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Abstract 

Multiple system atrophy (MSA) is a fatal progressive neurodegenerative disease. Biomarkers are urgently required 
for MSA to improve the diagnostic and prognostic accuracy in clinic and facilitate the development and monitoring 
of disease-modifying therapies. In recent years, significant research efforts have been made in exploring multidi-
mensional biomarkers for MSA. However, currently few biomarkers are available in clinic. In this review, we systemati-
cally summarize the latest advances in multidimensional biomarkers for MSA, including biomarkers in fluids, tissues 
and gut microbiota as well as imaging biomarkers. Future directions for exploration of novel biomarkers and promo-
tion of implementation in clinic are also discussed.
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Introduction
Multiple system atrophy (MSA) is a rare, rapidly pro-
gressing neurodegenerative disease first reported in 
1969 [1]. The pathological hallmark of MSA is glial 
cytoplasmic inclusions (GCIs) consisting of misfolded 
α-synuclein (α-syn) in affected brain regions, including 

striatonigral and olivopontocerebellar systems. Due to 
the presence of α-syn aggregation in the brain, MSA is 
identified as a synucleinopathy, together with Parkinson’s 
disease (PD) and Dementia with Lewy bodies (DLB). 
MSA is an orphan disease with an average annual inci-
dence of 0.6–0.7 per 100,000 person-years in Western 
countries [2]. Clinically, MSA is characterized by various 
combinations of progressive autonomic failure, cerebellar 
ataxia, parkinsonian syndrome and pyramidal features. 
According to the predominant motor symptom, MSA 
can be divided into the parkinsonian subtype (MSA-P) 
and the cerebellar subtype (MSA-C). The average sur-
vival of MSA patients is 6–10 years from symptom onset 
to death and very few patients can survive more than 
15  years [3]. Currently, there is no effective treatment 
strategy for MSA.

Based on the Movement Disorder Society Criteria for 
the diagnosis of MSA, the diagnostic certainty includes 
four levels: neuropathologically established MSA, clini-
cally established MSA, clinically probable MSA and 
possible prodromal MSA. The autopsy confirmation 
is still the gold standard for definite diagnosis of MSA 
[4]. Because of its clinical heterogeneity and overlap-
ping manifestations with other diseases, including 
PD, progressive supranuclear palsy (PSP), corticobasal 
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degeneration (CBD), and sporadic adult-onset ataxia of 
unknown aetiology (SAOA), the clinical diagnosis for 
MSA is quite challenging [5, 6]. Therefore, biomarkers 
facilitating the precise diagnosis is necessary in clinical 
practice. In addition, when evaluating the disease sever-
ity and therapeutic effect, the unified multiple system 
atrophy rating scale (UMSARS) remains the main tool 
[7]. However, the semiquantitative rating pattern and the 
ceiling effect have limited its reliability [8]. Thus, there is 
also an urgent demand for sensitive biomarkers of MSA 
for monitoring disease severity and therapeutic effects.

The Biomarker Definitions Working Group has defined 
a biomarker as “a characteristic that is objectively meas-
ured and evaluated as an indicator of normal biologi-
cal processes, pathogenic processes or pharmacologic 
response to a therapeutic intervention” [9, 10]. In previ-
ous studies of MSA, researchers have explored the poten-
tial value of biomarkers from different sample sources 
such as fluids (including cerebrospinal fluid, saliva, blood 

and urine), tissues, stool and imaging [11]. However, few 
biomarkers are available in the clinical practice. In this 
review, we systematically summarize the multidimen-
sional candidate biomarkers for MSA and discuss their 
prospects in clinical practice, aiming to provide direc-
tions for future research (Fig. 1).

Fluid biomarkers
α‑Syn
α-Syn is composed of 140 amino acids and present at 
presynaptic terminals. The precise function of α-syn is 
obscure, but currently it is considered as a regulator of 
neurotransmitter release and synaptic integrity [12]. 
There are three main forms of α-syn examined in MSA, 
i.e., total α-syn (t-α-syn), phosphorylated α-syn (pS129-
α-syn) and α-syn oligomers (o-α-syn) [13, 14]. Although 
the deposition of aggregated α-syn in the cytoplasm of 
oligodendroglia is considered as a pathologic hallmark of 

Fig. 1 Schematic overview of multidimensional biomarkers for MSA, including fluid, tissue, gut microbiota and imaging biomarkers. Illustration 
created with BioRender.com
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MSA (Fig. 2), whether it can serve as a reliable biomarker 
of MSA is still controversial.

Quite a few researchers have measured α-syn in cer-
ebrospinal fluid (CSF).  Most of the studies found lower 
CSF levels of t-α-syn in MSA patients compared to 
healthy controls (HCs) [15–22] and three studies found 
no significant difference [23–25]. One autopsy study 
showed an increasing tendency of t-α-syn in the post-
mortem CSF of MSA patients [26]. The conflicting con-
clusions might be attributed to the neuronal release of 
α-syn into the CSF and peripheral blood. As for the dif-
ferences among MSA and other neurodegenerative dis-
eases, some studies illustrated significantly decreased 
levels of CSF t-α-syn in MSA compared to PSP and CBD 
[14, 27]. However, the majority of studies found no sig-
nificant differences of CSF t-α-syn among MSA and 
other α-synucleinopathies, PSP or CBD [17, 21, 23, 24, 
26, 28], suggesting limited value in differential diagnosis 
(Table 1).

Phosphorylation at serine 129 is a common post-
translational modification of α-syn, which is more dis-
ease-specific and might improve the toxicity of α-syn 
by promoting its aggregation [29]. However, some stud-
ies in recent years have also implied a potential protec-
tive role for pS129-α-syn as it apparently inhibits further 
aggregation [30]. Although the exact role of pS129-α-
syn remains undetermined, its value as a biomarker has 
been explored. One study found significantly decreased 
CSF pS129-α-syn levels in MSA than in HC and PD 
[20]. However, other studies did not replicate the results, 

showing no remarkable differences of CSF pS129-α-syn 
between MSA and HC or PD [14, 26]. Moreover, the 
pS129-α-syn/t-α-syn ratio in the CSF of MSA patients is 
much higher than that in HC, but does not significantly 
differ from that in PD patients [14, 20]. Another form of 
α-syn, oligomeric α-syn (o-α-syn), shows no significantly 
different postmortem CSF levels among patients with 
MSA, PD, PSP and HC [26]. Thus, the oligomeric form of 
α-syn might have limited value as a biomarker for MSA 
(Table 1).

