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Abstract

Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of
prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of
growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of
Alzheimer’s disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of
neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant
expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article,
we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation
of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications
and current approaches that target furin for therapeutic interventions. This review may expedite future studies to
clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative

neurotrophic factor

and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
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Introduction

Furin is the first proprotein convertase (PC) found in
mammals in 1990 [1]. It catalyzes the proteolytic matu-
ration of large numbers of prohormones and propro-
teins in the secretory pathway compartments [1-3]. The
substrates of furin include hormones, cytokines, growth
factors and enzymes, which play important roles in cell
proliferation, anti-apoptosis, immunity and inflamma-
tion [1]. Furin also participates in the proteolytic pro-
cessing of proteins in viruses and bacteria [4], such as the
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maturation of SARS-CoV-2 spike protein [5-7]. Thus,
aberrant activity of furin has been found to be associated
with a strikingly diverse range of pathological events,
including cancer, cardiovascular disorders, infectious dis-
eases and neurological diseases [4, 8—10]. Among these
disorders, the role of furin in neurological diseases is the
most poorly understood.

In the brain, the proprotein substrates cleaved by
furin in vivo include precursors of growth factors such
as brain-derived neurotrophic factor (BDNF) and nerve
growth factor (NGF) [11, 12], a- and [-secretases [13,
14], multiple matrix metalloproteases (MMPs) [15, 16],
and other enzymes and receptors [1, 17, 18]. Since these
substrates play vital roles in neuronal survival, axon
growth, dendritic development, synaptogenesis, neuro-
degeneration and inflammation [19-22], a stable activity
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of furin is crucial for maintaining the homeostasis of the
central nervous system.

A growing body of evidence has suggested that altera-
tions of furin expression and abnormal cleavage of its
substrates contribute to the pathophysiological mecha-
nisms of neurodegenerative and neuropsychiatric dis-
eases. Reduced expression of FURIN mRNA has been
found in the brains of Alzheimer’s disease (AD) patients
[13], and decreased protein levels of furin are found in the
cortex of AD mice [23]. The FURIN mRNA expression is
decreased in the prefrontal cortex of schizophrenia (SCZ)
patients [24], whereas increased protein levels of furin
are found in the temporal cortex of epilepsy patients [25].
Moreover, studies have also shown that increasing furin
expression in the mouse brain enhances BDNF matura-
tion and promotes dendritic spine density and memory
in transgenic mice [26], and that inhibiting furin expres-
sion reduces the spontaneous rhythmic electrical activ-
ity of cerebral neurons and suppresses epileptic seizure
activity in epileptic mice [25]. These findings indicate the
involvement of furin dysregulation in these neurologi-
cal disorders, leading to increased interest in furin as a
potential biomarker for diagnosis of or as a therapeutic
target for treatment of neurological disorders.

In this review, we present an overview on the physi-
ological roles of furin in the brain and deregulations of
furin expression and its substrates in neurodegenera-
tive and neuropsychiatric disorders, such as AD, Parkin-
son’s disease (PD), epilepsy, cerebral ischemia, SCZ and
depression. We further discuss the implications of these
findings and current approaches that target furin for
therapeutic interventions.
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Overview of furin

Gene structure and transcription of FURIN

Furin was identified in 1990 as the first mammalian PC
that catalyzes the proteolytic maturation of prohormones
and proproteins of neurotrophic factors, receptors and
enzymes, serum proteins and pathogen molecules [1-
3]. The human FURIN gene is located at chromosome
15q26.1, an open reading frame upstream of the fes/
fps proto-oncogene [27]. It has attracted more attention
after being discovered as the first mammalian homo-
logue of yeast Kex2 [4, 28, 29]. As shown in Fig. 1a, the
human FURIN gene consists of 16 exons and encodes
eight different transcript variants driven by three known
promoters, P1, P1A and P1B [30, 31]. The respective
transcripts differ only in the first untranslated exon and
therefore generate identical furin precursor proteins [30,
32]. While the P1A and P1B promoters resemble those of
constitutively expressed housekeeping genes, the P1 pro-
moter is predicted to bind to many different transcription
factors, including hypoxia-inducible factor-1 (HIF-1), C/
EBPB, and CREB (cAMP-responsive element binding
protein) [33—36].

Several intracellular and extracellular factors have been
reported to regulate FURIN expression at the transcrip-
tional level. Hypoxia remarkably increases the expression
of FURIN mRNA via stabilizing HIF-1 and enhancing its
binding to hypoxia-responsive element site at the P1 pro-
moter [37]. Iron deficiency also upregulates FURIN tran-
scription through stabilization of HIF-1a [35], whereas
iron overload inhibits furin expression in a non-HIF-
la-dependent manner [35]. Transforming growth factor
betal (TGFfB1) can induce transactivation of the FURIN
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Fig. 1 Human FURIN gene and furin protein structures. a The human FURIN gene consists of 16 exons and encodes eight different transcript
variants driven by three known promoters, P1, P1A and P1B. Exons are shown as green boxes and introns are shown as lines. The red boxes indicate
the three promoter regions. The blue arrows indicate the positions where different transcripts start. The red arrow indicates the translational start,
and the start codon (ATG) and stop codon (TGA) are marked with dotted lines. b Furin protein contains an N-terminal signal peptide, a prodomain, a
subtilisin-like catalytic domain, a middle P-domain, a cysteine-rich region, a transmembrane helix domain and a C-terminal cytoplasmic domain
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P1 promoter through binding to Sma- and Mad-related
protein 2 (SMAD2) and SMAD4 in complex with other
DNA-binding partners, creating a constitutive activation/
regulation positive feedback loop between TGFB1 and
furin [38]. Furthermore, extracellular regulated protein
kinase 1 has been found to mediate the TGFp—furin feed-
back loop in glioma-initiating cells [39]. In addition, bone
morphogenetic protein 2 increases the transcription and
translation of furin in human granulosa lutein cells by
the activin receptor-like kinase (ALK)2/ALK3-SMAD4
signaling pathway [40].

