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Abstract 

The renin‑angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood 
pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation 
between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions 
leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major 
brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic 
function induces upregulation of the angiotensin type‑1 (AT1) receptor activity, leading to recovery of dopamine 
levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular 
NADPH‑oxidase‑superoxide axis and  Ca2+ release, which mediate several key events in oxidative stress, neuroinflam‑
mation, and α‑synuclein aggregation, involved in Parkinson’s disease (PD) pathogenesis. An intraneuronal antioxida‑
tive/anti‑inflammatory RAS counteracts the effects of the pro‑oxidative AT1 receptor overactivity. Consistent with this, 
an imbalance in RAS activity towards the pro‑oxidative/pro‑inflammatory AT1 receptor axis has been observed 
in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. 
Interestingly, autoantibodies against angiotensin‑converting enzyme 2 and AT1 receptors are increased in PD models 
and PD patients and contribute to blood–brain barrier (BBB) dysregulation and nigrostriatal pro‑inflammatory RAS 
upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/
or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk 
of developing PD or in prodromal stages of PD to reduce progression of the disease.

Keywords Angiotensin, Dopamine, NADPH‑oxidase, Neurodegeneration, Neuroprotection, Neuroinflammation, 
Oxidative stress, Parkinson

Background
The renin-angiotensin system (RAS) was identified for 
the first time by Tigerstedt and Bergman (1898) [1] in 
the rabbit’s kidney. Phylogenetically, the RAS is a very 
old hormone system, present in primitive vertebrates 
such as the lamprey, playing a key role in the adaptation 
from aquatic to terrestrial life [2, 3] and the continuation 
of life in little salt ecosystems [4]. This was related to the 
major role of RAS, as a circulating hormonal system, in 
the regulation of blood pressure and sodium and water 
homeostasis, which was the classical function associated 
with RAS for decades. Then, local or paracrine RAS were 
observed in different tissues and organs, including the 
brain. In peripheral tissues, although both the circulating 
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RAS and the local tissue RAS may act together, the circu-
lating RAS appears less important than the local RAS in 
the RAS tissue effects [5].

Dopamine was synthesized in 1910 [6], and dopa-
mine deficits in patients with Parkinson’s disease (PD) 
were initially observed by Ehringer and Hornykiewicz 
(1960) [7]. Later, the role of dopamine in peripheral 
organs, particularly in the renal and cardiovascular sys-
tems, was identified [8]. More recently, different func-
tions of dopamine in peripheral organs and tissues have 
been revealed, including regulation of blood pressure, 
sodium and water homeostasis, gut motility, respiration, 
and immune responses [9, 10]. In addition to brain cells, 
dopamine D1-like and D2-like receptor subtypes have 
been observed in peripheral tissues such as the blood 
vessels, kidney, heart, adrenal gland, gastrointestinal tract 
sympathetic nerve terminals, and almost all immune cell 
subpopulations [11, 12].

Interestingly, important functional interactions 
between the local dopaminergic and angiotensin systems 
have been observed in several peripheral organs. Dysreg-
ulation of the interactions between both systems, such as 
dysregulation of the expression or dimerization between 
dopamine receptors and angiotensin receptors, results 
in renal degenerative diseases and hypertension [13, 
14]. Over the last decades, similar interactions between 
the dopaminergic system and the local RAS have been 
observed in the brain. Several studies from our research 
group and others have revealed a major role of the dys-
regulation of dopamine-RAS interactions in brain dis-
eases, particularly in dopaminergic degeneration in PD, 
as detailed in the following sections.

Angiotensin II (AngII) is the main RAS effector pep-
tide, produced from the precursor protein angiotensino-
gen through sequential cleavages by the enzymes renin 
and angiotensin-converting enzyme (ACE, ACE1) 
(Fig. 1). AngII binds two major G-protein coupled recep-
tors (GPCR) named AngII type 1 (AT1) and 2 (AT2) 
receptors. The AT1 receptors are related to most of the 
classical RAS peripheral effects, such as vasoconstric-
tion and kidney water and salt retention. The human AT1 
receptor gene is localized on chromosome 3q, coding for 
a 40–42  kDa protein (359 amino acids). AT1 receptor 
activation promotes hydrolysis of membrane phosphati-
dylinositol-4,5-bisphosphate, which produces inositol tri-
sphosphate (IP3) and diacylglycerol (DAG). IP3 binds IP3 
receptors, which are ligand-gated  Ca2+ release channels 
located in intracellular  Ca2+ store sites (such as the endo-
plasmic reticulum), inducing mobilization of intracel-
lular  Ca2+ stores [15, 16]. DAG activates protein kinase 
C, which promotes the activation of the NADPH oxidase 
complex [17, 18], the second major source of superoxide 
after mitochondria [19, 20]. NADPH-oxidase-derived 

superoxide and superoxide-derived reactive oxygen spe-
cies (ROS) are major factors responsible for the pro-
oxidative and pro-inflammatory effects of AT1 receptor 
activation [21, 22].

The AT2 receptor is a protein of 363 amino acids [23, 
24]. The human AT2 gene is located in the X chromo-
some [25], particularly in the Xq23 region [26]. AT2 
receptor effects are normally opposed to those induced 
by AT1 receptors. AT2 receptor activation decreases the 
NADPH oxidase activity and superoxide production, and 
inhibits NFκB and ERK1/2 phosphorylation, with nitric 
oxide being a key second messenger for AT2 signaling 
[27–29]. Sex differences in AT2 expression have been 
observed, which may be related to both hormonal and 
sex chromosome complement effects [30].

Beyond the classical AT1 and AT2 receptors, additional 
angiotensin peptides and receptors modulate the RAS 
function, which is overall organized into a pro-oxidative 
and pro-inflammatory arm and a protective or counter-
regulatory anti-oxidative and anti-inflammatory arm 
(Fig. 1). Both arms must be correctly balanced in physi-
ological conditions. The pro-oxidative/pro-inflammatory 
axis is mainly constituted by AngII/AT1 receptor acti-
vation, which upregulates the function of the NADPH-
oxidase complex and induces  Ca2+ release, as described 
above. In addition, renin and its precursor prorenin also 
act on the corresponding receptors (Fig.  1). Binding of 
prorenin to its receptor provides prorenin with catalytic 
properties similar to those of renin. Furthermore, the 
prorenin receptor induces a signaling pathway resulting 
in pro-oxidative effects as those induced by AT1 receptor 
activation [31]. The anti-oxidative/anti-inflammatory axis 
is mainly constituted by the AngII/AT2 receptor com-
ponent, and by the activation of the G-protein-coupled 
receptor Mas [32, 33] and the Mas-related GPCR mem-
bers (Mrg), such as MrgD [34] and MrgE [35] by Ang(1–
7) and alamandine (Fig.  1). The angiotensin-converting 
enzyme 2 (ACE2) plays a key role in the balance between 
the two RAS arms because ACE2 converts peptides of 
the pro-oxidative arm (AngI and AngII) into components 
of the anti-oxidative arm such as Ang1-9 and, particu-
larly, Ang1-7 [36–38]. Alamandine is generated by decar-
boxylation of the Asp residue of angiotensin-(1–7) [34]. 
The role of other RAS components such as AngA, AngIII, 
and AngIV is more controversial (see for review [34, 39]).