The values of α-syn levels in blood are also undeter-
mined. Two studies showed significantly higher lev-
els of plasma t-α-syn in MSA patients than in HCs [31, 
32], while another study found no significant difference 
in serum t-α-syn [17]. A meta-analysis reported that the 
plasma levels of t-α-syn in MSA patients are significantly 
increased compared with HC; however, the analysis only 
included two studies [22]. For comparison between MSA 
and PD, one study demonstrated decreased plasma t-α-
syn levels in MSA [31], while another reported no signifi-
cant difference [17]. In addition, recently, different types 
of α-syn in red blood cells (RBCs) have been investigated 
since erythrocytes are the major source of peripheral 
α-syn. Generally, levels of oligomeric and phosphoryl-
ated α-syn in RBCs have been reported to be significantly 
increased in MSA patients than in HCs [33–35]. One of 
these studies showed that pS129-α-syn levels in RBCs 
could distinguish MSA patients from HCs with a sensi-
tivity of 80.37%, a specificity of 88.64% and an area under 
the curve (AUC) of 0.91, suggesting a high diagnostic 

Fig. 2 Pathological mechanisms involved in MSA and related biomarkers. Illustration was created with BioRender.com
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value of pS129-α-syn in RBCs for MSA (Table 1). How-
ever, the ability of α-syn in RBCs to differentiate MSA 
from other neurodegenerative diseases including PD, PSP 
and CBD still need further exploration [35].

Recently, seeding aggregation assays (SAAs), includ-
ing real-time quaking-induced conversion (RT-QuIC) 
technology and protein-misfolding cyclic amplifica-
tion (PMCA), have been applied to measure the seeding 
activity of pathological α-syn [36–38]. These two assays 

Table 1 Potential fluid protein and metabolite biomarkers for MSA

BBMA bead-based multianalyte assay, CoQ10 coenzyme Q10, CSF cerebrospinal fluid, ELISA enzyme-linked immunosorbent assay, GFAP glial fibrillary acidic protein, 
HC healthy control, Hcy homocysteine, HPLC high-performance liquid chromatography, MBP myelin basic protein, MSA multiple system atrophy, NA not available, NfL 
neurofilament light protein, O-α-syn oligomeric α-synuclein, PS129–α-syn serine 129 phosphorylated α-synuclein, SIMOA single molecular array, SPCEI solid-phase 
competitive chemiluminescent enzyme immunoassay, T-α-syn total α-synuclein, UPLC-MS ultra-performance liquid chromatography coupled with mass spectrometer

Biomarker Fluid Method MSA versus HC
(cohorts)

MSA versus PD
(cohorts)

References

T-α-syn CSF ELISA
BBMA

Decreased
(Sweden cohort, UK cohort, Germany cohort, US 
cohort)
Increased
(UK cohort)
No difference
(Netherlands cohort, Japan cohort)

No difference
(Germany cohort, US cohort, UK cohort, Nether-
lands cohort, Japan cohort)

[15–21, 23–26]

Blood ELISA Increased
(China cohort, South Korea cohort)
No difference
(Germany cohort)

Decreased
(South Korea cohort)
No difference
(Germany cohort)

[17, 31, 32]

PS129-α-syn CSF ELISA
BBMA

Decreased
(US cohort)
No difference
(UK cohort)

Decreased
(US cohort)
No difference
(UK cohort, Greece cohort)

[14, 20, 26]

RBC ELISA Increased
(Chinese cohort)

NA [35]

O-α-syn CSF ELISA No difference
(UK cohort)

No difference
(UK cohort)

[26]

RBC ELISA Increased
(Chinese cohort)

No difference
(Chinese cohort)

[33, 34]

CoQ10 CSF ELISA Decreased
(Spain cohort)

Decreased
(Spain cohort)

[59]

Blood UPLC-MS
HPLC

Decreased
(China cohort, Japan cohort)

No difference
(China cohort, Japan cohort)

[60–62]

NfL CSF ELISA
SIMOA

Increased
(UK cohort, Germany cohort, Sweden cohort, 
Netherlands cohort, France cohort, Spain cohort, 
Russia cohort)

Increased
(UK cohort, Germany cohort, Sweden cohort, 
Netherlands cohort)

[16, 21, 71–74]

Blood SIMOA Increased
(UK cohort, Sweden cohort, France cohort, Spain 
cohort, Germany cohort, Russia cohort, Nether-
lands cohort)

Increased
(UK cohort, Sweden cohort, Netherlands cohort)

[66, 73, 74]

YKL-40 CSF ELISA Increased
(UK cohort)
No difference
(Sweden cohort)

Increased
(Sweden cohort)
No difference
(UK cohort)

[16, 79, 80]

Blood ELISA No difference
(Sweden cohort)

No difference
(Sweden cohort)

[80]

GFAP CSF ELISA
SIMOA

No difference
(US cohort, Germany cohort, Netherlands cohort)

Increased
(Germany cohort)
No difference
(Netherlands cohort)

[82–84]

MBP CSF ELISA Increased
(Netherlands cohort)

Increased
(Netherlands cohort)

[84, 87]

Hcy Blood SPCEI Increased
(China cohorts)

Increased (male)
(China cohorts)

[96–99]
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were originally used for the detection of pathological 
prion proteins in body fluids and skin tissues [39–41]. 
Increasing evidence suggests that pathological α-syn 
spreads throughout the nervous system in a prion-like 
manner, acting as seeds to induce further aggregation 
of native α‐syn [42, 43]. Thus, seed amplification assays 
may be used for the detection of pathological α-syn, even 
a very small amount of α-syn, by amplifying the abnor-
mal protein to detectable levels [38, 44, 45]. In CSF sam-
ples, three studies revealed good performance of seed 
amplification assays in differentiating MSA from HC 
[45–47]. However, another two studies found quite low 
rates of positive RT-QuIC results in MSA patients [48, 
49]. This discrepancy may be caused by differences in 
specific experimental conditions. By contrast, CSF seed 
amplification assay results consistently showed good per-
formance in differentiating MSA from PD and DLB, sug-
gesting the presence of different conformational strains 
of α-synuclein among α-synucleinopathies [45–49]. The 
correlation analysis showed that all RT-QuIC parameters 
were associated with worse clinical progression of MSA 
[47] (Table 2).