Protein structure and expression of furin

Furin is a type I transmembrane protein and belongs to
the subtilisin-like convertase family [1]. It is a calcium-
dependent endoserine protease [8]. Furin protein is com-
posed of a signal peptide, a prodomain, a subtilisin-like
catalytic domain, a middle P-domain, a cysteine-rich
region, a transmembrane helix domain and a cytoplas-
mic domain (Fig. 1b) [41]. The large extracellular region
of furin has an overall homology with the same region of
other members of the PC family [1]. The signal peptide
directs translocation of the ~104-kDa pro-enzyme into
the endoplasmic reticulum (ER), where the first cleav-
age in the inhibitory prodomain takes place via auto-
catalytic cleavage by the catalytic domain [42-44]. The
second cut in the prodomain is made during trafficking
of the propeptide-furin complex within the mildly acidic
trans-Golgi network/endosomal system, which yields the
active ~ 81-kDa mature enzyme. Furin circulates between
the trans-Golgi network, cell surface and endosomes, in a
tightly regulated manner, to catalyze various proproteins
in different cellular components [43, 45, 46].

Furin is ubiquitously expressed in vertebrates and
many invertebrates [9, 47, 48]. However, its mRNA and
protein levels vary depending on the tissue and cell type
[49-53]. FURIN has been found at high mRNA levels in
the salivary gland, placenta, liver and bone marrow, and
high protein levels in the brain, salivary gland, pancreas,
kidney and placenta [49—53]. However, almost no expres-
sion is detected in skin, muscle and adipose tissues [49,
50], although substrates of furin have been identified in
human adipose tissues [54]. In normal single cells, high
expression of FURIN mRNA is identified in hepatocytes,
exocrine glandular cells, pancreatic endocrine cells and
syncytiotrophoblasts [50, 53]. This tissue- and cell-spe-
cific expression pattern of furin infers the different func-
tions of furin in different tissues and organ systems.

Function of furin

Furin cleaves proproteins at the consensus site of
Arg—X-Lys/Arg—Arg or Arg-X-X-Arg (X refers to
any amino acid) [55, 56], and the cut is positioned after
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the carboxyl-terminal Arg residue [56]. The substrates
cleaved by furin include a variety of precursor proteins
within the secretory pathway, including hormones,
growth factors and their receptors, neuropeptides,
enzymes, adhesion molecules, metalloproteinases, bac-
terial toxins and viral glycoproteins [8, 29, 33]. As these
molecules participate in many important cellular events,
mouse embryos lacking Furin will die between days 10.5
and 11.5, with notable defects in ventral closure and axial
rotation [57]. Deregulations of furin expression are found
in diverse pathological conditions, including cancer, dia-
betes, cardiovascular disorders, inflammation and neuro-
logical diseases [10, 58—62].

Furin and its substrates in the brain

Furin expression in the brain

Brain is one of the organs that show the highest level
of furin protein [50], particularly in the cerebral cortex,
hippocampus and cerebellum, where the furin level is as
high as that in the salivary gland [50]. Moreover, it has
been reported that in the brains of epilepsy patients and
epileptic mice, furin is predominantly expressed in neu-
rons in the cortex and hippocampus, but barely in glial
cells [25]. Double immunofluorescence staining showed
a neuron-specific pattern of furin expression in the hip-
pocampal CA3 and dentate gyrus (DG) regions in wild-
type mice [63]. The neuron-specific expression may be
related to the essential functions of furin in neurons. In
addition, it has been reported that furin expression in
glial cells may be increased in some pathological con-
ditions as shown by the increase of furin expression in
cultured rat astrocytes exposed to oxygen—glucose dep-
rivation [64].

Substrates cleaved by furin in the brain

In the brain, the substrates proteolytically cleaved by
furin include growth factors such as BDNF and NGE,
proteases such as multiple MMPs, a disintegrin and
metalloproteases (ADAMs) and beta-site APP cleaving
enzyme 1 (BACEL), and receptors such as Notch recep-
tor, low-density lipoprotein receptor-related protein 1
(LRP1), G protein-coupled receptor (GPR37) sortilin,
integral membrane protein 2B (BRI2) and Ac45. Furin
and its substrates potentially play important roles in
diverse biological processes in the brain, including neu-
ronal survival, differentiation, axonal outgrowth, den-
dritic development, synaptogenesis, inflammation and
neurodegeneration (Fig. 2).

BDNF

BDNF is a member of the neurotrophin family, which
is widely distributed and extensively expressed in the
brain [65—-67]. BDNF is synthesized as pre-proBDNF and
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Fig. 2 Activities mediated by furin and its substrates in the brain.
The substrates of furin include growth factors such as BDNF and NGF,
proteases such as MMPs, ADAMs and BACE1, and receptors such

as Notch, LRP1, GPR37, sortilin, BRI2 and Ac45. They participate in
diverse biological processes in the brain, including neuronal survival
and death, proliferation and differentiation, dendritic development,
synaptic plasticity, inflammation and neurodegeneration

folded in the ER [68]. The pre-proBDNF harbors a signal
peptide, a pro-domain and a mature domain [69], and is
transported to the Golgi apparatus where it is converted
into a full-length proBDNF (~32 kDa) after removal of
the signal peptide [59]. The proBDNF is then cleaved by
the protease furin to release the pro-domain and generate
the biologically active ~ 14-kDa mature BDNF (mBDNF)
[70]. The proBDNF can also be secreted into the extra-
cellular space and then catalyzed by the extracellular
proteases, such as MMPs [71, 72]. Furin is found to have
higher efficiency than other PCs in cleavage of proBDNF
in cultured rat astrocytes, and its aberrant activity leads
to a significant change in mBDNF expression [64]. In
terms of function, mBDNF binds to the tropomyosin-
related receptor kinase B (TrkB) [73] and triggers down-
stream intracellular signaling pathways, including the
phosphatidylinositol 3-kinase/protein kinase B (PI3K/
Akt), the phospholipase C-y/calcium-dependent protein
kinase (PLCy/CaMK), and the mitogen-activated protein
kinase (MAPK)/ERK pathways [22, 74—76]. These sign-
aling pathways mediate transcription of genes essential
for neuronal survival, differentiation, axonal outgrowth,
dendritic spine development, hippocampal long-term
potentiation (LTP) and synaptic plasticity [22, 49, 74-76].
In contrast, proBDNF binds to p75 neurotrophic recep-
tor (p75NTR) and induces apoptosis, spine shrinkage
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and long-term depression facilitation [77, 78]. Therefore,
imbalances between proBDNF and mBDNF are involved
in pathophysiological mechanisms of neurodegenerative
diseases, as well as neuropsychiatric diseases [22, 73, 76,
79-81].

