy for aberrant TDP-43 clearance 
[76].

Studies on TARDBP transgenic murine and canine 
models showed increased levels of TDP-43 and pTDP-
43 in plasma-derived EVs compared to controls [77]. 
In humans, TDP-43 and pTDP-43 have been detected 
by Western blot in plasma EVs from ALS patients [69]. 
However, evidence on altered TDP-43 levels in EVs of 
patients with neurodegenerative diseases remains scarce. 
One study in AD patients showed increased levels of 
TDP-43 in plasma neuronal-derived extracellular vesi-
cles (NDEV) compared to healthy controls. In this study, 
there was no relationship of TDP-43 levels with behavio-
ral or motor symptoms among AD patients, nor with the 
apolipoprotein E (APOE) ε4 genotype [70]. In contrast, 
one study in ALS patients and controls applying immuno-
electron microscopy suggested that pTDP-43 might not 
be an intravesicular cargo of plasma-derived EV [78]. 
Another study in patients with LATE neuropathological 
changes (LATE-NC) found increased TDP-43 in astro-
cyte-derived EVs (ADEVs) but neither in NDEVs nor in 
microglial-derived EVs [79], suggesting a pivotal role of 
astrocytes in the pathogenesis of TDP-43 proteinopa-
thy. However, no correlation was found between ADEV 
TDP-43 levels and clinical variables such as sex, cognitive 
status or APOE ε4 genotype. More extensive research is 
needed to clarify the role of human EVs in TDP-43 pro-
teinopathies as a clinical biomarker.

Detection of cryptic exon neoepitopes as a read‑out 
of TDP‑43 splicing loss of function
An emerging approach to detecting TDP-43 proteinopa-
thy focuses on the characterization of neoepitopes from 
cryptic exons which are exposed due to the impair-
ment of TDP-43 splicing function caused by TDP-43 
nuclear loss of function. A TDP-43-dependent cryptic 
epitopes, hepatoma-derived growth factor-like protein 
2 (HDGFL2), has been recently detected to be increased 
via sandwich ELISA in CSF samples of different cohorts 
of C9ORF72 ALS patients, C9ORF72 presymptomatic 
carriers and sporadic ALS patients, compared to healthy 
individuals and neurologic controls with diagnoses of 
migraine and normal pressure hydrocephalus (NPH) 
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[80], proposing a novel, specific CSF biomarker for ALS 
far earlier than neurofilament chains. However, the data 
showed dispersion within groups, even among controls. 
In fact, while the mean values of HDGFL2 ELISA sig-
nal were significantly higher, many patients and carri-
ers showed normal values, and a few controls, especially 
from the older (NPH) group, also had higher levels. Fur-
ther research is paramount in this interesting field, and 
we support identification of confounders (age, sex) as 
an essential preliminary step to better understand the 
results. In this same work, replication of these results in 
blood samples from C9ORF72 ALS patients and carriers 
did not lead to statistically significant results. Similarly, 
a recent study identified de novo proteins in the CSF of 
ALS/FTD patients as a result of the translation of sev-
eral mRNA transcripts harboring cryptic exons, which 
resulted from the functional loss of TDP-43 in these dis-
orders [81]. These studies open the door to potential new 
strategies to indirectly measure the function of TDP-
43 in the CSF of ALS/FTD patients. Further research is 
needed to determine the validity of these potential pep-
tides as biomarkers of disease, or the potential applica-
tion of these strategies in other biofluids or accessible 
tissues.

Functional and structural neuroimaging of TDP‑43 
proteinopathy
PET
PET is a useful neuroimaging technique for the diagno-
sis of many neurodegenerative diseases. A TDP-43 PET 
radiotracer would be of utmost interest in the clinic for 
the differential diagnosis of TDP-43 proteinopathies, as 
the currently used amyloid and tau tracers in AD. Unfor-
tunately, such radiotracers are still unavailable [82].