Due to the invasive nature of CSF collection, more eas-
ily accessible fluids are in need to investigate the seeding 
activity of pathological α-syn. Only one study assessed 
the use of salivary samples and found that salivary α-syn 
RT-QuIC assay had a detection sensitivity of 61.1% in 
MSA patients [50] (Table  2). Overall, there has been 
increasing evidence for the potentials of humoral α-syn 
seeding activity as a reliable biomarker for MSA. Fur-
ther validation in larger cohorts including various sam-
ples using established uniform experimental procedures 
is necessary.

Coenzyme Q10 (CoQ10)
CoQ10 is a large, lipid-soluble molecule located at the 
cell membrane. It is a powerful cellular antioxidant and 
can transport electrons from complexes I & II to complex 
III in the mitochondrial electron transport chain. One of 
the essential enzymes involved in CoQ10 biosynthesis is 
hydroxbenzoate polyprenyltransferase (CoQ2) encoded 
by the COQ2 gene [51]. Previous studies have found that 
homozygous and compound heterozygous mutations in 
COQ2 may be the etiology of familial and sporadic MSA, 
and several mutation sites in COQ2 have been identified 
to be associated with increased susceptibility to MSA. In 
addition, the level of CoQ10 and its activity have been 
proven to be decreased in MSA patients with COQ2 
mutation [52–55]. Subsequent studies also showed 
impaired mitochondrial function and significant reduc-
tion of CoQ10 levels in lymphoblastoid cells, fibroblasts 
and cerebellum of MSA patients [56–58], suggesting the 
relationship of CoQ10 with MSA pathogenesis.

Only one study has investigated the diagnostic value 
of CSF CoQ10 levels in MSA patients so far. Compared 
with HC, PD or PSP patients, the level of CSF CoQ10 
in MSA patients was significantly decreased, but did 
not differ between MSA-C and MSA-P subtypes [59]. 
The conclusions deserve further consideration due to 
the small sample size employed in the study. Most of 
the studies investigating CoQ10 levels in blood revealed 
lower CoQ10 levels in MSA patients compared to HCs 
[60–62]. Clinical association analysis results showed a 
weak negative correlation between plasma CoQ10 levels 
and UMSARS-II scores in MSA-C patients [60]. None 
of these studies found significant differences between 
patients with MSA and PD, nor between different sub-
types of MSA (Table  1). Although the conclusions of 
current studies are consistent, the reliability still needs 
to be further validated, because the CoQ10 level can be 
affected by many confounders, including dietary habits, 
lipoprotein levels, hyperthyroidism and drugs [61].

Neurofilament light protein (NfL)
Neurofilament is a neuronal cytoskeletal protein, which 
is released upon axonal damage, into the extracellular 
space and subsequently to CSF and blood. NfL is the 
smallest subunit of neurofilament protein and a marker 
for central neuronal damage, particularly sensitive to 
axonal destruction of long fibre tracts [63, 64]. Since 
axonal injury is a specific pathogenic process in neurode-
generative diseases, theoretically, NfL may serve as a bio-
marker for neurodegenerative diseases. The sensitivity of 
traditional enzyme linked immunosorbent assay (ELISA) 
to detect blood NfL is limited due to the low concen-
tration (picograms per milliliter). In addition, repeated 
detection of CSF is inconvenient, even if the concentra-
tion of CSF NfL is relatively high. Recently, the develop-
ment of single-molecule array (Simoa) technique with 
ultra-sensitivity has allowed quantification of the analyte 
at levels < 1 pg/ml, paving the way for evaluating NfL lev-
els in both central and peripheral fluids [63, 65]. NfL has 
been proposed as a sensitive diagnostic or prognostic 
marker for various neurodegenerative diseases, including 
PD, Alzheimer’s disease (AD), spinocerebellar ataxia type 
3 (SCA3), amyotrophic lateral sclerosis (ALS) and Hun-
tington’s disease (HD) [66–70]. Likewise, NfL may also be 
a potential biomarker for MSA since neuronal damage is 
a crucial aspect of MSA pathogenesis as well (Fig. 2).

Among the studies of CSF NfL, both ELISA and 
Simoa technique showed markedly elevated CSF NfL 
levels in MSA patients compared to HC and PD with 
satisfactory discrimination [16, 21, 71–74]. Meanwhile, 
the high correlation between CSF and blood NfL lev-
els has been acknowledged since NfL could penetrate 
through the blood–brain barrier [73, 75, 76]. Compared 
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with HCs and PD patients, MSA patients show signifi-
cantly increased serum and plasma levels of NfL, both 
of which display strong differentiating power with an 
AUC > 0.9 against HC and > 0.8 against PD [66, 73, 74]. 
In addition, serum NfL is able to differentiate MSA-C 
from SAOA and SCA according to a pilot study, with 
significantly higher levels in MSA patients [64]. These 
findings suggest that humoral NfL might serve as a 

valuable biomarker in diagnosis and differential diag-
nosis of MSA. However, studies on its performance in 
discriminative diagnosis of MSA from other neuro-
degenerative diseases are needed (Table  1). As for the 
association with disease progression, previous studies 
consistently showed that blood NfL levels are signifi-
cantly correlated with disease severity and the baseline 
concentration is a good predictor for MSA progression 
[73, 74, 77]. These results suggest that the blood NfL is 