ACE2 has been intensely studied over the last few years 
because ACE2 is the primary binding site for SARS-
CoV-2 entry into host cells [40, 41]. Many studies have 
suggested a major role of the tissue RAS in the patho-
physiology and severity of COVID-19 [42, 43], as viral 
binding reduces the ACE2 levels at the cell surface [44], 
which leads to a shift in the RAS balance toward inflam-
mation and disease severity. This raised the dilemma of 
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increasing ACE2 levels in tissues to inhibit the inflam-
matory responses or decreasing tissue ACE2 levels to 
inhibit viral entry and replication. Similarly, the possible 
beneficial or detrimental effects of therapies with ARBs 
and ACE inhibitors were highly controversial [45, 46]. 
Research [47, 48] and clinical studies [49, 50] showed the 
non-detrimental and possible beneficial effects of these 
drugs. This has been detailed in our recent review arti-
cle [51]. Interestingly, a possible increase in the risk of PD 
related to COVID-19 has been suggested [52, 53]; how-
ever, the possible involvement of RAS dysregulation in 
this link remains to be studied.

In addition to the classic circulating RAS and the tissue 
or paracrine RAS (Fig.  1), an intracellular or intracrine 
RAS has been described in several types of cells, includ-
ing fibroblasts, vascular smooth muscle cells, cardiac 
cells, kidney cells, and neurons [38, 54, 55]. The existence 
of a third level of RAS is supported by the intracellular 
synthesis of AngII and the intracellular location of differ-
ent RAS components and receptors. Although the role of 
the intracellular RAS is still unclear, our data in neurons 
suggest cell protective effects, as described below [35, 38, 
56–58].

The complexity of the RAS functioning is fur-
ther increased by the possible formation of receptor 

Fig. 1 The renin‑angiotensin system (RAS) is organized into two opposite arms that must be properly balanced: a pro‑oxidative/pro‑inflammatory 
axis (in red), mainly formed by Angiotensin II that binds AT1 receptors (AT1R), and an antioxidative/anti‑inflammatory axis (in green), mainly 
formed by Angiotensin II‑binding AT2 receptors and Angiotensin 1–7‑binding Mas receptors (MasR) or Mas‑related G protein‑coupled receptors. 
The enzyme prorenin/renin acting on the precursor protein angiotensinogen produces Angiotensin I, which is converted to Angiotensin II 
by the angiotensin‑converting enzyme (ACE or ACE1). Renin and its precursor prorenin (PR) can also bind specific pro‑oxidative PR receptors 
(PRR). Angiotensin‑converting enzyme 2 (ACE2; also known as the major entry receptor for the SARS‑COV viruses) plays a major role in balancing 
both RAS arms, as ACE2 (together with other peptidases such as Neprilysin, NEP) transforms peptides of the pro‑inflammatory axis (Angiotensin I 
and, particularly, Angiotensin II) into peptides of the anti‑inflammatory axis (Angiotensin 1–9 and, particularly Angiotensin 1–7)
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complexes. Over the last decades, research on GPCRs 
revealed that individual receptors can interact to form 
heteroreceptor complexes, leading to new functional 
units providing cell responses that may differ from those 
of the individually acting receptors [59]. Regarding RAS 
GPCRs, receptor heteromers have been observed both 
between different RAS receptors and between RAS 
receptors and receptors of different systems such as 
dopaminergic, adenosine, cannabinoid, bradykinin, and 
β-adrenergic receptors [60–62]. The AT1 receptor dimer-
izes with itself and forms AT1-AT1 homodimers [63]. 
AT1-AT2 receptor association leads to AT1 signal inhi-
bition [64], and administration of an antagonist of one 
receptor releases the inhibition of the partner receptor 
activity [65]. In AT1-CB1 heteromers, the CB1 receptor 
can modulate the AT1-mediated signaling [66]. We have 
also observed that Mas receptor can interact with the 
AT1 receptor and/or AT2 receptor to form heterodimers 
and heterotrimers in microglia and neurons [61]. In the 
striatum, we observed that the AT1 receptor forms heter-
omers with dopamine D2 receptors and that AT1 agonist 
and antagonist drugs can selectively alter the functional 
responses of the D2 receptors [67].

The existence of a local brain RAS. RAS in the dopaminergic 
nigrostriatal system
In the brain, the RAS was initially associated with blood 
pressure regulation through the circumventricular organs 
[68], as AngII cannot cross a healthy BBB [69]. However, 
brain levels of AngII are higher than the circulating levels 
[70], suggesting the presence of a brain paracrine RAS. 
Astrocytes are the major source of the precursor pro-
tein (angiotensinogen) for the brain RAS paracrine sys-
tem [70–72], with minor contributions from other cells 
such as neurons [38, 73, 74]. Initially, some authors were 
unable to detect renin in the brain and suggested that the 
brain AngII may be uptaken from circulating AngII, thus 
questioning an independent brain RAS [75]. Different 
studies detected low levels of renin [76, 77] and, essen-
tially, high levels of prorenin and prorenin receptors in 
the brain. Prorenin activation by the prorenin receptors 
confers a catalytic function of prorenin like that of renin 
[31, 78, 79]. In addition, more recent studies suggest that, 
although angiotensin peptides cannot cross a healthy 
BBB, pathological upregulation of peripheral RAS com-
ponents may modify the BBB integrity [80, 81].

Initially, several studies detected the presence of RAS 
components in the basal ganglia, particularly in the 
nigrostriatal system [82–84]. More recently, a paracrine 
local RAS was observed in the substantia nigra (SN) and 
striatum of rodents [22, 79, 85], as well as non-human 
primates and humans [86, 87]. In dopaminergic neu-
rons and glial cells, the presence and functional effects 

of different components of the pro-oxidative/pro-inflam-
matory arm have been shown, including the AngII/AT1 
receptor axis [22, 85, 88] and the pro-renin signaling 
pathway [78, 79]. The presence and functional effects 
of the anti-oxidative/anti-inflammatory arm have also 
been shown, including the AngII/AT2 axis [30, 89] and 
the Ang1-7/ Mas receptor pathway [56]. Consistent with 
this, a recent study using single‐cell genomic profiling of 
human dopaminergic neurons revealed high expression 
of the AT1 receptor gene as a marker of most vulnerable 
dopaminergic neurons in humans, including PD patients, 
which are located in the ventral tier of the SN pars com-
pacta (SNpc) [90], further supporting the potential role of 
the pro-oxidative AngII/AT1 receptor axis in dopaminer-
gic degeneration, as detailed below.