The most common PET radiotracer is 
 [18F]-fluorodeoxyglucose (FDG), which is informative 
of synaptic function and regional areas of neurodegen-
eration. However, FDG is not specific, and is unable to 
distinguish between the different forms of FTD. Some 
studies in ALS have reported hypometabolism in frontal 
regions, as theoretically expected, as well as hypermetab-
olism in posterior regions, compared to healthy controls 
[83, 84].

FDG-PET of AD patients with and without associated 
TDP-43 proteinopathy revealed greater hypometabolism 
in medial temporal, frontal superior medial, and frontal 
supraorbital regions in TDP-positive cases compared 
to TDP-negative cases [85]. Grothe et al. recently found 
distinct temporo-limbic and temporo-parietal FDG-
PET signatures in a small cohort of LATE-NC and AD 
patients, respectively. In a larger cohort of patients with 
a clinical diagnosis of AD, the patients showing a LATE-
NC–like FDG-PET pattern were significantly older, 

exhibited a predominant amnestic phenotype, had a 
slower disease course, and showed less abnormal amyloid 
and tau CSF biomarkers as well as lower prevalence of 
APOE ε4 allele [86]. Therefore, FDG-PET may be a prom-
ising predictor of LATE-NC, although further research is 
needed.

Studies on other PET radiotracers in TDP-43 pro-
teinopathies are scarce. A study of amyloid PET with 
radiotracer  [18F]-florbetapir in 30 AD cases with patho-
logical confirmation showed a selective effect of TDP-43 
on hippocampal PET signal that appears to be partially 
dependent on TDP-43 mediated atrophy [87]. Two stud-
ies with synaptic vesicle 2A tracers have shown synap-
tic loss in behavioral variant FTD patients compared to 
controls, which correlates with behavioral impairment 
[88, 89].

Tau PET radioligands such as  [18F]-flortaucipir have 
proven to detect beta-sheet structure in TDP-43, and one 
in  vivo study showed that this radiotracer mirrored the 
expected distribution of TDP-43 pathology in patients 
with semantic variant of primary progressive aphasia 
[90]. Based on these principles, a number of tau-PET 
radioligands were assayed in ALS post-mortem tissues, 
though no colocalization to pTDP-43 immunohisto-
chemistry was found [91]. In this line, a study with older 
individuals showed that TDP-43 pathology does not 
affect  [18F]-flortaucipir uptake [92].

The development of a specific radiotracer for TDP-43 
would enable in vivo investigation in physiological aging 
and disease. Various groups are currently working in the 
development of TDP-43 radiotracers, so advancement in 
the in vivo imaging of TDP-43 proteinopathies might be 
just around the corner.

Structural neuroimaging related to TDP‑43 proteinopathy 
patterns of degeneration
Similar to FDG-PET, structural CNS neuroimaging in 
neurodegenerative disorders is a valuable and accessible 
tool to detect areas of cortical structural pathology. Brain 
magnetic resonance imaging (MRI) may show white mat-
ter T2 hyperintensity in corticospinal tracts but with low 
diagnostic accuracy [93]. Another group explored diffu-
sion-tensor imaging (DTI) in ALS as a proxy to evalu-
ate the integrity of white matter fibers, finding fractional 
anisotropy at the brainstem as a differential parameter in 
ALS compared to healthy controls, proposing DTI MRI 
as a clinical biomarker for ALS [94].

Cortical atrophy in FTD mainly involves anterior cin-
gulate and frontoinsular cortex, striatum and amyg-
dala, sparing posterior cortex and especially precuneus 
[95]. Patients carrying pathologic variants of TARDBP 
gene (for TDP-43) are associated with increased rates of 
atrophy in the hippocampus, temporal pole and middle 
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frontal gyrus, while FTD-TDP and AD-related TDP-43 
proteinopathy are also associated with increased rates of 
atrophy in the inferior temporal lobe and amygdala [96]. 
Deep analysis of MRI data, such as grey matter maps, 
found some distinctive atrophy patterns between Pick’s 
disease (FTD-tau), FTD-FUS and FTD-TDP [97], pro-
posing a MRI-based predictive model.