Table 2 Seeding activity of pathological α-syn in different samples from MSA patients measured by seeding aggregation assays

AD Alzheimer disease, CBD corticobasal degeneration, CBS corticobasal syndrome, DLB dementia with Lewy bodies, HC healthy control, iRBD Idiopathic REM sleep 
behaviour disorder, MSA multiple system atrophy, PAF pure autonomic failure, PD Parkinson’s disease, PMCA protein misfolding cyclic amplification, PSP progressive 
supranuclear palsy, RT-QuIC real-time quaking-induced conversion

Sample Research group Participants Assay(s) Main findings

Cerebrospinal fluid Singer et al. [46] 62 MSA, 16 PD, 13 DLB, 29 HC PMCA 96.8% (60/62) of MSA patients showed positive seeding 
activity

Maximum ThT fluorescence significantly distinguished 
MSA from HC (AUC = 0.97) and PD/DLB (AUC = 0.93)

The fluorescence plateau occurred significantly earlier 
in MSA than PD/DLB

Shahnawaz et al. [45] 75 MSA, 94 PD, 56 HC PMCA 86.7% (66/75) of MSA patients showed positive seeding 
activity

The fluorescence plateau occurred significantly earlier 
and was lower in MSA compared to PD

The biochemical and morphological features of α-syn 
aggregates were different between MSA and PD

Poggiolini et al. [47] 24 MSA, 74 PD, 45 iRBD, 55 HC RT-QuIC 75.0% (18/24) of MSA patients showed positive seeding 
activity

RT-QuIC parameters were associated with UMSARS change

Rossi et al. [48] 33 MSA, 48 DLB, 60 AD, 31 
PSP/CBS, 71 PD, 18 iRBD, 28 
PAF, 143 HC

RT-QuIC Pathologic seeding activity was seldom found in MSA

Quadalti et al. [49] 68 MSA, 116 PD, 52 PSP, 34 HC RT-QuIC Only 4.4% (3/68) of MSA patients showed positive seeding 
activity

Saliva Luan et al. [50] 18 MSA, 75 PD, 36HC RT-QuIC 61.1% (11/18) of MSA patients showed positive seeding 
activity

The fluorescence plateau significantly distinguished MSA 
from HC (AUC = 0.8194)

The lag phase was significantly longer in MSA than in PD

Skin Wang et al. [41] 3 MSA, 47 PD, 7 LBD, 17 AD, 8 
PSP, 5 CBD, 43 HCs (autopsy)

RT-QuIC, 
PMCA

66.7% (2/3) of MSA patients showed positive seeding 
activity

Donadio et al. [140] 8 MSA, 17 PD, 5 DLB, 3 PAF RT-QuIC Seeding activity from patients with synucleinopathies 
was higher than that of non-synucleinopathies

Olfactory mucosa De Luca et al. [146] 11 MSA, 18 PD, 6 CBD, 12 PSP RT-QuIC 81.8% (9/11) of MSA patients showed positive seeding 
activity

The biochemical and morphological features of α-syn 
aggregates were different between MSA and PD

Bargar et al. [147] 30 MSA, 13 PD, 11 HC RT-QuIC 90% (18/20) of MSA-P and only 10% (1/10) of MSA-C 
patients showed positive seeding activity

Seeding activity positively correlated with rigidity and pos-
tural instability

De Luca et al. [148] 2 MSA, 2 PD, 1 HC RT-QuIC 100% (2/2) of MSA patients showed positive seeding 
activity

The biochemical and morphological features of α-syn 
aggregates were different between MSA and PD
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a reliable biomarker for monitoring the disease severity 
and the therapeutic effect on MSA.

YKL‑40
YKL-40, also known as chitinase-3-like-1, is a mem-
ber of the 18-glycosyl hydrolase family and extensively 
expressed in various cells such as chondrocytes, synovial 
cells, neutrophils, macrophages, astrocytes and micro-
glia. Previous studies have verified the participation of 
YKL-40 in inflammation. Since neuroinflammation with 
activation of microglia and astrocytes is an important 
pathogenic process in MSA, YKL-40 may be a potential 
biomarker of MSA [16, 78] (Fig.  2). However, the con-
clusions of published studies are inconsistent. Two stud-
ies using CSF samples showed no significant difference 
between MSA patients and HCs [79, 80], while another 
study demonstrated significantly higher CSF YKL-40 lev-
els in MSA patients than in HCs [16]. A meta-analysis 
based on the above two studies [79, 80] found no sig-
nificant difference of CSF YKL-40 levels between MSA 
patients and HCs [81]. There is also inconsistency for the 
comparison of MSA vs PD patients. Two studies found 
that the level of YKL-40 in the CSF of MSA patients was 
significantly higher than that of PD patients [79, 80], 
but another study found no significant difference [16]. 
Only one study compared serum YKL-40 levels in MSA 
patients with HCs and PD patients, and no significant 
difference was found [80] (Table  1). Based on the exist-
ing findings, YKL-40 may not be a reliable biomarker for 
MSA, despite the limited number of relevant studies.

Glial fibrillary acidic protein (GFAP)
GFAP is another marker of glial cell activation and plays 
an important role in the communication between glial 
cells and Purkinje cells. Because the activation of glial 
cells is a vital pathological process in MSA, GFAP may 
serve as a potential biomarker for MSA (Fig.  2). When 
comparing MSA patients with HCs, current studies 
all show that CSF concentrations of GFAP tend to be 
higher in MSA patients, but without statistical signifi-
cance [82–84]. When comparing MSA with PD, studies 
have reported higher or similar CSF GFAP levels in MSA 
[83, 84] (Table 1). In addition, a meta-analysis concluded 
that the CSF levels of GFAP in MSA patients are signifi-
cantly higher than that in HCs; however, this meta-anal-
ysis included limited number of studies [21]. In brief, the 
use of GFAP as a biomarker of MSA needs to be further 
explored.