NGF

NGF is the first identified member of the neurotrophin
family [82]. Like other proneurotrophins, the ~30-kDa
proNGF is synthesized in the ER [83]. Its pro-domain is
cleaved mainly intracellularly in the trans-Golgi network
by furin, rather than in secretory granules by other PCs
[84, 85], releasing the mature NGF (mNGF,~17 kDa)
[86, 87]. Similar to BDNF, proNGF and mNGF also dif-
fer significantly in receptor interaction properties and
bioactivity. The mNGF binds to tropomyosin-related
receptor kinase A (TrkA) and promotes cell survival, dif-
ferentiation, growth and maintenance of specific types of
neurons [88—90], whereas the proNGF binds to p75NTR
with a high affinity and mediates neuronal cell death [91—
93]. The balance between proNGF and mNGF levels is a
key determinant of homeostasis in the brain, and disrup-
tion of the balance is associated with diseases such as epi-
lepsy, AD, and ischemic stroke [94—96].

Other neurotrophins

The third type of growth factors of the neurotrophin
family includes neurotrophin-3 (NT-3) and neurotro-
phin-4/5 (NT-4/5) [97, 98]. They are also synthesized
as~31-35-kDa precursors, and in turn proteolytically
cleaved to release biologically active mature neurotro-
phins (~ 13-21 kDa) [84]. Similarly, intracellular cleavage
of proneurotrophins is accomplished by furin [99]. The
mature neurotrophins then bind to their corresponding
receptors, the Trk family of receptor tyrosine kinases,
and regulate neuronal survival and synaptic plasticity
[100, 101]. Aberrant expressions of NT-3 and NT-4/5
participate in pathophysiological conditions including
motor dysfunction, cognitive decline, stroke, and SCZ
[102-107].

MMPs

MMPs are a family of zinc-dependent metallopro-
teases [108], with many members being reported to be
expressed in the brain, such as MMP-1, MMP-2, MMP-3,
MMP-7, MMP-9, MMP-14, and MMP-24 [108]. MMP-1
is expressed in both glia and neurons in the cortex, hip-
pocampus and cerebellum [108, 109]; MMP-2 is mainly
expressed in astrocytes [110]; MMP-3 is expressed in
glia and neurons in the cerebellum, striatum and hip-
pocampus [111]; and MMP-9 is mainly expressed
in neurons in the cerebral cortex, hippocampus and
cerebellum [112, 113]. Typically, MMPs consist of a
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signal peptide, a propeptide sequence, a catalytic met-
alloproteinase domain with zinc, a hinge region, and a
hemopexin domain [114]. The signal peptide is removed
in ER [115], and the propeptide is cut off by furin or
other PCs at a furin-like recognition motif [116-118].
The MMPs are thus activated inside the cell before secre-
tion or exposure to cell surface [119]. MMP-1 is shown to
enhance the proliferation and neuronal differentiation of
adult hippocampal neural progenitor cells via activating
protease activated receptor 1 and subsequently increas-
ing the cytoplasmic Ca®' concentration [120, 121].
MMP-2 regulates astrocyte motility in connection with
the actin cytoskeleton and integrins [122]. MMP-3 has
a very broad range of substrates in the brain [123], and
is upregulated in many pathological conditions, induc-
ing neuroinflammation and apoptosis [124]. MMP-9
is specifically shown to regulate synaptic plasticity in
the hippocampus by gain- and loss-of-function stud-
ies in vitro [125, 126]. Altered concentrations of MMP-3
and MMP-9 have been found in AD patients, indicating
their involvement in AD pathophysiology [127]. MMP-
1, MMP-2, MMP-9 and MMP-14 can cleave recombi-
nant a-synuclein [128, 129]. Elevated levels of MMP-2
and MMP-3 have been identified in dopaminergic (DA)
neurons in the substantia nigra in PD patients and animal
models [129-131].

ADAM10

ADAMs are another major family of zinc-depend-
ent metalloproteases involved in limited proteolysis
and shedding [132]. In the brain, ADAMI0 is mainly
expressed in neurons [133], and is involved in the pro-
teolytic processing of a variety of cell surface receptors
and signaling molecules [134]. ADAMIO0 is synthesized
in the ER as an inactive zymogen with a structure com-
prising a prodomain, a zinc-binding metalloprotease
domain, a disintegrin domain, a cysteine-rich domain, a
transmembrane domain and a C-terminal domain [133].
Furin cleaves the ~90 kDa pro-ADAMI10, yielding a full-
length active ADAMI10 (~65 kDa) [135], and after C-ter-
minal shedding, a soluble ~55-kDa ADAMIO0 is released
[136]. ADAMI10 has a-secretase activity [137]. It cleaves
amyloid-p precursor protein (APP) to generate the solu-
ble aAPP fragment (sAPPa) rather than the neurotoxic
amyloid-f (Ap), playing a protective role in AD [138].

BACE1

BACEL1 is the major B-secretase that cleaves APP to
generate AP [139]. BACEL is a transmembrane aspar-
tic protease, structurally similar to the pepsin family
[140], containing two active catalytic site motifs in the
luminal domain [141]. Like other aspartic proteases,
BACE] is synthesized as a precursor protein containing
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a N-terminal propeptide domain that is removed dur-
ing maturation of the enzyme [142]. Furin or a furin-like
PC is responsible for cleaving the BACE1 proprotein to
yield the mature enzyme with the highest B-secretase
activity [143]. Like APP, BACEL1 is highly expressed in the
brain [144]. Significant increases of BACE1 enzymatic
activity and protein concentration have been detected
in brain tissues, cerebrospinal fluid (CSF) and serum of
AD patients and subjects with mild cognitive impairment
[145-147]. BACE1 inhibitors have demonstrated thera-
peutic effects in preventing the initial cleaving events of
APP in AD animal models [148-153].