Hippocampal atrophy in CA1 and subiculum areas has 
also been associated with hippocampal sclerosis of aging 
[98], often related to LATE-NC [34]. The TDP-43 bur-
den is uniquely associated with inward deformation in 
bilateral CA1 and subiculum, controlled for the effects 
of beta-amyloid and tau pathology [99]. On the contrary, 
in non-amnestic variants of AD the presence of TDP-
43 does not correlate with memory loss or hippocampal 
atrophy, enhancing the influence of TDP-43 proteinopa-
thy on memory impairment in AD and LATE-NC [100].

Detection of TDP‑43 in accessible cells and tissues
TDP-43 is ubiquitously expressed and distributed across 
multiple tissues and cell types beyond the CNS [13]. 
Pathological species of TDP-43 might be found in differ-
ent cell types and tissues, reflecting early disease stages in 
the CNS. There is increasing evidence supporting that the 
TDP-43 pathology causes not only neurodegeneration, 
but also alterations in bioenergetic metabolism outside 
the CNS, suggesting a multisystem disorder [101] which 
remains poorly understood. This widespread distribution 
enables the detection of TDP-43 pathology in cell types 
beyond the CNS (Fig. 2) and can be used for early diag-
nosis and/or as a biomarker of progression of disease. 
Furthermore, cell analysis allows exploration of other 
pathological features, especially in relation to the subcel-
lular location, such as cytoplasmic/nuclear location ratio, 
that could contribute to classification of patients [17]. 
Reviewed studies are summarized in Table 2.

Blood cells
A few successful attempts to differentiate nucleus versus 
cytoplasmic levels have been conducted using cells from 
the blood of patients and healthy controls. An increase of 
cytoplasmic accumulation of TDP-43 in isolated periph-
eral blood mononuclear cells (PBMCs) has been found 
in TARDBP-ALS patients (A382T, G368S) and in about 
50% of cases of sporadic ALS compared to controls. As 
expected, no significant differences were found between 
SOD1-ALS patients and controls. Interestingly, the total 
quantification of TDP-43 from cell lysates showed no dif-
ferences between ALS patients and controls [104]. The 
same group reported PBMCs from patients with sporadic 
ALS and familial ALS with mutations in TARDBP, FUS 
and valosin-containing protein (VCP) showed cytoplas-
mic TDP-43 translocation, whereas this translocation 

was absent in familial ALS carrying mutations in SOD1 
and C9ORF72 repeat expansions [114]. In a longitudinal 
study with ALS patients compared to healthy and neuro-
logical controls, the quantity of TDP-43 in PBMCs was 
associated with disease progression [105]. In another 
study with a large cohort of 93 patients with ALS, anal-
ysis of soluble and insoluble fractions of TDP-43 in 
PBMCs showed an increased insoluble fraction of TDP-
43 compared to healthy and neurologic controls, with a 
positive linear correlation with duration of symptoms, 
but no association with survival. Authors recognized that 
TDP-43 as a single biochemical parameter was not able 
to accurately distinguish ALS patients from controls, and 
several combinations of PBMC levels of insoluble TDP-
43 along with other proteins were proposed, such as sol-
uble peptidyl-prolyl cis–trans isomerase A (PPIA) and 
hnRNPA2B1 [49].

Two studies measured TDP-43 in lymphoblastoid cell 
lines immortalized from patients with ALS and FTD due 
to GRN mutations, and observed increased cytoplasmic 
TDP-43 levels compared to healthy controls, with no 
differences in total TDP-43 quantity [111, 115]. In these 
studies, the cell pattern depicts the typical translocation 
of TDP-43 commonly found in FTD-TDP and ALS.

A more sophisticated approach for TDP-43 quantifica-
tion in blood cells is the use of PBMC-derived induced 
pluripotent stem cells (iPSCs). Using this model, Quek 
et  al. found abnormal cytoplasmic inclusions positive 
for TDP-43 and/or pTDP-43 in iPSC-derived microglia 
obtained from blood monocytes of patients with ALS, 
while the cytoplasmic inclusions were absent in cells 
from healthy controls [124].