Myelin basic protein (MBP)
MBP is the second most abundant protein in the central 
nervous system (CNS) myelin and is bound to the cyto-
solic surface of the oligodendrocyte membrane. MBP is 

essential for the formation of CNS myelin. It also plays 
vital roles in signaling, interacting with the cytoskeleton, 
regulating the expression of other myelin proteins and 
binding polynucleotides in the nucleus [85]. The levels of 
MBP may be elevated in the CSF of MSA patients since 
demyelination is an important part of the pathogenesis of 
MSA [86] (Fig. 2). Researchers have analyzed MBP levels 
in the CSF and showed significantly increased concen-
trations of MBP in MSA when compared with HCs and 
PD [84, 87]. Moreover, one study demonstrated that the 
CSF MBP could differentiate MSA and PD at early stages 
with high accuracy [84] (Table 1). Thus, CSF MBP has the 
potential to be a diagnostic biomarker of MSA. Valida-
tion in larger sample cohorts is needed.

Homocysteine (Hcy)
Hcy is a sulfur-containing amino acid generated during 
methionine metabolism. Previous studies have indicated 
that Hcy is involved in the modulation of N-methyl-
D-aspartate (NMDA) receptor, and is associated with 
neuroinflammation, oxidative stress, neuronal apoptosis, 
signaling pathway regulation, and mitochondrial dys-
function [88, 89]. These physiological processes play vital 
roles in the pathogenesis of neurodegenerative diseases, 
and hyperhomocysteinemia has been proven to increase 
the risk of AD and PD [90–94]. Besides, a randomized 
controlled trial showed that the serum level of Hcy is 
positively correlated with the rate of brain atrophy [95]. 
Therefore, Hcy may serve as an indicator of neurodegen-
erative disorders.

Serum Hcy is gaining increasing attention in the field 
of MSA. Most studies have revealed that the serum levels 
of Hcy in MSA patients are significantly increased com-
pared with HCs, especially in male patients [96–99]. A 
meta-analysis based on three studies also showed higher 
serum Hcy levels in MSA patients than in HCs [81]. 
When compared with PD patients, a study found that 
the serum Hcy level in male MSA patients is significantly 
higher than that  in male PD patients, while no signifi-
cant difference was observed in females [99] (Table 1). In 
addition, the serum Hcy levels are positively correlated 
with the Hoehn-Yahr stage, the UMSARS-IV score, and 
the nonmotor symptoms score burden—cardiovascular, 
and negatively correlated with the MMSE score of MSA 
patients, indicating that Hcy is associated with aggrava-
tion of motor and non-motor dysfunction in MSA [97, 
99]. However, the specificity of Hcy requires further eval-
uation since it can be involved in the pathophysiology of 
various human diseases.

RNA
Transcription of genes is a critical process as it is the 
driver of protein expression and other cellular activities, 
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which can adapt rapidly to physiological or pathological 
changes. Thus, transcriptional profiles provide possibili-
ties as promising biomarkers for diseases. Besides mes-
senger RNAs (mRNAs) which account for 1%–2% of 
human transcriptome, non-coding RNAs, such as micro-
RNAs (miRNAs), long non-coding RNAs (lncRNAs) and 
circular RNAs (circRNAs), are also receiving increasing 
attention due to their regulatory functions in transcrip-
tion, splicing and translation [100, 101]. In addition, the 
emerging transcriptomics investigating the comprehen-
sive RNA transcripts in a high-throughput manner offers 
an encouraging approach for transcriptional biomarker 
discovery [102].

mRNAs
The biomarker value of mRNAs has been proven in 
various neurodegenerative diseases, such as AD and PD 
where several classifiers consisting of different blood 
RNA profiles show high distinguishing accuracies [103–
106]. For MSA, both microarrays and RNA sequenc-
ing have been performed to investigate the differentially 
expressed genes (DEGs) in brain tissues compared to 
HCs [107–110]. However, only one study has assessed 
the transcriptomic landscape in the peripheral blood of 
MSA patients, which found distinct expression profiles of 
MSA compared to HC and PD, including DEGs involved 
in the nervous system development, cytoskeleton, pro-
tein modification, etc. Besides, the discrepancy between 
MSA subtypes has also been revealed, that MSA-P 
patients possess more DEGs than MSA-C patients when 
compared to HCs [111]. Another study analyzed the lev-
els of several targeted gene transcripts from nasal fluid 
cells in MSA and found reduced mRNA levels of par-
kin and AIMP2 in MSA patients compared to HC [112]. 
Although none of the studies directly explored the distin-
guishing accuracy of altered gene transcripts, the exist-
ing evidence suggests the biomarker potential of mRNAs 
for MSA. Thus, more transcriptomics studies of different 
clinical samples are needed to provide additional evi-
dence for the biomarker value of mRNAs in MSA.

MiRNAs
MiRNAs are small single-stranded non-coding RNAs 
found in almost all eukaryotic cells and several viruses 
[113]. MiRNAs negatively regulate the expression of 
target genes by promoting the inhibition and degrada-
tion of mRNAs. On the one hand, previous studies have 
observed that miRNAs are widespread in the CNS and 
that aberrant expression of miRNAs may cause neuro-
degeneration by various mechanisms including mito-
chondrial dysfunction, oxidative stress, autophagy, 
α-syn accumulation, synaptic transmission and neu-
roinflammation [114–116]. On the other hand, several 

disease-related proteins in neurodegenerative disorders 
have been proven to influence miRNAs [117–119]. Thus, 
increasing attentions are being paid to miRNAs and their 
functions in neurodegenerative diseases. MiRNAs are 
widely distributed in biofluids, highly stable and quanti-
fiable [114, 120–123]. Besides, existing transcriptomics 
studies have reported aberrant miRNAs in MSA, so miR-
NAs are considered as promising MSA biomarkers.