Notch receptor

The Notch gene family encodes transmembrane recep-
tors of ~300 kDa that are involved in cell-fate determi-
nation in vertebrates and invertebrates [154, 155]. The
proteolytic processing of Notch receptor precursor is
an essential step in the formation of biologically active
Notch receptors. The constitutive processing of murine
Notchl requires a furin-like convertase, and mutations
in the furin-cleavage site completely abolishes the pro-
teolysis of the Notchl receptor [155]. In the developing
brain, activation of Notch receptors upon ligand binding
is involved in the preservation of neural progenitors and
inhibition of neurogenesis [156, 157]. In the adult brain,
Notch signaling influences neuronal apoptosis, microglial
activation and synaptic plasticity [158—161]. Deregula-
tions of Notch signaling are involved in AD, depression,
epilepsy, and stroke [159-163].

LRP1

LRP1 is a multifunctional receptor that belongs to the
low-density lipoprotein receptor family [164]. It is syn-
thesized as a~600-kDa precursor, which is cleaved by
furin in the trans-Golgi network and transported to
the cell surface as a mature form consisting of a-chain
and B-chain [8]. The mature LRP1 is further processed
by other enzymes, such as MMPs and y-secretase, to
release the intracellular domain (ICD) [8]. LRP1 is highly
expressed in neurons and glia of the brain, and func-
tions to regulate proteinase activity, cytokine activity
and cholesterol metabolism [165, 166]. The ligands for
LRP1 include AP, ApoE and activated a2-macroglobulin
[167]. In addition to controlling ligand metabolism,
LRP1 can also regulate signaling pathways by coupling
with other cell surface receptors or proteins, such as the
N-methyl-D-aspartate (NMDA) receptors [168, 169].
The ICD of LRP1 can be transported into the nucleus,
where it contributes to transcriptional regulation of tar-
get genes, including interferon-y [170]. Accumulating
evidence from preclinical and animal studies indicates
that LRP1 is involved in AD pathogenesis not only by
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regulating the metabolisms of AB and ApoE, but also by
influencing synaptic plasticity and inflammation through
ApB-independent pathways [171]. LRP1 is detected at an
abundant level in post-synaptic sites of neurons, and it
interacts with several synaptic proteins, including post-
synaptic density protein 95, NMDA receptor and GluA1l
[169, 171-173]. Deletion of LRP1 in neurons has been
shown to affect lipid metabolism, leptin signaling, glu-
cose metabolism, insulin signaling and anti-apoptotic
signaling, resulting in neuroinflammation, motor dys-
function, and cognitive decline in mice [171, 172, 174,
175]. In addition, LRP1 is also found to modulate stem
cell proliferation and survival, astroglial differentiation
[176, 177], and oligodendrocyte progenitor cell differen-
tiation [178].

GPR37

GPR37 is an orphan G-protein-coupled receptor that is
widespread in several brain regions, including cerebral
cortex, hippocampus, hypothalamus, midbrain and cer-
ebellum [51]. It has a long extracellular N-terminal ecto-
domain which is recently demonstrated to be processed
by both ADAM10 and furin [179]. The unfolded form of
GPR37 is a substrate of parkin, and its intracellular reten-
tion leads to ER stress and DA neuronal death, linking to
PD [180-182]. GPR37 is also involved in the DA signaling
pathway by interacting with the dopamine transporter in
mouse striatal presynaptic membranes, thereby modu-
lating dopamine uptake [183]. In addition, GPR37 inter-
acts with adenosine A2A receptors in the hippocampus,
localized at the extrasynaptic plasma membrane of den-
dritic spines, dendritic shafts and axon terminals, regu-
lating adenosinergic signaling [184]. GPR37 is also found
in astrocytes and oligodendrocytes, and is demonstrated
as a negative regulator of oligodendrocyte differentiation
and myelination [185, 186]. Overexpression of GPR37
leads to profound neurodegeneration in animal models,
selectively for DA neurons [187], while GPR37-knockout
mice also show decreased dopamine levels in the stria-
tum and specific motor deficits [188, 189]. GPR37 knock-
out also triggers non-motor behavioral phenotypes, such
as anxiety and depression-like behaviors, in an age- and
gender-dependent manner [190, 191].

Sortilin

Sortilin is a type I transmembrane protein that functions
as an endocytosis receptor and plays a role in protein
sorting and cell signaling [192]. Sortilin is synthesized as
an inactive precursor protein, which is cleaved by furin
to remove the N-terminal propeptide [193]. The result-
ing mature protein can be further processed by other
proteases to shed its extracellular domain from the cell
surface [193]. Sortilin is generally trafficked via the
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trans-Golgi network, endosomes and plasma membrane,
binding to different proteins and directing them to the
secretory pathway or for degradation [193]. Sortilin has
been reported to function as a neuronal receptor for APP
and its cleavage products sAPPa and AB [194, 195]. The
ICD of sortilin interacts with APP and regulates its lyso-
somal and lipid raft trafficking [194]. Sortilin also binds
to oligomerized AP, inducing endocytosis of AP and trig-
gering apoptosis [195]. In addition, sortilin is found to
be an essential component for transmitting pro-neuro-
trophin-dependent death signals from p75NTR, thereby
playing roles in neuronal apoptosis, aging and brain
injury [93, 196, 197]. On the other hand, sortilin has
also been found to associate with TrkB receptors, which
promotes cell survival [198]. Therefore, sortilin acts as a
molecular switch from apoptotic response by interacting
with p75NTR to neurotrophic effects via binding to TrkB
receptors in neurons. Aberrant activity of sortilin has
been found to be associated with the pathogenesis of AD
and depression [193, 199, 200].

BRI2

BRI2 is a type II transmembrane protein of 266 amino
acids, containing an extracellular region, a transmem-
brane region and a cytoplasmic region [201, 202]. Dur-
ing maturation, the~4-kDa C-terminal propeptide of
BRI2 is cleaved by furin at the trans-Golgi compartment,
generating the membrane-bound form of mature BRI2
(mBRI2) [203, 204]. The mBRI2 contains an evolutionar-
ily conserved BRICHOS domain that is found to act as
a chaperone, facilitating proper folding of BRI2 and pre-
venting AP formation [205, 206]. In the human brain,
BRI2 is intensively expressed in cortical and hippocampal
pyramidal neurons [207]. The BRICHOS domain of BRI2
interacts with APP and inhibits its processing, delaying
fibrillation of AP [206—209]. Mutations in BRI2 and aber-
rant BRI2 expression have been reported to be associated
with familial British dementia and involved in AD patho-
genesis [210-212].