One study involving platelets found a significantly 
higher TDP-43 concentration in ALS patients compared 
to healthy controls, as quantified by ELISA. Nevertheless, 
the utilization of these concentrations as a definitive bio-
marker for ALS is limited due to the presence of overlap-
ping values between a subset of ALS patients and control 
individuals [125]. Another study developed an automated 
capillary nano-immunoassay (Simple Western®) to quan-
tify total TDP-43 in platelets from 9 individuals with 
C9ORF72 + behavioral variant of FTD. By using an anti-
NTD antibody and confirming with anti-CTD, results 
showed a good quantitative performance but also large 
inter-individual variations beyond those attributable to 
the technique, calling for further confirmation in larger 
cohorts of patients [117].

Skin and fibroblasts
The skin has been a strong research topic in ALS for more 
than a century, dating back to Jean-Martin Charcot’s 
observations that ALS patients experienced fewer bed-
sores than other bedridden patients, although this fact 
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was ultimately refuted by further evidence [126]. Multiple 
research endeavors have focused on skin biopsies from 
patients with ALS compared to healthy controls, with a 
trending increased proportion of cells exhibiting TDP-43 
inclusions (“TDP-43-positive” cells) in ALS patients com-
pared to controls [102, 113, 122]. Additionally, a consist-
ent finding across all studies is the correlation between 
the proportion of “TDP-43-positive” cells and the disease 
duration in individuals afflicted with ALS.

Loss of nuclear TDP-43 and increased cytoplasmic 
TDP-43 have been found in fibroblasts isolated in skin 
biopsies of ALS patients [108, 110, 112, 118, 119] and 
by means of more complex approaches such as devel-
oped tissue-engineered skins [109]. Ren et  al. showed 
increased pTDP-43 inclusions in intraepidermal fibers 
from skin biopsies from patients with ALS compared to 
controls. Furthermore, cytoplasmic aggregates of TDP-
43 were also found in skin fibroblasts of a small cohort of 
patients with FOSMN, strengthening the link of FOSMN 
to ALS [123]. Controversially, only one single study did 
not find significant differences in TDP-43 aggregates 
between ALS and healthy controls in skin fibroblasts, dis-
couraging the use of skin TDP-43 as a biomarker for ALS 
[116].

Research evidence on TDP-43 detection in the skin of 
FTD patients is sparse. Leskelä et al. did not find differ-
ences in cytoplasmic TDP-43 between FTD and controls 
[127]. This is not surprising, as about 40%–50% of FTD 
patients are expected to be negative for TDP-43 pathol-
ogy (accounting for tau and FUS pathology). Other stud-
ies found specific proteins related to specific familial 
FTD-ALS variants in skin cells, such as VCP [128] and 
FUS [129].

Muscle
The detection of TDP-43 alterations in muscle tissue has 
been a subject of interest in those TDP-43 proteinopa-
thies directly related to neuromuscular diseases, espe-
cially ALS and IBM, highlighting a potential pathological 
role of TDP-43 in skeletal muscle [103].

Sorarù et  al. carried out Western blot and immu-
nohistochemical procedures on muscle biopsies from 
30 ALS patients and 30 healthy controls. They found 
only nuclear TDP-43 in both groups, with no Western 
blot ~ 25 kDa bands attributable to C-terminal fragments. 
Thus, the authors discouraged the use of TDP-43 as a 
biomarker outside the CNS [106]. However, there is no 
further information on the anti-TDP-43 antibody used in 
these assays. It is not expected that anti-NTD antibod-
ies would recognize cytoplasmic C-terminal fragments. 
We consider that this approach should be replicated with 
more extensive methods and other primary antibodies 

(anti-CTD, anti-pTDP-43) before rejecting muscle biopsy 
as a TDP-43-based in vivo biomarker for ALS.