Angiotensin‑dopamine interactions in the nigrostriatal 
system
Dopamine is involved in cardiovascular, renal, endocrine, 
gastrointestinal, and immune functions [11, 12, 91–93], 
and different dopamine D1-like and D2-like receptors are 
located in peripheral tissues [11, 12]. In these tissues, a 
functional interaction between the local RAS and dopa-
mine has been shown. This has been particularly studied 
in kidney regulation of sodium and water homeostasis 
and cardiovascular regulation, observing that the dopa-
minergic system and RAS counter-regulate each other 
[94, 95]. Furthermore, dimerization between receptors of 
both systems has been observed in peripheral cells [60]. 
Interestingly, dysregulation of interactions between the 
two systems, including the imbalance between dopamine 
and angiotensin receptor expression [13] or alterations 
in dopamine or angiotensin levels [14], leads to patho-
logical processes such as renal degenerative diseases and 
hypertension.

In the brain, an interaction between dopamine and 
AngII was initially shown by microdialysis, which 
revealed that acute striatal administration of AngII 
induced a release of dopamine in the striatum that could 
be blocked by AT1 receptor antagonists [96, 97]. These 
results suggest that AngII, by activating AT1 recep-
tors, induces dopamine release and that a decrease in 
dopamine levels may induce a compensatory increase in 
AngII/AT1 receptor activity to restore the dopaminer-
gic function. AngII has also been shown to modulate the 
expression and trafficking of key enzymes for catecho-
lamine biosynthesis such as tyrosine hydroxylase and 
dopamine β-hydroxylase, thus regulating the synthesis of 
norepinephrine and dopamine [98]. Processes of coun-
ter-regulation between angiotensin and dopamine recep-
tors have been shown in the SN and striatum in several 
studies [99, 100]. Dopamine depletion, in 6-hydroxydo-
pamine (6-OHDA) or reserpine models, upregulates the 
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AT1/NADPH-oxidase activity, which can be reversed 
after restoring dopamine levels by L-DOPA adminis-
tration [100]. Furthermore, both D1 and D2 KO mice 
showed upregulation of AT1 receptor expression [99]. 
Dimerization between receptors of the two systems has 
also been observed in the nigrostriatal system [61, 67]. As 
AT1 activation induces dopamine release, and D2 auto-
receptors in dopaminergic neurons modulate dopamine 
release, the formation of AT1/D2 heteromers appears 
particularly interesting. It is also interesting to note that 
the striatal dopamine depletion (e.g., using 6-OHDA) 
and treatment with L-dopa modify the levels of different 
types of RAS-receptor heteromers [61, 101].

Dysregulation of RAS‑dopamine interactions 
and dopaminergic degeneration
As previously reported in cardiovascular and renal tis-
sues, dysregulation of the RAS/dopamine interactions 
in the nigrostriatal system promotes neuroinflamma-
tion and dopaminergic neurodegeneration [99, 102] 
(Fig. 2). The possible deleterious effect of RAS/dopamine 
dysregulation has been studied in several in  vivo and 
in  vitro models of PD. In animal models, the dopamin-
ergic lesion induces a loss of dopamine and upregula-
tion of the pro-oxidative/pro-inflammatory AngII/AT1 
receptor axis, enhancing the progression of dopaminer-
gic degeneration. This has been observed in our studies 

Fig. 2 The brain RAS plays a role in the progression of dopaminergic neuron degeneration. Different pathogenic factors may trigger molecular 
and cellular changes that lead to an initial dysregulation of the brain RAS, or dysregulation of the dopaminergic neuron function leading 
to decreased dopamine production, which affects the dopamine/RAS interaction in neurons and glial cells. In neurons, a decrease in dopamine 
level upregulates the angiotensin type‑1 (AT1) receptor activity, leading to the recovery of dopamine levels together with overactivation 
of the NADPH‑oxidase‑superoxide‑mitochondria axis and  Ca2+ release, which mediate several key events such as oxidative stress, α‑synuclein 
aggregation, and neuroinflammation involved in the progression of Parkinson’s disease (PD). An intraneuronal antioxidative/anti‑inflammatory RAS 
counteracts the effects of the pro‑oxidative AT1 receptor overactivation (detailed in Fig. 3). In microglial cells, AT1 receptor upregulation activates 
the NADPH‑oxidase complex, increasing the release of ROS to the extracellular space and the inflammatory response. In astrocytes, a decrease 
in dopamine level induces an increase in paracrine angiotensinogen/AngII production that can act on neurons and microglial cells. AngII, 
angiotensin II; AT1, angiotensin type I; ROS, reactive oxygen species
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and reports from different laboratories using the main 
in vivo PD models including neurotoxic models such as 
the 6-OHDA [22, 103] and the MPTP models [21, 85, 
104, 105] and, more recently, PD models based on over-
expression of α-synuclein using adeno-associated viral 
vectors [106]. The dopaminergic lesion is significantly 
decreased by ACE inhibitors [104, 107, 108] and, more 
specifically, by the blockage of AT1 receptors [22, 85, 103, 
106]. In vitro models, such as primary mesencephalic cul-
tures treated with low doses of the neurotoxin 6-OHDA 
or  MPP+ revealed similar results, showing that the neu-
rotoxin-induced dopaminergic neuron death is signifi-
cantly increased by administration of AngII and inhibited 
by treatment with AT1 receptor blockers [22, 85].

Over the last decade, a series of clinical observations 
also supported that the overactivation of the AngII/
AT1 pro-inflammatory axis contributes to the progres-
sion of PD. Early studies reported increased ACE activ-
ity in the cerebrospinal fluid (CSF) of PD patients [109], 
associations between ACE-genetic polymorphisms and 
PD [110], and beneficial effects of ACE inhibitors in PD 
patients [111]. The effects of antihypertensive drugs on 
the risk of PD have been studied in several cohort studies 
[112, 113]. However, the conclusive value of these studies 
was limited by the low number of patients or other con-
founding factors such as short periods of exposure to the 
analyzed drug or the inclusion of different anti-hyperten-
sive drugs or different ARBs and ACE inhibitors in the 
same group of patients [114]. More recent studies also 
suggest the potential clinical effects of ARBs [115, 116], 
including studies using artificial intelligence [117], which 
support the neuroprotective effects of AT1 receptor 
blockers on PD risk. Recent retrospective cohort stud-
ies involving a large number of patients are particularly 
interesting and show that ARBs may be an effective neu-
roprotective strategy to reduce PD risk and progression 
[118, 119]. ARB treatment is associated with a marked 
reduction of PD risk in patients with recently diagnosed 
hypertension [119]. Furthermore, ARBs with BBB-pen-
etrating properties and a high cumulative duration of 
treatment are particularly effective [118].

