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Main text
The microtubule-binding protein tau is encoded by 
MAPT, located on chromosome 17. Mutations in this 
gene have been implicated in frontotemporal dementia 
[1]. Down-regulation of endogenous tau with antisense 
oligonucleotides (ASOs) specific for human tau or zinc-
finger protein transcription factors has been explored in 
preclinical models of tauopathy [2, 3]. Of particular note, 
the effects of tau ASOs on mild Alzheimer’s disease are 
now under assessment in a clinical trial [4]. In addition, 
CRISPR-mediated gene knockout has been used to regu-
late the expression of APP or BACE1 to ameliorate amy-
loid β and tau pathologies [5, 6]. However, therapeutic 
approaches to correcting MAPT mutations that cause tau 
aggregation in animal models of tauopathy have not yet 
been studied.

CRISPR RNA-guided base editors have been recently 
used for targeted base mutagenesis in the genome and 
have become a promising approach for the treatment 

of neurological disorders [6]. The recently developed 
adenine base editor, NG-ABE8e, which is a fusion of 
SpCas9-NG derived from Streptococcus pyogenes and an 
evolved E. coli TadA monomer that is used in combina-
tion with a single-guide RNA (sgRNA), generates A-to-G 
conversions in the spacer upstream of an NG protospacer 
adjacent motif (PAM). NG-ABE8e has demonstrated an 
efficient genome editing ability, targeting a window span-
ning positions 4–11 in the protospacer [7].

In this study, we examined whether NG-ABE8e could 
be used to correct a pathogenic MAPT mutation and 
thereby reduce tauopathy and cognitive symptoms in the 
PS19 transgenic mouse model expressing human MAPT-
P301S. To evaluate the ability of NG-ABE8e to correct 
the MAPT-P301S mutant allele to the wild-type (WT) 
sequence, we designed sgRNAs targeting the MAPT-
P301S mutation. The sgRNAs were designed to hybrid-
ize with a 19-nt target sequence upstream of a TG PAM 
to replace the A, located 11 nt distal from the 5′-end 
of protospacer (Fig.  1a and Additional file  1: Table  S1). 
Next, we evaluated the activity of the sgRNA by using 
targeted deep sequencing to measure adenine base edit-
ing frequencies after transfection of plasmids encoding 
NG-ABE8e and the sgRNAs into HEK293T cells har-
boring the P301S mutation (293T-P301S) (Additional 
file 1: Fig. S1a). The desired A-to-G substitution induced 
by NG-ABE8e corrected the mutant allele to the WT 
MAPT sequence, with an observed editing frequency 
of 16.6% ± 0.8% in the cells (Additional file  1: Fig. S1b). 
Bystander editing  or indels were not detectable  in the 
protospacer. We also designed sgRNAs to target exon 1 in 
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the mouse Rosa26 gene as an internal control (Additional 
file 1: Fig. S1c and Table S1). Treatment of NIH3T3 cells 
with NG-ABE8e and a Rosa26-targeting sgRNA resulted 
in a base-editing frequency of 29.4% ± 1.3% (Additional 
file 1: Fig. S1d).

To evaluate the ability of NG-ABE8e to reduce tau 
aggregation in vivo, we delivered NG-ABE8e to the hip-
pocampi of PS19 mice. As there was no prior reports 
on the in  vivo delivery of NG-ABE8e using an adeno-
associated virus (AAV) vector, we employed an RNA 
trans-splicing (ts) AAV serotype 9 vector system [8] 
with the aim of overcoming the limits of AAV for pack-
aging the NG-ABE8e expression cassette and express-
ing NG-ABE8e as a full-length protein (Fig.  1b and 
Additional file 1: Fig. S2). The final constructs encoding 
MAPT-P301S-targeting or Rosa26-targeting sgRNAs are 
referred to as tsAAV-NG-ABE8e-MAPT and tsAAV-NG-
ABE8e-Rosa26, respectively.