TDP-43 cytoplasmic deposits are found in muscle 
samples of the aforementioned cohort of patients with 
FOSMN, in addition to the detection of the deposits in 
fibroblasts as reviewed above [123]. There are two other 
studies assessing TDP-43 in  vivo, in muscle biopsies of 
IBM patients, revealing nuclear depletion of TDP-43 and 
other hnRNPs [107], and TDP-43 cytoplasmic deposits 
[130]. Although these studies show promising results for 
the potential use of TDP-43 alterations in muscle biopsy 
as a biomarker in vivo, they need to be further replicated, 
with larger number of patients and appropriate controls. 
Thus, the detection of pathological alterations of TDP-
43 in muscles in  vivo remains to be elucidated, espe-
cially in TDP-43 proteinopathies associated with muscle 
dysfunction.

Regarding the description of TDP-43 pathology in 
muscles in post-mortem examinations, a few studies 
focused on pTDP-43 aggregation in skeletal and car-
diac muscles by comparing post-mortem muscle tissues 
of ALS patients to muscle biopsies of non-ALS patients 
with neurogenic atrophy as controls. One study found 
sarcoplasmic deposits of pTDP-43 in a number of post-
mortem muscle samples from familial and sporadic ALS 
patients [131]. However, the majority of ALS patients 
were "pTDP-43-negative" according to their own refer-
ence data [132], including 69% of C9-ALS. Interestingly, 
patients with IBM included in the non-ALS control group 
were "pTDP-43-positive”. Another study considered 
semi-quantitative determination of pTDP-43 deposits in 
cardiac and skeletal muscle (tongue, diaphragm, axial and 
appendicular) samples from two series of autopsies of 
patients with post-mortem confirmed ALS with pTDP-43 
pathology, compared to other patients with neuromuscu-
lar and non-neuromuscular diseases [133]. They found a 
statistically significant increase of pTDP-43 inclusions in 
at least one muscle territory in both autopsy series (31.3% 
in the first, 100% in the second) compared to the neuro-
logical controls, especially in skeletal muscle. However, 
these alterations were unspecific for ALS, as pTDP-43 
inclusions were also found in 50% and 42.9% of non-neu-
romuscular diseases in their respective series.

Concerning the muscular TDP-43 as a potential bio-
marker, it is quite relevant to point out that the physi-
ological TDP-43 protein and mRNA exert a proven role 
in muscle regeneration by participating in the assembly 
of myo-granules [120]. Accordingly, TDP-43 cytoplasmic 
translocation in patients experiencing muscle regenera-
tion after neurogenic atrophy might be a physiological 
response instead of a pathological hallmark of TDP-43 
proteinopathy. We suggest that the TDP-43 and pTDP-43 
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deposits in muscle samples from autopsies of ALS 
patients might inform of a phenomena occurring during 
late stages of ALS rather than resembling TDP-43 CNS 
proteinopathy. More extensive research and different 
methodological approaches, including different primary 
antibodies and in  vivo muscle biopsies, are required to 
determine whether TDP-43 pathology in muscle biopsy 
could become a feasible in vivo biomarker for clinical use 
in ALS and other proteinopathies.

Other tissues
Riva et al. performed a novel approach by detecting TDP-
43 in motor neuron biopsies from patients with ALS and 
other neuromuscular diseases by means of immunohis-
tochemical procedures, considering anti-NTD and anti-
pTDP-43 antibodies as primary antibodies. They found 
significantly increased TDP-43 and pTDP-43 both in 
axons and in Schwann’s cells, and TDP-43 aggregates in 
ALS and IBM patient motor nerves even without axonal 
degeneration, pointing out that  TDP-43 aggregation is 
likely an early event in the pathogenesis of motor nerve 
degeneration [121]. Aggregation of pTDP-43 accumula-
tion was also observed within intramuscular nerve bun-
dles in post-mortem muscle samples from a cohort of 
ALS patients [134].

No studies were found on TDP-43 deposits in other tis-
sues, such as adipose tissue or liver cells in humans. As 
muscle and nerve biopsies are more invasive than skin 
samples, patients might be exposed to higher surgical 
complications. Further research is required, and ethi-
cal issues must be considered to determine whether the 
diagnostic benefit of analyzing these tissues is worth the 
risk of the biopsy procedure.