The development of prodromal clinical trials, using 
ARBs that can cross the BBB or other molecules able to 
inhibit the effects of AT1 receptor over-activity, is further 
supported by recent key data from Kamath et  al. [90]. 
Using single-nucleus RNA sequencing and unbiased clus-
tering analysis of human SN dopaminergic neurons, they 
identified one neuron population showing high levels of 
SOX6 and AT1 receptor gene (AGTR1), specifically local-
ized in the most vulnerable region (i.e., the ventral tier) 
of the SNpc. Consistent with this, the highest loss of neu-
rons in PD patients and patients with Lewy body demen-
tia relative to controls was observed in the SOX6_AGTR1 

subpopulation, and the levels of AGTR1 expression cor-
related with the susceptibility to neurodegeneration in 
neurons. Similar results were found in the SNpc of other 
mammalian species [90, 120]. Interestingly, compared to 
more resistant neurons in other regions of the SN and 
other brain regions, these most vulnerable neurons in the 
ventral tier of the SNpc also show lower levels of buffer 
mechanisms, such as low calbindin levels, to counter-
act rising intracellular calcium [121, 122]. As described 
above, the major consequences of AT1 receptor overac-
tivation are the NADPH-oxidase-derived oxidative stress 
and intracellular calcium mobilization (Fig. 2).

Mechanisms of the increase in dopaminergic degeneration 
induced by brain RAS dysregulation
In both peripheral tissues and the brain, NADPH-oxi-
dase-derived oxidative stress, intracellular calcium dys-
regulation, and enhanced inflammatory responses appear 
to mediate the deleterious effects of overactivation of the 
pro-oxidative/pro-inflammatory axis of the tissue RAS 
(Fig. 2; Table 1). It is known that oxidative stress and neu-
roinflammation are early components of dopaminergic 
degeneration, and both factors, probably acting syner-
gistically with additional factors, lead to the progression 
of PD [123–125]. Consistent with the  role of NADPH-
oxidase activation and NADPH-oxidase-derived ROS 
in the exacerbation of dopaminergic neurodegeneration 
induced by AT1 receptor overactivation, neurodegenera-
tion is inhibited by blockers of NADPH-oxidase activa-
tion in animal models [22, 85, 103]. Furthermore, both 
angiotensin receptors and NADPH-oxidase components 
have been observed in dopaminergic neurons and glial 
cells in the SN of different mammals, including humans 
[22, 85, 87]. As previously observed in peripheral pro-
cesses, particularly in kidney and cardiovascular tissues, 
AngII acts both on tissue-resident cells (neurons in the 
brain) and inflammatory cells (glia, particularly micro-
glial cells in the brain) (Fig. 2). Activation of AT1 recep-
tors in dopaminergic neurons induces upregulation of 
NADPH-oxidase-derived superoxide and intracellular 
ROS levels (Fig.  2). As observed in other types of cells 
[126, 127], the NADPH oxidase-derived ROS interact 
with the mitochondria in dopaminergic neurons [105, 
128, 129], via mitochondrial ATP-sensitive potassium 
channels, leading to a further increase in mitochondrial 
ROS production; inversely, the mitochondrial-derived 
ROS further increase NADPH-oxidase activation and 
ROS generation, leading to a vicious cycle [20, 105]. In 
addition, the NADPH-oxidase-derived ROS can act as a 
second messenger in cellular signaling pathways, includ-
ing those triggering the inflammatory response and the 
migration of inflammatory glial cells into the affected 
region [19, 20, 130]. Furthermore, we have already 
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indicated that AT1 receptor activation, via IP3, induces 
intracellular calcium mobilization. Therefore, overacti-
vation of AT1 receptors can induce dysregulation of cell 
calcium homeostasis, which has been involved in PD 
pathogenesis, as physiological calcium levels must be 
correctly balanced to prevent neuronal death [131–133].

RAS receptors were also observed in glial cells (Fig. 2), 
including microglia, indicating that AngII can act directly 
on their receptors to modulate the neuroinflamma-
tory response. In inflammatory cells, such as microglia, 
NADPH oxidase activation can induce high levels of 
ROS that are released to the extracellular space, exac-
erbating oxidative stress in neurons. In microglia, the 
activation of NADPH-oxidase also induces low levels of 
intracellular ROS to act as a second messenger to mod-
ulate the inflammatory response [19, 20, 160]. Over the 
last decade, the major role of the RAS in the modulation 
of microglial inflammatory response has been shown in 
a considerable number of studies. In microglia, activa-
tion of the RhoA/ROCK pathway [88, 161, 162], release 
of TNF-α [163], and altered iron homeostasis [164] are 
involved in the enhancement of microglial response and 
dopaminergic degeneration by AngII/AT1 receptor acti-
vation (Fig. 2; Table 1). Up-regulation of NLRP3 inflam-
masome is also mediated by AT1 receptor activation 
[140]. Other RAS components also modulate the micro-
glial response, such as AT2 receptors that promote the 
expression of anti-inflammatory responses [30, 89], and 
prorenin receptors that enhance inflammation and its 
damaging effects on dopaminergic neurons [78].

In addition to oxidative stress and neuroinflammation, 
a major factor involved in PD progression is α-synuclein 
aggregation and cell-to-cell transmission. However, it 
was unknown whether AngII/AT1 receptor overactiva-
tion affects α-synuclein aggregation and transmission in 
neurons and glial cells. In recent experiments [156], we 

observed that AngII/AT1 receptor overactivation pro-
motes α-synuclein expression, aggregation, and glial 
transmission (Fig.  2; Table  1). This further supports the 
role of local RAS dysregulation in PD progression, and 
suggests that AT1 receptor blockers or RAS modulation, 
by enhancing the activity of the counterregulatory RAS 
receptors such as AT2 or Ang1-7/Mas receptors, is a 
promising therapeutic target for PD.

Potential mechanisms and processes triggering 
the angiotensin/dopamine dysregulation
Functional decline of the dopaminergic system induces RAS 
dysregulation
Several major processes such as oxidative stress, neuroin-
flammation, and accumulation of α-synuclein aggregates 
are involved in the dopaminergic neurodegeneration in 
PD. However, their order of appearance is not clear and 
it remains unknown which of them acts first. It is fre-
quently suggested that α-synuclein aggregation and Lewy 
body pathology are the initial processes triggering neu-
rodegeneration. However, molecular and cellular changes 
originating from different genetic and/or environmental 
triggers may occur before α-synuclein aggregation, par-
ticularly affecting the most vulnerable neurons [177, 178]. 
An initial impairment in dopamine metabolism [179], a 
decrease in tyrosine hydroxylase [180], oxidative dam-
age [181], and early neuroinflammation [182] have been 
suggested as initial triggers of the disease. Dysregulation 
of the brain RAS, and particularly, over-activation of the 
AngII/AT1 receptor axis are involved in all these poten-
tial triggering processes, and may be an early mecha-
nism mediating the progression of dopaminergic neuron 
degeneration. However, the next question could be what 
the cause for the RAS dysregulation is (Table 1).