Eight weeks after intracranial injection (Additional 
file 1: Fig. S2b), we collected the hippocampi and evalu-
ated the assembly of NG-ABE8e-N-terminus (NT) and 
–C-terminus (CT) sequences by measuring its expres-
sion level (Additional file 1: Fig. S2c). Next, we extracted 
hippocampal genomic DNA and measured the adenine 
base editing efficiency. NG-ABE8e-MAPT induced 
precise A-to-G base substitutions, converting 11-A 
(MAPT-P301S) to the WT sequence with a frequency 
of 5.7% ± 0.4%, as assessed by targeted deep sequencing 
(Fig.  1b). Bystander editing at 13-A,  located 13  nt dis-
tal from the 5′-end of protospacer was observed with 
a frequency of 0.35% ± 0.04%. In addition, tsAAV-NG-
ABE8e-Rosa26 as a control induced precise A-to-G base 
substitutions with a frequency of 14.1% ± 3% (Additional 
file  1: Fig. S3a). Bystander indels were not observed in 
any of the treated samples (Additional file 1: Fig. S3b and 
c).

We next investigated whether NG-ABE8e exhibits 
off-target nuclease activity in the hippocampi of PS19 
mice. To determine the genome-wide specificity of the 

MAPT-targeting NG-ABE8e nuclease, we first carried 
out targeted deep sequencing at potential off-target 
sites in the human genome, which differed from the 
MAPT on-target site by up to two nucleotides. Poten-
tial sites were identified using the Cas-OFFinder pro-
gram. The regions containing on-target and off-target 
sites were amplified using the primer pairs listed in 
Table S2. We found no evidence of off-target effect in 
either MAPT-edited or Rosa26-edited hippocampi 
of PS19 mice (Fig.  1c, Additional file  1: Fig. S4 and 
Table  S3). Taken together, these results show that the 
NG-ABE8e nuclease targeted MAPT or Rosa26 in a 
highly specific manner.

Next, to determine the effects of tsAAV-NG-ABE8e-
MAPT treatment on the pathological features of PS19 
mice, we measured both total and phosphorylated tau 
(phospho-tau) protein levels in the soluble and insoluble 
fractions of protein lysates from hippocampal samples, 
utilizing antibodies described in Table S4. We found a 
significant reduction of insoluble tau, although there 
was no significant change in the soluble fraction, except 
a reduction in the level of soluble phospho-tau (Ser396) 
(Fig.  1d, Additional file  1: Fig. S5 and S6). In particu-
lar, both the total tau and the phospho-tau levels were 
decreased in the insoluble fraction, indicating a reduc-
tion in the quantity of insoluble tau proteins following 
treatment with tsAAV-NG-ABE8e-MAPT. Moreover, we 
found reductions in the AT8-positive areas in the hip-
pocampi of mice treated with tsAAV-NG-ABE8e-MAPT 
(Fig.  1e and Additional file  1: Fig. S7). This reduction 
of AT8 staining was related to the expression of NG-
ABE8e-MAPT (Fig.  1f ). A previous report showed that 
expression of tau proteins containing the P301 mutation 
makes cells more vulnerable to be seeded with exog-
enous tau fibrils, which are present in insoluble frac-
tions [9]. In line with this finding, we speculate that the 
NG-ABE8e-mediated correction of the P301S muta-
tion might protect neurons from tau propagation and 
insoluble tau aggregation. In addition, neither the level 