Ac45

Ac45, an accessory subunit of the vacuolar-type ATPase
(V-ATPase) proton pump, is a type I transmembrane
protein that is encoded by ATP6API in humans [213-
215]. Furin catalyzes the processing of Ac45 precursor
protein to generate mature Ac45 [216, 217]. Furin-knock-
out B-cells show impaired cleavage of Ac45 [217]. Ac45
is ubiquitously expressed with the highest levels in neu-
ronal and neuroendocrine cells and osteoclasts [218—
220], and may be required for proper synaptic vesicle
acidification and neurotransmitter release [221]. Ac45-
deficient patients not only have immunodeficiency, but
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also display a spectrum of neurocognitive abnormalities
[222]. These indicate that dysfunction of Ac45 can be
potentially involved in neurological disorders such as AD
and epilepsy.

Furin in neurodegenerative and neuropsychiatric
diseases

So far, many studies have demonstrated associations of
deregulation of furin expression with the pathophysiol-
ogy of several neurodegenerative and neuropsychiatric
diseases, as well as with alterations of substrates of furin
in these diseases (Table 1).

Furinin AD

AD overview

AD is a progressive neurodegenerative disease and the
main cause of dementia in the elderly, affecting around
6% of the population over the age of 65 [223]. Currently,
there is no effective prevention or treatment strategy for
AD [20, 224, 225]. The major pathological hallmarks of
AD are the accumulation of two aggregated proteins in
the brain, Ap and tau, leading to the formation of extra-
cellular senile plaques and intracellular neurofibrillary
tangles (NFTs), respectively [226, 227]. AP is produced
from proteolytic cleavage of APP by - and y-secretases
[139]. In contrast, APP cleaved by a-secretase produces
sAPPa which shows neurotrophic and neuroprotec-
tive functions [226]. Both AP senile plaques and NFTs
induce neuroinflammation and neuronal apoptosis, con-
tributing to AD pathogenesis [226, 227]. Following Ap
and tau pathology, AD patients further exhibit synaptic
damage and neuronal loss, particularly in the cortex and
hippocampus, and show cognitive impairments as the
disease progresses [228]. In addition to the AP cascade
hypothesis, many other hypotheses have also been pro-
posed to explain the pathologic process of AD, including
the tau hypothesis [229], the blood—brain barrier (BBB)
dysfunction hypothesis [230], the metal ion dysregulation
hypothesis [231, 232], the inflammation hypothesis [233],
the oxidative stress and mitochondrial cascade hypothe-
sis [234, 235], and the insulin resistance hypothesis [236].
However, these hypotheses only explain certain aspects
of the disease, and the mechanism of AD pathogenesis
remains elusive.

Aberrant furin expression in AD

FURIN mRNA expression has been detected at a sig-
nificantly lower level in the brains of AD patients and
Tg2576 AD mouse model than in controls [13]. Nota-
bly, decreased mRNA expression of Furin is observed in
cortices of both 4- and 24-month-old Tg2576 mice com-
pared with their littermates, suggesting that furin reduc-
tion occurs in a relatively early age (prior to AP plaque
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formation) and may be involved in the pathogenesis of
AD [13]. Moreover, this study also showed that injection
of Furin-adenovirus into Tg2576 mouse brains markedly
reduced AP production in the infected brain regions,
which may be attributed to the enhancement of the
a-secretase activity by furin cleavage of ADAMI10 and
tumor necrosis factor-a converting enzyme (TACE) [13].
Another study also showed decreased expression of furin
and ADAMI0 in the cortex of APP-C105 mouse model
of AD compared to that of non-transgenic controls [23].
Moreover, treadmill exercise could elevate furin expres-
sion and suppress Ap production in the APP-C105 mice
[23]. While excess iron in AD brain induces disruption
of furin activity, treadmill exercise alleviates cognitive
decline and AB-induced neuronal cell death by promot-
ing a-secretase-dependent processing of APP through
low iron-induced enhancement of furin activity [23].

In addition to furin expression in the brain, the
plasma furin also decreases significantly while serum A
increases in AD patients [237]. The decrease of plasma
furin strongly correlates with the increase of plasma
iron, thereby iron overload in plasma was proposed to
be a possible contributor to the low level of furin, and
the downstream reduction of a-secretase activity might
account for the increase of AP [237]. Besides, stud-
ies have also reported that the bilateral injection of Ap
into the intracerebral ventricle of mice can induce furin
expression compensatorily, which subsequently increases
NGF via modulation of its maturation [238, 239].

Expression of substrates of furin in AD

Many proteins that are proteolytically processed by furin
also show altered expression in AD. Numerous studies
have indicated that the relative levels of BDNF mRNA
and proteins are decreased in the hippocampus and cor-
tex in AD patients [240-246]. Particularly, decreased
mBDNEF/proBDNF ratio has been found in the parietal
cortex of subjects with mild cognitive impairment [246],
suggesting that reduction of mBDNF occurs in early
stages of AD and contributes to the impairment of syn-
aptic plasticity and memory. In addition to AD patients,
transgenic AD mouse models also show reduced mBDNF
expression and decreased mBDNF/proBDNF levels in
the hippocampus [247-249], indicating the involvement
of altered cleavage of BDNF in AD pathology.

Similar to BDNF, NGF, Notchl, ADAM10, BACE],
MMPs, LRP1, BRI2 and sortilin also show altered expres-
sion or activity in AD. ProNGF increases markedly in
the cortex and hippocampus of AD brains [94, 250, 251].
Notably, the increase of proNGF also appears in sub-
jects with mild cognitive impairment [250]. These find-
ings reflect that the decreased processing of proNGF
to mNGF is involved in AD pathogenesis. Notchl
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expression is increased in the hippocampus of AD
patients, which may be linked to tau aggregation [252].
BACE1 expression has been found to be elevated in the
cortex and CSF of AD patients as compared to the age-
matched normal subjects [146], which is correlated with
increased AP [253, 254]. MMP-1 levels are significantly
elevated in AD patients in all cortical areas, which may
contribute to the BBB dysfunction seen in AD [255].
MMP-2, MMP-9 and MMP-14 expression is up-regulated
age-dependently in astrocytes and amyloid plaques in the
hippocampus of 5x FAD mice [256]. Sortilin protein and
the cytoplasmic domain of sortilin are found to be sig-
nificantly increased in brains of AD patients, which con-
tribute to the pathogenesis of AD by increasing cell death
and impairing neuronal differentiation [199, 257]. LRPI
mRNA and protein are reported to be increased in neu-
rons and GFAP-positive activated astrocytes associ-
ated with neuroinflammation in AD patients [258, 259].
Meanwhile, a decrease of LRP1 has also been reported
in the midfrontal cortex of AD patients, playing a role in
modulating AP deposition and AD susceptibility [260]. In
addition, in the APP23 mouse model, LRP1 is increased
in the cortex but decreased in the vascular endothelial
cells, which may account for the imbalance between A
efflux and influx across the BBB [261]. The level of BRI2
containing the BRICHOS domain is increased in the hip-
pocampus of early-stage AD patients, whereas the level
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of the BRI2-APP complex is decreased, accompanied by a
decrease of furin, indicating that the aberrant processing
of BRI2 may promote its deposition and affect its func-
tion in halting AP production and aggregation [212]