Table 1 Dopaminergic degeneration induced by RAS dysregulation (AngII/AT1 axis overactivity)

Mechanisms of AT1‑induced neuron 
degeneration

References Possible processes triggering 
AT1 overactivity

References

Neuronal NADPH‑oxidase overactivity (↑ Oxida‑
tive stress)

[17, 20, 22, 85, 87, 105, 127–129] Decline in dopaminergic function [99, 100, 102, 134–138]

Neuronal mitochondrial dysfunction (↑ Oxidative 
stress)

[35, 38, 56–58, 127–129, 139] Aging‑related processes [35, 56, 57, 89, 99, 140–149]

Neuronal calcium dysregulation [15, 16, 121, 122, 132, 133] Menopause [150–155]

Increase in α‑synuclein aggregation [156] Chronic brain hypoperfusion [157–159]

Increase in α‑synuclein transmission [156] RAS‑related autoimmunity [80, 81]

Upregulation of the microglial inflammatory 
response

[20, 22, 30, 78, 88, 89, 140, 160–164] Metabolic syndrome [81, 165]

Gastrointestinal processes [91–93, 166–169]

Microbiota dysregulation [170–176]
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First, an initial decrease in dopamine levels (Fig.  2), 
due to dopamine homeostasis dysregulation, may lead 
to a compensatory increase in AngII/AT1 receptor activ-
ity to normalize dopamine levels. This may occur in the 
very initial stages of PD, aging, and other situations that 
have been associated with an increased risk of develop-
ing PD (see below). AngII/AT1 receptor overactivity may 
lead to a transitory upregulation of dopamine levels [67, 
99, 100, 102, 134]. However, the AngII/AT1  receptor 
axis upregulation may simultaneously promote oxidative 
stress, neuroinflammation, and α-synuclein aggregation 
through increased NADPH-oxidase activity and altera-
tion of intracellular calcium homeostasis. Furthermore, 
it is well known that dopamine is an immunomodula-
tory molecule, that dopamine receptors are present in 
immune effector cells [135, 136], and that dopamine 
inhibits NLRP3 inflammasome via dopamine receptors in 
several cell types [137, 138]. Therefore, an initial decrease 
in dopamine or dopaminergic function may enhance the 
inflammatory response, and upregulation of the pro-
inflammatory RAS axis appears to be involved in this 
process (Fig.  2). Consistent with this, we have recently 
shown that dopamine regulates RAS activity in glial cells, 
modulating AngII release by astrocytes and the expres-
sion of angiotensin receptors in microglia [102]. Dopa-
minergic neurotoxins such as  MPP+ can increase the 
release of angiotensinogen and AngII from astrocytes. 
However, dopamine, via type-2 (D2) receptors, down-
regulates the production of angiotensinogen and the 
expression of AT1 receptors while increasing the expres-
sion of AT2 receptors in astrocytes. In microglia, dopa-
mine administration induces downregulation of the AT1/
AT2 ratio and inhibits the inflammatory response [102]. 
Furthermore, recent studies showed that AT1 receptors 
mediate microglial inflammasome complex activation in 
dopamine-depleted models [140].

Consistent with the role of RAS dysregulation in PD 
progression, overactivity of the pro-oxidative/pro-inflam-
matory AngII/AT1 receptor axis has been observed in 
several processes described below, which are known to 
increase the risk of PD.

Aging‑related RAS dysregulation and PD
Different studies have shown that aging increases the 
vulnerability of dopaminergic neurons to degeneration. 
Advanced age is the first risk factor for PD and other 
neurodegenerative diseases. It has been shown that the 
pro-inflammatory and pro-oxidative state associated with 
aging (inflammaging) [183, 184] may favor the devel-
opment of degenerative diseases [185, 186]. As RAS is 
involved in the neuroinflammatory response, the AngII/
AT1 receptor upregulation in the nigrostriatal system 
may be a factor for increased dopaminergic vulnerability 

with aging. In aged male rats (see below for aged females), 
we observed higher levels of neuroinflammatory and oxi-
dative markers in the SN and striatum, and an increase 
in the dopaminergic neuron death triggered by dopamin-
ergic neurotoxins, which are downregulated by the AT1 
receptor antagonist candesartan [99, 141]. AT1 recep-
tor inhibition also ameliorates the upregulation of the 
NLRP3 inflammasome observed in aged rats [140, 187]. 
Aging-related upregulation of the pro-inflammatory axis 
components such as AT1 receptors and prorenin recep-
tors has also been observed [89, 99, 142]. In dopamin-
ergic neurons, this may be mediated by an age-related 
decrease in dopaminergic activity and the already men-
tioned RAS compensatory changes. Consistent with this, 
several studies have shown a loss of striatal D2 and D1 
receptors in aged animals and humans [143, 144], and 
that the dopaminergic system is altered during normal 
aging [145, 146]. However, other non-dopaminergic fac-
tors appear also involved, as the age-related upregula-
tion of the pro-oxidative/pro-inflammatory RAS has also 
been observed in other tissues apparently unrelated with 
the dopaminergic systems [147–149]. Interestingly, aged 
animals also show a decrease in the expression of com-
ponents of the RAS anti-inflammatory axis, such as AT2 
or Mas receptor expression, not only at the level of the 
cell membrane but also in the intracellular RAS system 
detailed below [35, 56, 57], revealing a decrease in the 
compensatory response of the RAS anti-inflammatory 
axis that contributes to the aging-related RAS imbalance.

Menopause, RAS dysregulation and PD
Menopause is also a risk factor for PD, as the incidence 
and the prevalence of the disease are higher in men and 
postmenopausal women than in premenopausal women 
of similar age [188, 189]. Over the last few decades, dif-
ferent experimental studies have reported the beneficial 
effects of estrogen against dopaminergic neurodegen-
eration [190, 191], and shown that the anti-inflammatory 
effects of estrogen are responsible for the neuroprotec-
tive effects [192, 193]. The beneficial effects of estrogen 
replacement therapies are more controversial [194, 195], 
with age and the period without estrogen before receiv-
ing the replacement treatment as underlying factors for 
the discrepancies. As estrogen-induced regulation of the 
RAS has been suggested to mediate the beneficial effects 
of estrogen in several peripheral tissues [150, 151], we 
studied the effects of the lack of estrogen on the nigros-
triatal RAS in female rats with early surgical menopause 
(young ovariectomized rats) and natural menopause 
(aged rats) [152–155]. The activity of the RAS pro-oxida-
tive/pro-inflammatory arm was increased in both groups 
of menopausal rats. Interestingly, treatment with the AT1 
receptor blocker candesartan reduced the loss of neurons 
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induced by low doses of dopaminergic neurotoxins in 
both groups of menopausal rats; however, the neuropro-
tection of the replacement therapy was effective only in 
the young rat groups [154]. We observed that there is a 
critical period for the neuroprotection with estrogen 
against dopaminergic neurodegeneration and that the 
local RAS plays a major role, as treatment with the AT1 
receptor antagonist candesartan provided significant 
neuroprotection beyond the critical period for estrogen, 
[152]. The brain RAS system may be an efficient thera-
peutic target for the treatment or prevention of PD in 
estrogen-deficient women, together with or substituting 
estrogen replacement therapies [152].