In the CSF of MSA patients, several miRNAs have 
been found to be significantly increased (including miR-
184, miR-218-5p, and miR-7-5p) or decreased (includ-
ing miR-19a, miR-19b, miR-24, and miR-34c) compared 
with HCs, and a combination of these miRNAs presents 
an improved diagnostic accuracy. There are also signifi-
cant differences between MSA and PD patients. MiR-
184 and miR-7-5p are much higher while miR-106b-5p 
and miR-let-7b-5p are lower in MSA compared with PD. 
However, no combined miRNA panel has been found 
to discriminate MSA from PD with high accuracy [124, 
125]. Among these miRNAs, miR-7-5p is more disease-
specific, which has been reported to target α-syn mRNA 
and subsequently regulate α-syn expression and neuron 
survival [126].

In the blood, a variety of differentially expressed miR-
NAs have been found in MSA patients compared with 
HCs and PD patients, including miR-16-5p, miR-24-3p, 
miR-7641, miR-191, miR-671-5p and miR-19b-3p [127–
132]. A combination of serum miR-141, miR-193a-3p and 
miR-30c has been verified to well discriminate between 
MSA and HC with an AUC of 0.895, and a diagnostic 
panel consisting of five miRNAs (miR-31, miR-141, miR-
181c, miR-193a-3p and miR-214) accurately differenti-
ated MSA from PD with an AUC of 0.951 [129]. Besides, 
the expression levels of plasma miR-671-5p, miR-19b-3p 
and miR-24-3p showed significant differences between 
the two subtypes of MSA [127].

In conclusion, existing findings indicate that miRNA 
transcriptomics might be an ideal biomarker for MSA, 
but the lack of a uniform detection method has limited 
its application. In addition, only a small number of MSA 
patients were included in published studies, so large-
cohort studies based on multi-center cooperation may 
be a future direction to better investigate the biomarker 
value of miRNAs in MSA patients.

Tissue biomarkers
Skin
α‑Syn
The aberrant aggregation of α-syn is considered as the 
initiating factor for α-synucleinopathies. Previous studies 
have proven that pathological α-syn is not restricted to 
the CNS, but could also be detected in multiple periph-
eral organs and tissues including skin, salivary glands, 
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sympathetic ganglia, vagus nerve, gastrointestinal tract, 
genitourinary tract, and heart [133, 134]. Such periph-
eral pathological changes may be a precursor to central 
pathology and associated with complex clinical symp-
toms [41].

Skin biopsy is a relatively safe and highly acceptable way 
to measure α-syn deposition in the peripheral nervous 
system [135]. Existing studies demonstrate that pS129-α-
syn deposition within dermal nerves could be detected in 
skin of 67%-86% of MSA patients, but could not be found 
in HCs [136–138]. The results indicate that cutaneous 
pS129-α-syn might be a reliable biomarker to help iden-
tify MSA from HC. Moreover, the location of pS129-α-
syn deposition also provides evidence for the differential 
diagnosis among α-synucleinopathies. Skin biopsies of 
MSA patients display a prevalent abnormal pS129-α-syn 
deposition in somatic sensory fibers, whereas PD and 
DLB patients mainly show a widespread involvement of 
autonomic fibers [136–139]. Thus, the specific aggrega-
tion of pS129-α-syn in skin somatic sensory fibers may 
help differentiate MSA from other α-synucleinopathies.

The RT-QuIC technology and PMCA have also been 
applied to measure pathological α-syn in skin and dem-
onstrated significantly higher aggregation seeding 
activity in individuals with α-synucleinopathies than 
non-synucleinopathies and HC [41, 140]. However, lim-
ited investigations have been conducted in MSA. Only 
one study included three MSA autopsy skin samples and 
two of them showed positive seeding activity [41]. There-
fore, the seeding activity of α-syn in skin needs to be 
validated in more cases including both postmortem and 
antemortem samples. Moreover, the study found variable 
sensitivity and specificity of RT-QuIC in different body 
regions, with posterior cervical region exhibiting higher 
and earlier α-syn seeding activity than abdominal region 
or leg [41] (Table  2). Thus, standardized procedure and 
uniform sampling region should be taken into account 
when detecting cutaneous α-syn.

Peripheral skin innervation
Autonomic dysfunction is an important clinical mani-
festation of MSA. However, autonomic impairment such 
as orthostatic hypotension, sphincter dysfunction and 
constipation is also commonly observed in PD and pure 
autonomic failure (PAF) patients and is not sufficient 
to distinguish between these disorders [141]. Recently, 
some scholars have explored the dermal innervations and 
speculated that the denervation of peripheral nerves may 
be a useful marker for differentiating among MSA, PD 
and PAF. Epidermal nerve fiber density (ENFD) reflects 
the number of unmyelinated fibers per linear millimetre 
of epidermis. Previous studies have found a pronounced 
decrease of ENFD in these three disorders, but ENFD is 

much lower in patients with PD or PAF compared with 
MSA [136, 139, 142–144]. Besides, studies also revealed 
different skin autonomic innervations among MSA, PD 
and PAF. Though distal autonomic innervation of the 
sweat glands in MSA patents is slightly decreased when 
compared with HCs, it is relatively preserved in MSA 
compared to PD and PAF, particularly for the choliner-
gic and adrenergic autonomic innervation [136, 142]. 
Accordingly, peripheral skin innervation is helpful for 
differential diagnosis of MSA, but the diagnostic utility 
needs further verification due to the limited investigation.

Olfactory mucosa (OM)
Olfactory dysfunction is a common feature of 
α-synucleinopathies and α-syn is reported to be more 
abundant synuclein compared with β- and γ-synuclein in 
OM [145]. In contrast to CSF, OM samples can be col-
lected non-invasively and repeatedly. Thus, the patho-
logical α-syn in OM may offer as a promising biomarker.