Potential role of furin in AD pathology

The above findings suggest an important role of furin
in AD pathology. The downregulation of furin in AD
patients or animal models likely leads to lower cleavage of
ADAMI10, TACE, proBDNF and proNGEF. The decreased
ADAM10 and TACE lead to reduced a-secretase activity,
which in turn promotes AP generation and deposition;
on the other hand, the low levels of mBDNF and high lev-
els of proNGF cause neuronal death and synaptic dam-
age (Fig. 3a). These alterations can account in part for the
pathological symptoms of AD. In addition, the relation-
ships between furin deregulation and changes in MMPs
and LRP1 in AD pathology have yet to be investigated,
and the causes of furin downregulation in AD need to be
clarified.

Furinin PD

PD overview

PD is the second most common neurodegenerative dis-
order, pathologically characterized by abnormal deposi-
tion of a-synuclein aggregates in Lewy bodies and loss of
nigrostriatal DA neurons [262, 263]. The striking clinical
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Fig. 3 Proposed working models of how aberrant furin expression participates in the pathogenesis of Alzheimer's disease (a), epilepsy (b), cerebral
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symptoms of PD are motor symptoms such as tremor,
rigidity, bradykinesia and postural instability. Patients
with severe motor symptoms often have difficulties
moving their hands, or standing and walking due to the
tremor and stiff muscles, which severely affects the qual-
ity of their lives [263]. PD patients also display non-motor
signs and symptoms, such as olfactory loss, autonomic
dysfunction and rapid eye movement sleep behavior dis-
order, which usually precede the motor symptoms but
are often overlooked [264]. The mechanism of neurode-
generation in PD remains unclear, and currently there is
no cure for PD.

Aberrant furin expression in PD

Currently, there is no report on the changes of furin
expression in PD patients or murine models. However,
in Parkinson’s-related Drosophila model, furin 1 has
been found to be highly concentrated in TH-positive DA
neurons [265], and furin 1 is translationally regulated
by leucine-rich repeat kinase 2 (LRRK2) and involved in
the impairment of synaptic plasticity and neurodegen-
eration [266]. In addition, in the paraquat-induced Dros-
ophila model of PD, furin 1 expression is also enhanced
by paraquat exposure in DA neurons [265]. These results
highlight a potential role of furin in PD pathogenesis.

Expression of substrates of furin in PD

Aberrant BDNF expression has been found during the
pathological processes of PD. The amount of 27-kDa
BDNF is increased in the CSF samples of PD patients
compared with normal controls [267], whereas serum
BDNF levels are significantly lower in PD patients than
in healthy controls, which are correlated with motor
impairment and cognitive deficits in PD [268, 269].
MMP-2 levels are reduced in PD patients in the sub-
stantia nigra, but not in the cortex and the hippocampus
[131]. MMP-3 levels are increased in a rat model of PD
induced by injection of 6-hydroxydopamine into the sub-
stantia nigra [129], and MMP-3 may play a pivotal role
in the progression of PD through digestion of a-synuclein
in DA neurons and modulation of a-synuclein aggrega-
tion and Lewy body formation [129, 130]. Serum MMP-1
is significantly lower in PD patients than in controls, and
the difference is more prominent in females [270]. Both
mRNA and protein of GPR37 accumulate in Lewy bod-
ies in the midbrain of PD patients [181, 182], and the
increased Ecto-GPR37 in CSF is proposed as a potential
biomarker for PD [182]. However, no studies currently
exist regarding the specific relationship between furin
expression and changes in these substrates in PD patients
or animal models. Thus, deeper exploration of the
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underlying mechanisms remains essential in future stud-
ies, which may uncover new therapeutic targets for PD.

Potential role of furin in PD pathology

Although there is no report on the change of furin
expression in vertebrate models of PD, the highly
increased furin 1 expression in DA neurons of Parkin-
son’s-related Drosophila model indicates a potential role
of furin in PD pathology. Furthermore, changes in the
expression of some substrates of furin have been detected
in PD models, such as increased GPR37 and MMP-3,
highlighting the possible associations between furin and
PD symptoms. Thus, the expression of furin in PD patho-
genesis and associations with the change of its substrates
in PD need to be clarified urgently.

Furin in epilepsy

Epilepsy overview

Epilepsy is a common chronic neurological disorder
associated with abnormal synaptic transmission [271],
inappropriate neuronal firing, and imbalance of excita-
tion and inhibition of neuronal networks [272]. The etiol-
ogy of epilepsy is mostly unclear, which possibly includes
genetic risks, brain diseases, and systemic diseases. The
abnormal neuronal firing is found to be closely related to
mitochondrial dysfunction and abnormalities in neuro-
transmitters and ion channels [273, 274]. Due to the dif-
ferent starting sites and transmission modes of abnormal
neuronal discharges, clinical manifestations of epilepsy
are complex and diverse, including disorders in motor,
sensory, and autonomic nervous systems and conscious-
ness [275].