Interestingly, recent studies have shown that levels 
of estrogen are not the only factor responsible for the 
reduced activity of the RAS pro-inflammatory axis in the 
nigrostriatal system of females relative to males and that 
the expression of the anti-inflammatory AT2 receptors is 
higher in females, independently of circulating levels of 
estrogen and probably related with the sex chromosome 
complement effects, which contribute to attenuate the 
inflammatory response [30].

Chronic brain hypoperfusion, RAS dysregulation and PD
Chronic brain hypoperfusion has also been related to an 
increased risk of neurodegeneration and PD [157, 158, 
196]. This is consistent with previous studies in animal 
models showing that brain hypoperfusion enhances the 
neuronal loss induced by dopaminergic neurotoxins, 
together with the nigrostriatal expression of inflam-
matory markers such as IL-1β and increased oxidative 
stress such as increased NADPH-oxidase activity [159]. 
Interestingly, the hypoperfusion-induced changes are 
accompanied by upregulation of the AngII/AT1 receptor 
activity in the SN, and these changes are downregulated 
by chronic treatment with the AT1 receptor blocker can-
desartan [159].

RAS‑related autoimmunity and PD
Autoimmune processes have also been involved in the 
triggering and progression of degenerative diseases, 
including PD [197–199]. We have recently observed an 
increase in the serum levels of autoantibodies for AT1 
receptors (AT1 receptor agonistic autoantibodies, AT1-
AA) and ACE2 autoantibodies (ACE2 antagonists) in PD 
patients compared to non-PD controls. We also found 
both autoantibodies in the CSF samples from some PD 
patients [80]. Furthermore, there was a significant cor-
relation between serum levels of AT1-AA and serum 
inflammatory cytokines in PD patients but not in con-
trols. In parallel experiments, using in  vivo and in  vitro 
PD models, we confirmed that these autoantibodies are 
associated with the neurodegenerative process and the 

accompanying neuroinflammatory changes, and led to 
further progression of neurodegeneration by increasing 
the activity of AT1 receptors and decreasing the activity 
of ACE2-related anti-inflammatory RAS axis, respec-
tively. Consistent with the findings in PD patients, we 
observed a significant increase of these RAS-related 
autoantibodies in both serum and CSF of rats lesioned 
with the dopaminergic neurotoxin 6-OHDA. Further-
more, we confirmed in cultures that administration of 
AT1-AA increased the loss of dopaminergic neurons, 
which was inhibited by treatment with the AT1 recep-
tor blocker candesartan [80]. Altogether, these findings 
suggest that the generation of RAS autoantibodies dur-
ing early degenerative stages contributes to RAS dys-
regulation towards the proinflammatory axis and to the 
increased progression of dopaminergic degeneration and 
PD. ARBs or treatments that inhibit the generation of 
these autoantibodies may inhibit these effects.

Metabolic syndrome (MetS), RAS dysregulation and PD
In addition to the already mentioned risk factors, sev-
eral peripheral diseases related to chronic inflammation, 
appear to increase the risk of neurodegenerative diseases 
including PD [200, 201]. MetS has been associated with 
chronic peripheral inflammation and increased risk of 
PD [202, 203]. As in the case of neurodegenerative dis-
eases, MetS can be currently considered a silent epidemic 
disease. The definition of MetS consists of the presence of 
obesity and at least 2 of the following conditions: hyper-
tension, hypertriglyceridemia, low HDL cholesterolemia, 
and type-2 diabetes/hyperglycemia [204]. In a rat model, 
we showed that MetS leads to the upregulation of the pro-
oxidative/pro-inflammatory RAS axis in the SN, together 
with increases in oxidative stress, neuroinflammatory 
markers, and dopaminergic neurodegeneration, and all 
these changes were decreased by treatment with ARBs 
[81]. In rats, MetS also increases the circulating levels of 
major pro-inflammatory cytokines and 27-hydroxycho-
lesterol. Interestingly, serum levels of pro-inflammatory 
AT1 and ACE2 autoantibodies are increased and cor-
related with several MetS parameters. AT1 and ACE2 
autoantibodies are also present in the CSF of these rats. 
Osmotic minipump infusions of AT1 receptor autoanti-
bodies disrupt BBB and affect the brain, leading to upreg-
ulation of the pro-inflammatory RAS activity in the SN 
and a significant increase in dopaminergic neurodegen-
eration in two different rat PD models [81]. Activation 
of AT1 endothelial receptors by the circulating agonistic 
AT1 receptor autoantibodies appears as a major mecha-
nism of BBB disruption. This is consistent with several 
previous studies showing that stimulation of AT1 recep-
tors in endothelial cells and perivascular macrophages by 
circulating AngII, but not hypertension itself, is a major 
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mechanism of the BBB disruption observed in hyperten-
sion. Consistently, the disruption can be blocked by AT1 
receptor blockers (ARBs) and not by other anti-hyperten-
sive drugs [205–209]. In MetS patients, previous studies 
have also observed increases in the levels of pro-inflam-
matory cytokines [210, 211] and BBB permeability [212, 
213], which were attributed to the increase in circulating 
cytokines. However, the increase in circulating agonis-
tic AT1 receptor autoantibodies may also play a major 
role in BBB disruption, as patients with MetS show sig-
nificantly higher levels of AT1 receptor autoantibodies, 
which lead to dysregulation of the SN RAS as observed 
in the MetS rat model [81]. In addition, circulating levels 
of AT1 receptor autoantibodies are significantly higher 
in non-Parkinsonian patients with MetS than in non-
Parkinsonian patients without MetS. However, no signifi-
cant difference has been observed between Parkinsonian 
patients with and without MetS, both showing higher 
levels of AT1 receptor autoantibodies than normal con-
trols. This may be because dopaminergic degeneration 
and neuroinflammation in PD patients (without MetS) 
also lead to an increase in circulating autoantibodies [80], 
as detailed above. In MetS patients, both processes may 
trigger a vicious cycle that accelerates PD progression, 
which may be blocked by strategies against generation of 
these autoantibodies or by AT1 receptor blockers.