Fig. 1 a sgRNAs were designed to target exon 10 of the MAPT. Protospacer sequences are underlined, PAM sequences are shown in green, 
the targeted nucleotide in red, and base edited nucleotides in blue. b Adenine base editing frequencies induced by tsAAV‑NG‑ABE8e‑MAPT, which 
is controlled by the hSyn‑1 promoter, in the hippocampus of PS19 mice at eight weeks after intracranial injection. Error bars indicate SEM (n = 4). c 
Genomic DNA isolated from the hippocampi of PS19 mice at eight weeks after injection of tsAAV‑NG‑ABE8e‑MAPT was subjected to targeted deep 
sequencing. Mismatched nucleotides are shown in red, PAM sequences in blue, and DNA bulge on green. ON, on‑target site; OT, off‑target site. 
Error bars indicate SEM (n = 4). d Representative western blots using anti‑tau antibodies and quantification of immunoblot staining. All antibodies 
used in this study are described in Table S4. *P < 0.05 vs mock control, Student’s t‑test. Error bars indicate SEM (n = 6). e Representative images 
and quantification of anti‑phospho‑tau (AT8) staining in the hippocampus. *P < 0.05 vs mock control, Student’s t‑test. Scale bar, 100 µm; n = 5–6. f 
Representative images of double‑staining with anti‑phospho‑tau (AT8) and anti‑HA‑tag (which recognizes the NG‑ABE8e fusion protein) antibodies 
in the hippocampus. Scale bars, 100 µm. g The escape latency during the training phase in the water maze test. #P < 0.05 vs WT, *P < 0.05 vs mock 
control; generalized estimating equation analysis. WT, n = 12; Mock, n = 11; MAPT, n = 10. h The latency to enter the dark compartment in the passive 
avoidance test (PAT). Maximum time was 300 s. #P < 0.05 vs WT, *P < 0.05 vs mock control, One‑way ANOVA. WT, n = 12; Mock, n = 12; MAPT, n = 12

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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of MAPT expression nor gliosis was affected by tsAAV-
NG-ABE8e-MAPT treatment (Additional file 1: Fig. S8). 
These results suggest that correction of the targeted 
MAPT-P301S mutation by NG-ABE8e-MAPT alleviates 
insoluble tau aggregation in neurons.

Notably, tsAAV-NG-ABE8e-MAPT treatment improved 
the cognitive function of PS19 mice, as assessed by 
the Morris water maze test and the passive avoidance 
test (PAT) (Fig. 1g and h, Additional file 1: Fig. S9). These 
results demonstrate that such treatment improved the spa-
tial learning memory and contextual memory of PS19 mice.

A limitation of our study is that we only targeted the 
hippocampus in PS19 mice. As some regions in the cor-
tex also exhibit tauopathy in PS19 mice, there might be 
unidentified effects from pathological tau proteins in 
the untreated cortex. Widespread transduction of AAV 
into the whole brain via ventricular injection in P0 pups 
[10], or the use of PHP.eB AAV [11], could be alterna-
tive strategies for examining the therapeutic effects of 
NG-ABE in more depth in our future studies. Addi-
tionally, the gene editing frequency we reported might 
be underestimated within the neuronal population of 
interest. This may arise from the extraction of genomic 
DNA from the entire hippocampus, which includes 
a mixture of both neuronal and non-neuronal cells. 
Based on the recently reported cell atlas of the mouse 
brain, 48.12% of the cells in the hippocampus are neu-
rons [12]. Given this information, we speculate that our 
actual neuronal gene editing efficiency could potentially 
achieve approximately 10%–11%. Further investigations 
are needed to determine the neuronal transduction effi-
ciency of tsAAV in the hippocampus of PS19 mice to 
evaluate the base editing frequencies in neuronal cells 
and to confirm the replicability of our results.

In conclusion,  we showed significant decreases in 
the level of insoluble tau proteins and staining of tau 
inclusions in neuronal cell bodies, without any change 
in MAPT expression or the total tau protein level. For 
clinical applications, it would be of benefit to reduce 
tau aggregation specifically, without down-regulation 
of the overall level of endogenous tau. Our results sup-
port that the  NG-ABE8e-mediated targeted mutation 
correction could be a potential strategy for treating 
tauopathy-related neurodegenerative diseases. In addi-
tion, in vivo targeted adenine base editing via delivery 
of tsAAV-NG-ABE8e will broaden the range of thera-
peutic targets for various neurodegenerative disorders.
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