RT-QuIC analysis of OM samples from MSA and PD 
patients showed higher aggregation seeding activity 
than non-synucleinopathies and HC [146–148]. Besides, 
the biochemical and morphological properties of α-syn 
fibrils are significantly different between PD and MSA 
[146, 148]. A study further revealed that the seeding 
activity was present in 90% MSA-P patients whereas 
no seeding activity was found in almost all MSA-C OM 
samples [147]. The results suggest that α-syn aggregation 
seeding activity in OM may be a promising biomarker for 
discriminating between these two subtypes. Moreover, 
the seeding activity of α-syn in OM has been reported to 
be positively related with rigidity and postural instability 
and shows a tendency of inverse association with disease 
duration [147] (Table  2). However, whether COVID-19 
infection might influence the properties of the OM sam-
ples and then alter the results of α-syn seeding activity is 
unknown, so additional investigations in post-infection 
population will be needed.

Gut microbiota
Gut microbiota refers to the microorganisms residing 
in the human digestive tract, including bacteria, fungi, 
viruses and bacteriophage. The number of gut microor-
ganisms is between  1013 and  1014 orders of magnitude, 
with a range of 500 to 1000 species [149]. It has been 
reported that gut microbiota plays important roles in 
regulating immunity, digestion, intestinal endocrine, 
neurological signaling, and drug and toxin metabolism 
of the host, as well as producing numerous compounds 
affecting the physiological status of the host [150]. In 
particular, the proposed microbiome-gut-brain axis sug-
gests that gut microbiota may participate in the homeo-
stasis and diseases of CNS through immune, neurological 
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and neuroendocrinal pathways [151, 152]. Therefore, the 
disorganized gut microbiota has been considered as a 
potential therapeutic target and a possible biomarker for 
neurodegenerative disorders, such as AD, PD and multi-
ple sclerosis (MS) [153–157].

At present, two methods are mainly used for the detec-
tion of gut microbiota: marker-gene studies such as 16S 
rDNA sequencing and multi-omics technology such 
as metagenomic sequencing. Both methods have been 
applied in MSA patients. Increased abundance of puta-
tive pro-inflammatory bacteria such as Bacteroides has 
been reported in MSA patients compared to HC, while 
the abundance of putative anti-inflammatory bacteria 
such as Ruminococcaceae and Coprobacillaceae is lower 
in MSA [158–160]. One study revealed significantly dif-
ferent abundance of fecal and blood microbiota between 
MSA patients and HC, and that a combination of six 
genera was predictive of MSA with an AUC of 0.853. In 
addition, a combined model of five genera from feces and 
blood was able to differentiate between two subtypes of 
MSA with an AUC of 0.898 [161]. Another study con-
structed a set of 25 gut microbial gene markers to dis-
criminate MSA from PD patients with an AUC of 0.831 
[155]. Gut microbiota dysbiosis provides a new direc-
tion for searching MSA biomarkers. However, due to the 
limited sample size and inherent discrepancy between 
16S rDNA and metagenomic sequencing, the reliability 
of gut microbiota as a biomarker for MSA needs further 
exploration. Besides, targeted validation and multi-omics 
technology are required for obtaining more detailed 
information of microbiotic function in MSA patients.

Imaging biomarkers
Magnetic resonance imaging (MRI)
Morphological MRI is an important auxiliary tool in 
the clinical diagnosis of MSA. Typical imaging features 
in brain MRI, such as the “hot-cross bun” sign and the 
“putaminal slit” sign, are clinically suggestive of MSA, 
which are recommended in the second consensus state-
ment on the diagnosis of MSA [162, 163]. In clinically 
or neuropathologically diagnosed cases, the “hot-cross 
bun” sign has almost 100% specificity for MSA against 
HC, PD, PSP and CBD, but the sensitivity is much lower 
(around 50%) [162, 164–166]. In the new Movement Dis-
order Society (MDS) criteria for the diagnosis of MSA, 
the “hot-cross bun” sign is still recommended as a sup-
portive biomarker for MSA. However, its diagnostic 
specificity should be considered with caution when dis-
tinguishing MSA from non-degenerative parkinsonism 
or SCA [4]. As for the “putaminal slit” sign, high specific-
ity (around 90%) and low sensitivity (around 30%) have 
been reported in differentiating MSA from PD, but the 
differential diagnostic potential in separating MSA from 

PSP is limited [162, 164, 165]. In addition, the “putaminal 
slit” sign is a common feature on 3.0 T MRI images of HC 
[167]. Therefore, the clinical value of this sign appears to 
be limited and it is omitted from the new MDS criteria 
for the diagnosis of MSA [4]. Based on the limitation of 
conventional imaging biomarkers, more advanced imag-
ing techniques are needed for the development of reliable 
MSA biomarkers.

Recently, researchers have applied multimodal imaging 
and machine learning techniques to systematically evalu-
ate MRI abnormalities in MSA patients. The machine 
learning approach based on volumetry of regions includ-
ing putamen and infratentorial regions, has been shown 
to accurately classify MSA, PD and PSP with an accu-
racy of about 97% [168–172]. In addition to volumetric 
parameters, other parameters such as fractional anisot-
ropy, mean diffusivity and iron deposition in multimodal 
imaging approach are also helpful in the diagnosis of 
MSA [173–179]. A logistic regression model based on 
fractional anisotropy in the cerebellum, brain stem 
and bilateral superior corona radiata, together with the 
mean diffusivity in the right superior frontal gyrus, has 
been shown to discriminate MSA from PD patients with 
an accuracy  > 95% [173]. In general, multimodal MRI 
parameters and artificial intelligence analysis have the 
potential to further improve the performance of MRI in 
the diagnosis of MSA.

Positron emission tomography (PET)
Molecular imaging based on hypometabolism, decreased 
activity of dopaminergic and cholinergic systems and 
neuroinflammation has also been used in MSA patients 
[5]. 18F-FDG PET has revealed reduced glucose meta-
bolic activity in the frontal cortex, striatum, cerebellum, 
and brainstem of MSA patients [180–184]. 18F-dopa, 
18F-FP-CIT, and 11C-DTBZ PET which assess the func-
tion of dopaminergic system, have shown significantly 
decreased activity in the putamen, caudate nucleus, ven-
tral striatum, globus pallidus externa and red nucleus in 
MSA patients [181, 185]. 11C-PMP PET which assesses 
the activity of cholinergic systems, revealed reduction 
of brain acetylcholinesterase activities in the thalamus 
and cerebellum in MSA-C patients, while significant 
decreases in cortical and subcortical cholinergic activity 
are present in MSA-P patients [186, 187].