Additional mechanisms may be involved in the asso-
ciation between MetS and PD. Recent results from rat 
models of MetS suggest involvement of circulating extra-
cellular vesicles (EVs) and their RAS cargo in the link 
between MetS and PD [81]. EV cargo shows the molecu-
lar state of their cells of origin [214], including the cel-
lular level of RAS components [215]. Circulating EVs 
can cross the BBB and serve as inflammatory mediators 
[216, 217] and carriers of oxidative stress signals [218]. 
In the adipose tissues from obese animals, increases of 
angiotensinogen [219, 220], AT1 receptors [221],and 
prorenin receptors [222] have been reported. Consist-
ent with this, we have recently observed that in rat mod-
els of MetS, EVs are highly increased in the serum and 
show increased pro-oxidative/pro-inflammatory and 
decreased anti-oxidative/anti-inflammatory RAS com-
ponents, as well as increased inflammatory and oxidative 
stress markers. Interestingly, the increase of serum EVs, 
the RAS dysregulation and the increases of inflammatory 
and oxidative stress markers in the EV cargo are inhib-
ited by chronical treatment with theAT1 blocker cande-
sartan in MetS rats [165]. In vitro, administration of EVs 
isolated from the serum of MetS rats increases dopamin-
ergic cell death and regulates the astrocytic function, 
leading to the upregulation of neuroinflammation and 
oxidative stress markers. The effects of treatment with 
EVs are inhibited by pre-treatment of cultures with the 

AT1 blocker candesartan [165]. Altogether, in MetS, cir-
culating EVs may contribute, via RAS dysregulation, to 
the progression of neuroinflammation and dopaminergic 
cell death. This mechanism can be inhibited by treatment 
with ARBs such as candesartan.

Gastrointestinal processes, RAS dysregulation and PD
Many recent studies have suggested the association of 
gastrointestinal diseases with a higher risk of PD, and 
revealed the presence of a gut-brain axis. Gut dysmo-
tility is a PD component, although the mechanisms are 
still unclear. Conversely, the role of gut diseases in PD 
remains to be clarified. Braak´s hypothesis suggested that 
PD may be caused by pathogens that act on the gastroin-
testinal tract, which induce gastrointestinal inflammation 
and oxidative stress, leading to α-synuclein deposition 
that is retrogradely transported to the brain [223, 224]. 
However, the gut-brain axis also regulates the nigros-
triatal dopamine homeostasis, via the vagus nerve, as a 
caloric intake regulatory system [225, 226]. Consistent 
with this, a decrease in nigrostriatal dopamine level leads 
to changes in colonic expression of dopamine receptors 
as well as dopamine and acetylcholine levels in rodents, 
and experimental gut inflammation leads to changes in 
the nigrostriatal dopaminergic homeostasis [92]. Those 
results suggest that the nigrostriatal dopaminergic sys-
tem and the gastrointestinal system interact bidirec-
tionally and that both brain dopaminergic lesions and 
gastrointestinal lesions can lead to dysregulation of the 
functional interaction. This may explain the gastrointes-
tinal alterations observed in PD patients, and the higher 
vulnerability of central dopaminergic neurons after gas-
trointestinal inflammation [92]. Several recent studies in 
rodents and humans support this proposition [227–229], 
and brain-first and body-first subtypes of PD have been 
proposed [228].

Interestingly, the gastrointestinal tract has a local RAS 
that is involved in major functional processes such as 
motility, absorption, and gastrointestinal inflammation 
[166–168]. The gastrointestinal RAS also plays a role in 
gut diseases such as inflammatory bowel disease and gas-
trointestinal motility disorders [167, 168]. As in the case 
of the nigrostriatal dopaminergic system, mutual regula-
tion between the gastrointestinal dopaminergic and the 
angiotensin systems has been observed, which may be 
dysregulated with aging and by different processes, lead-
ing to increased vulnerability to gastrointestinal inflam-
matory diseases [91, 93]. Furthermore, nigrostriatal 
dopaminergic depletion also leads to upregulation of 
the pro-inflammatory axis of the gastrointestinal RAS, 
together with increased gut levels of oxidative stress and 
pro-inflammatory markers [92]. Conversely, experimen-
tal gastrointestinal inflammation leads to changes in 
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dopaminergic homeostasis and upregulation of the pro-
inflammatory RAS in the SN, which may contribute to 
increases in neuroinflammation, dopaminergic neuron 
vulnerability, and progression towards PD [92, 169].

Microbiota, RAS dysregulation, and PD
Recent studies suggest a connection of gut microbiota 
with neuroinflammatory and neurodegenerative disor-
ders such as Alzheimer’s disease and PD, and that inter-
vention on microbiota may provide a novel strategy 
for treating and preventing neurodegeneration [230]. 
Although the exact mechanism remains to be clarified, 
gut microbiota and its metabolites may contribute to 
PD pathophysiology through modulation of gut inflam-
mation (see above). However, additional mechanisms 
including the release of short-chain fatty acids or com-
pounds affecting the BBB may also be involved [230].

Interestingly, the RAS, including systemic and gastroin-
testinal RAS, has emerged as a major mediator of micro-
biota-derived effects [170, 171]. The microbiota and its 
metabolites may modulate gastrointestinal and systemic 
RAS, and RAS alterations may modify microbiota com-
position and metabolism. In animal models, treatment 
with microbiota metabolites such as trimethylamine-
oxide results in altered expression of RAS receptors in 
the heart and kidney [170, 172], ACE inhibitory peptides 
are produced during the bacterial fermentation processes 
[173], and chronic losartan treatment reduces gut dysbi-
osis [174]. Consistent with this, the microbiome, acting 
via RAS regulation, has been related to diabetic-induced 
kidney injury, hypertension, and organ damage related to 
hypertension [171, 175]. Interestingly, gut microbiota, via 
RAS, has been involved in obesity and the development 
of MetS [176]. As described in a previous section, MetS 
is related to a higher risk of PD [202, 203], and we have 
recently shown several potential mechanisms connecting 
MetS and PD [81, 165].

Given the above-mentioned major role of RAS dys-
function in the inflammatory changes involved in 
COVID-19, a role of the microbiota/RAS interaction in 
the pathogenesis and progression of COVID-19 has been 
suggested [231, 232]. The RAS is suggested to play a piv-
otal role in inflammatory processes that affect microbi-
ome dysregulation, COVID-19 and the development of 
PD [233]. As a consequence, prebiotics and probiotics 
have been suggested for the treatment of RAS-related 
diseases. Recent studies have shown that probiotics can 
activate the ACE2/MAS receptor axis [234], and that 
oral delivery of Ang(1–7)-expressing Lactobacillus par-
acasei led to significant modification of microbiota and 
decreased expression of neuroinflammatory genes in the 
cortex [235]. However, the microbiome-related effects 
require further clarification in future studies.

RAS‑related compensatory mechanisms protecting 
dopaminergic neuron. The intraneuronal RAS
It has been assumed that peptides of the antioxidative/
anti-inflammatory RAS, acting on their corresponding 
cell surface receptors (AT2, Mas, and Mas-related recep-
tors), counteract the effects of the pro-oxidative AngII/
AT1 receptor axis (Fig.  3). However, we have observed 
that at least in dopaminergic neurons, the intracellular 
RAS plays a major role in cell protection (Fig. 3). Several 
studies in peripheral cells have suggested that the intra-
cellular RAS may increase the effects of the pro-oxidative 
AngII/AT1 receptor axis of the paracrine or tissue RAS 
[236, 237]. As in several peripheral cells, different RAS 
receptors are observed in intracellular components of 
dopaminergic neurons, such as mitochondria and neu-
ronal nuclei [35, 56–58]. However, our studies showed 
that the nuclear and the mitochondrial RAS constitute a 
protective mechanism to buffer or counteract excessive 
pro-oxidative effects of the cell membrane AngII/AT1/
NADPH-oxidase (Nox2) effects (Fig.  3), as we reviewed 
in detail in [38].