Upcoming challenges
It is essential to recognize that TDP-43 expression 
and function change with aging, not only in FTD-ALS 
patients, but in healthy individuals as well. In human 
motor cortex tissues, an investigation revealed escalat-
ing DNA demethylation with age in the autoregulatory 
region of TARDBP 3’ untranslated region. This process 
leads to reduced alternative splicing of TDP-43 and a 
consequent increase in TDP-43 expression [135]. This 
intriguing finding could elucidate the considerable vari-
ability of TDP-43 levels among patients and controls, 
emphasizing age as a potential confounding factor. Estab-
lishing normative values or, at the very least, describing 
how TDP-43 levels vary with age, appears to be a crucial 
preliminary step before achieving a reliable biomarker.

Another relevant issue in TDP-43 detection is the 
methodology used. Most studies are based on Western 
blotting, immunohistochemistry or immunofluorescence 
microscopy, with the use of an anti-TDP-43 primary 

antibody for protein labeling. A few studies detected 
TDP-43 pathology in cells by means of polyclonal anti-
bodies against the NTD of the protein, finding no dif-
ferences compared to healthy controls [111, 116, 127]. 
Only one study [115] found increased cytoplasmic and 
decreased nuclear TDP-43 in immortalized, monoclo-
nal PBMCs from a small cohort of ALS patients, includ-
ing one C9ORF72-ALS, compared to healthy controls, 
resembling TDP-43 mislocalisation. On the other hand, 
studies using antibodies against CTD epitopes did show 
significant differences between patients and controls. Of 
note, the CTD antibodies do recognize the truncated 
CTFs of ~ 35 and ~ 25 kDa, which represent an essential 
part of the pathologic signature of brain TDP-43 pro-
teinopathy [136]. Therefore, the choice of the primary 
antibody used seems critical for adequate detection. 
Reported evidence suggests the use of anti-CTD anti-
bodies instead of anti-NTD, to better detect pathological 
forms and achieve more consistent results.

Unfortunately, a number of studies lack written infor-
mation on the primary antibodies used [102, 106, 110, 
118, 119, 123]. Although these studies did find increased 
TDP-43 cytoplasmic deposits in skin and muscle cells 
from ALS and FOSMN patients compared to controls, 
their results could not be comparable nor replicable.

Antibodies against pTDP-43 are less commonly used. 
Two aforementioned studies found an increased amount of 
pTDP-43 in GRN-deficient lymphoblasts [111] and PBMCs 
from a small number of ALS patients [115]. Rubio et  al. 
discussed that the anti-pTDP-43 might be unnecessary, as 
anti-CTD antibodies can efficiently detect both native and 
phosphorylated TDP-43 [122]. In fact, an additional ~ 45 kDa 
band is often found in TDP-43 immunoblots, correspond-
ing to the post-translational modifications of TDP-43, either 
phosphorylation and/or ubiquitination [9].

Conclusions
We support that in  vivo classification of TDP-43 pro-
teinopathies is crucial for a comprehensive understand-
ing of the biological mechanisms underlying these 
neurodegenerative disorders. Additionally, it plays a 
pivotal role in steering future research focused on devel-
oping disease-modifying treatments. To date, the detec-
tion of TDP-43 in biofluids has not been very successful. 
Instead, cellular and tissue-based detection of pathologic 
species of TDP-43, alone and/or with other clinical, neu-
roimaging and analytic biomarkers, might be a more 
promising avenue for its clinical use as a disease bio-
marker. Current evidence indicates the presence of meas-
urable extra-neural TDP-43 pathology, which seems one 
of the most promising approaches for evaluating altered 
TDP-43 in TDP-43 proteinopathies. Further research and 
efforts are underway to standardize methods to detect 
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cell-based TDP-43 for clinical use across research groups, 
which is essential for obtaining reliable results.
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