Aberrant furin expression in epilepsy

It has been reported that furin protein levels are increased
in the temporal neocortex of patients with temporal
lobe epilepsy (TLE) and in the cortex and hippocam-
pus of kainic acid (KA)-induced and pentylenetetrazol
(PTZ)-kindled epileptic mice [25]. Moreover, transgenic
overexpression of furin in mice increases the susceptibil-
ity to epilepsy and increases the epileptic activity [25].
Furin has been identified to play a role in influencing the
inhibitory synaptic transmission in epileptic mice [25]. In
addition, an increase in Furin mRNA has been found in
the hippocampus of KA-exposed mice [12], and the co-
localizations of the increased Furin mRNA with Ngf and
Bdnf mRNAs suggest a potentially important role of furin
in the pathophysiology of epilepsy [12].

Expression of substrates of furin in epilepsy
Studies on animal models of epilepsy have pro-
posed potential involvement of dysregulations of
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neurotrophins, such as BDNF, NGF and NT-3, in human
epilepsy [276-282]. TLE patients with hippocampal scle-
rosis show increased mRNA levels of BDNF, NGF and
NT-3 in granule cells of hippocampus, which are corre-
lated with either hippocampal neuron loss or aberrant
supragranular mossy fiber sprouting [276]. Patients with
intractable TLE show a marked increase in protein lev-
els of BDNF in the temporal neocortex [277]. Moreover, a
rapid increase in the proBDNF level is found in principal
neurons and astrocytes of all hippocampal subfields in
pilocarpine-induced status epileptic mice, which is pro-
posed to be associated with the reduced proBDNF cleav-
age machinery [278]. Similar to the changes in BDNE,
Ngf mRNA increases in the hippocampus and neocortex
of rats with limbic seizures [279]. The secreted proNGF
is considered as a pathophysiological death-inducing
ligand [280], while blocking proNGF can inhibit neuronal
loss after seizures [281]. Notch signaling is activated in
KA-induced epileptic mice and in human epileptogenic
tissues, while activation of Notch signaling further pro-
motes neuronal excitation of CAl pyramidal neurons
[163]. In addition, a large number of studies have shown
that the expression levels of MMP-2, MMP-3, MMP-9
and MMP-14 in the brains of epilepsy patients or animal
models are increased and dynamically regulated at differ-
ent stages of epileptogenesis [283-289]. MMP inhibitors
are considered as potential therapeutic drugs because
of their anti-seizure and anti-epileptogenic effects [285,
290].

Potential role of furin in the pathology of epilepsy

The above findings suggest a crucial role of furin in the
pathology of epilepsy. The upregulation of furin in epi-
lepsy patients or animal models may promote the cleav-
age of proBDNF, proNGF, Notch receptor and MMPs.
As a result, the inhibitory and excitatory synaptic trans-
missions are affected, leading to abnormal neuronal dis-
charge, which contributes in part to the symptoms of
epilepsy (Fig. 3b). However, the underlying mechanisms
for furin upregulation and furin-mediated activities in
epileptogenesis need to be determined.

Furin in cerebral ischemia

Overview of cerebral ischemia

Cerebral ischemia is a neurodegenerative disease caused
by reduced blood supply to the brain tissue [291], and
is currently a major cause of death and disability glob-
ally [292]. Cerebral ischemia causes reduced delivery of
oxygen and glucose to the brain, and as a result, a loss of
consciousness can occur [291]. The occurrence of meta-
bolic disorders during ischemia or tissue hypoxia is rela-
tively well established, but the subsequent reperfusion is
the major events leading to cell and tissue dysfunctions
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[293]. Ischemia-reperfusion injury is the inexplicable
aggravation of cellular dysfunction during the restora-
tion of blood flow after a period of ischemia [294]. The
reperfusion can lead to potentially very harmful effects,
such as necrosis of irreversibly damaged cells, cell swell-
ing, vascular and endothelial injury and mitochondrial
dysfunction [295].

Aberrant furin expression in cerebral ischemia

It has been found that the Furin mRNA level in rat hip-
pocampus at 24 h after transient global cerebral ischemia
is two-fold of that in sham-operated controls, indicating
a possible role furin may play [296]. In a focal ischemic
rat model established by middle cerebral artery occlu-
sion, increases in Furin mRNA and protein levels are
found in the piriform cortex of the ischemic hemisphere
2 h after reperfusion compared with sham-operated ani-
mals, and it is predicted that the elevation of furin may
contribute to the disruption of BBB during ischemia
[297]. Another recent study found that the level of Furin
mRNA in the ipsilateral cortex of hypoxic-ischemic rats
had an insignificant increase at 6 h after ischemia, but
then decreased significantly at 15 h and was sustained
at a low level for 7 days [298], while Furin mRNA in the
ipsilateral hippocampus was elevated at 6 h and 3 days
but decreased at 15 and 24 h after injury compared with
that of the control rats [298]. The change in furin expres-
sion is considered to account for the decrease of BDNF in
the ipsilateral cortex and hippocampus of the rats [298].
An in vitro study also showed that the protein levels of
furin and BDNF are upregulated in cultured rat astro-
cytes exposed to oxygen—glucose deprivation [64]. These
findings indicate that furin may play important roles in
the pathogenesis of cerebral ischemia and in the recovery
from ischemia brain damage.

Expression of substrates of furin in cerebral ischemia

In addition to the changes in furin expression, the lev-
els of Bdnf mRNA and protein in the ipsilateral cor-
tex and hippocampus of hypoxic-ischemic rats are
altered at different degrees at different time points after
hypoxic-ischemic injury [298]. Many other studies have
also reported changes of MMP levels, including levels
of MMP-2, MMP-9 and MMP-14, in the model of focal
ischemic rats [297, 299-302]. In particular, increased
expression and activity of MMP-2 and MMP-9 are found
in different models of focal cerebral ischemia, implying
their potential roles in early matrix degradation, loss of
vascular integrity, and neuronal injury in the ischemic
lesion [300, 301]. In addition, a significant increase in the
cleavage of LRP1 by furin has been found in rats after
cerebral ischemia, which is predicted to aggravate neu-
roinflammation, and administration of a furin inhibitor
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inhibits the cleavage of LRP1 and decreases co-localiza-
tion of ICD of LRP1 with furin in ischemic areas [303].
These findings imply that the furin-mediated cleavage of
MMPs and LRP1 may be involved in the pathophysiology
of ischemic brain injury.