In the mitochondria (Fig.  3), different angiotensin 
receptors modulate oxidative phosphorylation. AT1 
receptors, by activating mitochondrial NADPH-oxidase 4 
(Nox4), contribute to superoxide production and increase 
respiration. However, the receptors of the antioxidative 
system are much more abundant than the AT1 receptors 
in the mitochondria. We initially observed AT2 and Mas 
receptors, which induce, via nitric oxide, a downregula-
tion in mitochondrial respiration and modulate oxidative 
phosphorylation [56, 57]. Interestingly, we observed high 
levels of mitochondrial ACE2 and its product Ang1-7, 
which may act on mitochondrial Mas receptors. How-
ever, we surprisingly found high mitochondrial levels 
of the Mas-related receptor E (MrgE), which appear as 
the most abundant RAS receptor in the mitochondria 
of dopaminergic neurons [35]. In peripheral cells, ROS-
mediated crosstalk between the cell membrane Nox2 
and mitochondria has been shown, during which super-
oxide (and superoxide-derived ROS) produced by Nox2 
induces mitoKATP (mitochondrial ATP-sensitive potas-
sium channel) opening, increasing the generation of 
mitochondrial ROS [127, 139, 238]. We have shown this 
mechanism also in dopaminergic neurons treated with 
AngII [128, 129]. This mechanism, triggered by the acti-
vation of plasma membrane AT1 receptors, is counter-
acted by the mitochondrial AT2, Mas, and, particularly, 
MrgE receptors (Fig. 3).

As described above, activation of AT1 receptors at the 
cell membrane activates the membrane Nox2, which pro-
duces intracellular superoxide that may lead to oxida-
tive stress. However, it is known that activation of AT1 
receptors induces a simultaneous internalization of the 
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AngII/AT1 receptor complex towards the cell nucleus, 
where AngII activates nuclear AT1 receptors, inducing 
upregulation of nuclear superoxide/H2O2 (by activat-
ing nuclear Nox4) and  Ca2+ levels (by activating nuclear 
IP3). This results in regulation of gene expression to trig-
ger several compensatory mechanisms that protect cells 
against oxidative stress induced by the activation of sur-
face membrane AT1/Nox2 [38, 58] (Fig.  3). These pro-
tective mechanisms include (i) increased production of 
protective AT2 and Mas receptors that traffic to the cell 
membrane and, particularly, to the mitochondria, (ii) 
increased production of intracellular angiotensin, par-
ticularly Ang1-7 that can act on mitochondrial AT2 and, 

particularly, MrgE and Mas receptors, respectively, and 
(iii) upregulation of mRNA expression of cell protective 
components such as IGF-1 and PGC-1α [38, 58].

In summary, the intracellular RAS may compensate 
for the deleterious effects of cell membrane AT1 recep-
tor activation. Internalization of the AngII/AT1 complex 
activates nuclear AT1 receptors, which triggers protec-
tive mechanisms against cell membrane AT1-induced 
oxidative stress. This is possibly effective within physio-
logical levels of AT1 receptor activation. However, exces-
sive AngII/AT1 receptor activation at the cell surface 
membrane or an increased membrane AT1/AT2-Mas 
receptor ratio, under RAS deregulatory conditions as 

Fig. 3 The intraneuronal RAS compensates (green lines: neuroprotective mechanisms) for the pro‑oxidative effects of plasma membrane 
AT1 receptor activation by paracrine AngII (red lines: pro‑neurodegenerative mechanisms). Internalization of the AT1/Ang II complex 
to the nucleus and activation of nuclear and mitochondrial receptors by intracellular AngII and Ang 1–7, trigger several mechanisms that protect 
neurons against AT1‑induced oxidative stress during normal cell function. Antioxidative AT2, Mas, and MrgE receptors are more abundant 
in the mitochondria. In the nucleus, activation of AT1 receptors triggers several compensatory mechanisms, including increased mRNA expression 
of antioxidative RAS receptors, angiotensinogen, IGF1, and PGC1α. However, an excess of cell membrane AngII/AT1 receptor activity to compensate 
for dopamine decrease or other pathogenic factors may overwhelm the buffering mechanisms, leading to the progression of dopaminergic 
degeneration. AngII, angiotensin II; Ang1‑7, angiotensin 1–7; AT1, angiotensin type 1; AT2, angiotensin type 2; MAS, Mas receptors; MrgE, 
Mas‑related receptor MrgE; Nox4, NADPH‑oxidase 4; ROS, reactive oxygen species
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those described in the previous sections, may overwhelm 
the buffering mechanisms, leading to cell oxidative stress 
and progression of the disease. Interestingly, aging leads 
to the downregulation of mitochondrial AT2 and Mas/
MrgE receptors [35, 56, 57].

In addition to the specific RAS compensatory mecha-
nisms, other neuronal antioxidant systems and protective 
mechanisms against intracellular calcium dysregula-
tion also protect neurons from the paracrine AngII/AT1 
receptor overactivation. Consistent with this, we have 
shown that AngII also activates the nuclear factor eryth-
roid 2-related factor 2 (NRF2) signaling pathway in dopa-
minergic neurons [239], which is a key regulator of cell 
antioxidant mechanisms and redox homeostasis.

Perspectives, limitations and conclusions
Dopamine/RAS interactions have been observed in sev-
eral tissues, and dysregulation of these interactions leads 
to renal, cardiovascular, and other peripheral diseases. 
In the nigrostriatal system, local RAS dysregulation is 
involved in major processes responsible for the initiation 
and progression of dopaminergic neuron degeneration 
and PD, including oxidative stress, neuroinflammation, 
and α-synuclein aggregation and transmission. Con-
sistent with this, an imbalance in RAS activity towards 
the pro-oxidative/pro-inflammatory RAS axis has been 
observed in the SN and striatum of models exposed 
to factors associated with dopaminergic degeneration, 
including aging, menopause, chronic brain hypoperfu-
sion, MetS, gut inflammation, and microbiome dysregu-
lation. Autoantibodies against ACE2 and AT1 receptors 
are increased in PD models and PD patients and con-
tribute to BBB dysregulation and pro-inflammatory 
RAS enhancement. Circulating EVs with dysregulated 
RAS cargo, as observed in MetS models, may also pro-
mote neuroinflammation and dopaminergic degenera-
tion. Although the lack of more detailed knowledge of all 
mechanisms involved in the development and progres-
sion of PD limits the development of neuroprotective 
therapies, current data on the effects of RAS dysregula-
tion, as summarized here, suggest that regulating the 
brain RAS may be an effective neuroprotective strategy 
for individuals with a high risk of developing PD or in 
prodromal stages of PD.
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