Recently, PET using a novel radiotracer 11C-UCB‐J that 
binds to synaptic vesicle protein 2A (SV2A), a synapse-
specific protein, has shown high sensitivity in various 
neurodegenerative diseases, including PD, AD, DLB, PSP 
[188–191]. The SV2A-targeting PET can also assist the 
diagnosis of MSA due to the neurodegenerative pathol-
ogy in MSA. However, since decreased synaptic density 
is widely present among neurodegenerative diseases, 
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comparative analysis of its performance on different 
MSA-mimicking disorders is a necessary direction for 
future research.

For α-synucleinopathies, developing α-syn-specific 
PET technique is promising as it offers in vivo monitor-
ing of development of α‐syn pathologies and directly 
reflects the effects of anti-synuclein therapies in living 
patients compared with other imaging techniques [192]. 
Moreover, the conformation and distribution of α-syn 
aggregates in MSA patients are different from those in 
other synucleinopathies [45, 193], indicating the potential 
advantages of disease-specific PET ligands in differentiat-
ing these diseases. Up to now, nearly 40 different ligands 
have been developed for α-syn [194, 195], among which 
more than 20 compounds have been radiolabeled and 
evaluated in animal models [196–201] or postmortem 
tissues of patients [202–209]. The PET ligand  [11C]PBB3 
shows distinct affinity to α-syn pathology in different 
synucleinopathies [204]. Even more encouraging, PET 
scans with two α-syn ligands 11C-BF-227 and 18F‐SPAL‐
T‐06 in living MSA patients show high distribution in 
brain regions coincident with the predominant distribu-
tions of GCIs, compared with HCs [205, 210]. However, 
the current radiotracers are still not able to overcome 
the disadvantages of low values of brain uptake, affinity, 
selectivity and disease-specificity. Thus, preclinical stud-
ies of α-syn-specific PET need to be further conducted 
before clinical application.

Conclusions and future perspectives
The clinical diagnosis, severity monitoring and progno-
sis for MSA are quite challenging, which also restrict the 
development of novel disease-modifying strategies. Sig-
nificant efforts have been made to explore biomarkers for 
MSA in recent years. Here, we comprehensively review 
the latest progress on the multidimensional biomark-
ers for MSA, including biomarkers in fluids and tissues, 
gut microbiota and imaging biomarkers (Fig. 1). Among 
these biomarkers, α-syn in the CSF, blood and tissues is 
the most focused target, although inconsistency exists 
among studies on the exact levels of α-syn. The SAAs tar-
geting the CSF or tissue α-syn are a great step forward 
and show high differentiating accuracy, including in dis-
tinguishing among α-synucleinopathies in particular. The 
different conformational strains and reaction kinetics of 
α-syn among α-synucleinopathies might underlie this dif-
ferentiating accuracy [211]. Exploring the seeding activ-
ity of α-syn in other samples such as the saliva may be an 
alternative since lumbar puncturing and tissue biopsy are 
a challenge for clinical extension. Furthermore, develop-
ing PET imaging ligands to noninvasively detect original 
α-syn pathology facilitates in vivo studies of the distinct 
conformations and regional spread of α-syn pathology 

among α-synucleinopathies, as well as exploration of tar-
gets for anti-syn therapies [192]. In addition, NfL levels 
in fluids have been used as an outcome measure to evalu-
ate the efficacy of drug trials in MSA (NCT05104476, 
NCT05109091), based on their significant correlation 
with disease severity. In addition, multimodal imaging 
combined with machine learning techniques is also a 
breakthrough in this field.

Although significant progress has been made on bio-
marker discovery for MSA, there are still great gaps in the 
application of these biomarkers in clinic. Several reasons 
may explain the challenges in this field. Since autopsy 
confirmation is the only gold standard for definite diag-
nosis and previous studies revealed that the antemortem 
diagnostic accuracy is only about 62% for MSA [6], the 
presence of misdiagnosis in current biomarker studies 
limits the accuracy of conclusions, which might under-
lie the discrepancy among different studies. Besides, the 
limited sample size due to the low prevalence of MSA 
also partially accounts for the inconsistency among stud-
ies. Furthermore, the intrinsic heterogeneity between 
two MSA subtypes sets up obstacles for biomarker iden-
tification. Finally, the lack of standard methodologies may 
be another important reason why results are not always 
reproducible in this field.

For future explorations, large multi-center cohort stud-
ies are necessary. Validation in neuropathologically estab-
lished MSA cohorts and explorations between different 
MSA subtypes are needed. Furthermore, unified stand-
ards and methodologies are also mandatory to improve 
the replicability of biomarkers for MSA. In recent years, 
progresses in high-throughput technologies and artificial 
intelligence have provided new opportunities for explor-
ing disease biomarkers [212]. Integrating multi-omics 
data through artificial intelligence technology, includ-
ing genomics, transcriptomics, proteomics, metabo-
lomics, metagenomics, and radiomics, is able to draw a 
multi-omics characteristic spectrum of MSA patients 
and develop a multi-dimensional biomarker system. 
Constructing diagnostic or predictive panels through the 
combination of multidimensional biomarkers, based on 
the novel techniques and artificial intelligence, is quite 
promising for this field.

In conclusion, great efforts have been made in the 
field of multidimensional biomarkers for MSA and sev-
eral potential biomarkers have been identified in the 
past years. However, there are still quite a few challenges 
before implementation of these biomarkers in clinic. 
Applying advanced detection techniques such as SAAs 
and multi-omics analysis in large-sample cohorts includ-
ing neuropathologically established MSA cases, will pave 
the way for exploration of MSA biomarkers.
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