Potential role of furin in the pathology of ischemia

The above observations imply the involvement of furin
in the pathology of cerebral ischemia. Changes in furin
expression may exist in varied temporal and spatial pat-
terns after ischemic injury in the brain. The upregulation
of furin in ischemic patients or animal models may pro-
mote the cleavage of MMPs, particularly MMP-2, MMP-
9, and MMP-14. The activation of these MMPs leads to
early matrix degradation and loss of vascular integrity,
and finally contributes to BBB breakdown and neuronal
injury in ischemic lesions (Fig. 3c). Moreover, the ICD of
LRP1 is increased, which aggravates neuroinflammation.
The relationship between changes of furin level and other
molecules such as BDNF in ischemic brain injury needs
to be elucidated in the future.

Furin in SCZ

SCZ overview

As one of the severe mental diseases, schizophrenia is
characterized by cognitive distortions including impair-
ments in concentration, thinking, speed of cognitive
information processing, and verbal working memory
[304]. These impairments in cognitive functions persist
throughout the disease and determine the functional
status of patients [305]. The etiology of schizophrenia is
complex, commonly associated with genetic variants and
changes in development-related factors and regulatory
molecules [306].

Aberrant furin expression in SCZ

A study by Fromer et al. in 2016 using RNA sequencing
data from the dorsolateral prefrontal cortex of post-mor-
tem SCZ patients identified down-regulation of FURIN
transcripts by risk allele [24]. They also found that deple-
tion of furin in zebrafish model has the largest impact
on head size, which can be attributed to the furin deple-
tion-induced changes in neural cell proliferation and
migration [24]. Furthermore, downregulation of furin
expression specifically at the rs4702 G (in the 3’ UTR of
FURIN) allele by miR-338-3p reduces the production
of mBDNF [307]. In addition, the association between
pleiotropic effects of FURIN genetic loci and SCZ traits
has been reported recently by several different studies
[308-310]. A study using datasets from the Psychiatric
Genomics Consortium related to SCZ, major depressive
disorder (MDD) and bipolar disorder (BIP) patients iden-
tified rs8039305 in the FURIN gene as a novel pleiotropic
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locus across the three disorders [309]. Similarly, another
study identified rs17514846, a variant within an intron of
FURIN gene, as a common trait between SCZ and cardi-
ometabolic disorder [310]. In addition, in C. elegans, the
3'UTR of kpc-1 (furin) promotes dendritic transport and
local translation of mRNAs to regulate dendrite branch-
ing and self-avoidance [311]. These findings indicate the
important role of furin in brain development and in the
pathophysiology of SCZ.

Expression of substrates of furin in SCZ

The deregulation of BDNF expression has been exten-
sively studied in SCZ patients and animal models [312—
319]. Significant reductions of BDNF mRNA and protein
have been observed in the dorsolateral prefrontal cortex
of patients with SCZ compared to normal individuals
[312]. The reduced BDNF/TrkB signaling in the prefron-
tal cortex appears to underlie the dysfunctions of inhibi-
tory neurons in subjects with SCZ [313]. Studies have
also shown significant reductions of BDNF in the hip-
pocampus as well as NT-3 concentrations in the fron-
tal and parietal cortical areas, in SCZ patients [314]. On
the contrary, some studies have shown that the BDNF
concentration is significantly increased in cortical areas
of post-mortem SCZ patients [314, 315]. In addition,
the plasma BDNF levels in schizophrenic patients are
remarkably lower than those in the controls, which is
predicted to be associated with the decreased hippocam-
pal volume and cognitive impairments in first-episode
and chronic SCZ [316, 317]. These findings suggest that
the downregulation of neurotrophic factors could be
responsible for neural maldevelopment and disturbed
neural plasticity in the etiopathogenesis of schizophrenic
psychoses. In schizophrenic animal models, reductions
of Bdnf mRNA and protein levels have been observed in
the cortex and the hippocampus [318, 319]. Decreased
serum levels of NGF and NT-3 have been observed in
SCZ as well [320-322]. In addition to the alterations of
neurotrophins, plasma MMP-9 levels are also increased
significantly in SCZ patients compared to controls [323],
and MMP-9 gene polymorphisms in the brain are found
to be associated with SCZ [324, 325]. Besides, increased
MMP-2 levels in the CSF of SCZ patients are also
reported [326].

Potential role of furin in SCZ pathology

The above findings uncover the involvement of furin in
the pathology of SCZ. Furin expression in SCZ patients
is downregulated, which in turn affects the matura-
tion of neurotrophins, such as BDNF, NGF and NT3.
The chronic low trophic support for neurons leads to
neural maldevelopment, dysfunction of inhibitory neu-
rons, disturbed neural plasticity and neurodegeneration,
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contributing to the impaired cognitive performance/
function in SCZ (Fig. 3d). This hypothesis may in part
explain the pathogenesis of SCZ. However, the relation-
ships between furin deregulation and changes in MMPs
and other furin substrates in SCZ pathology have yet to
be investigated.

Furin in depression and anxiety

Currently, there is no report on the changes of furin
expression in patients with depression and anxiety. How-
ever, the SNP rs8039305 in the FURIN gene has been
indicated as a novel pleiotropic locus across the disorders
of MDD, BIP and SCZ [309], indicating a potential role
of furin in pathological mechanisms of the psychiatric
disorders.

Aberrant expression of several substrates of furin has
been reported in patients with depression. The serum
BDNEF level is significantly lower in MMD patients than
in healthy controls [327-329]. The mBDNF/proBDNF
ratio is also decreased [329], suggesting that the reduced
BDNF maturation plays a pivotal role in the pathophysi-
ology of MDD. Serum MMP-9 is found to be increased
in MDD patients, while MMP-2 is decreased in MDD
patients [323, 330], indicating the involvement of MMP-2
and MMP-9 in mood disorders. In addition, MMP-2 lev-
els in the CSF are increased in MDD patients [326], and
the state-dependent alterations of MMP-2 and activa-
tion of cascades involving MMP-2, MMP-7, and MMP-
10 appear to play a role in the pathophysiology of MDD
[326]. LRP1 has been reported to be up-regulated in the
hippocampus of depressive-like rat model [331].

In anxiety-like disorders, aberrant BDNF expression
has also been reported. In the social deprivation stress-
triggered anxiety- and depressive-like mice, BDNF levels
are reduced in the brain [332]. In serotonin transporter
knockout rats with depressive- and anxiety-like behav-
ior, a decrease in mBDNF in the prefrontal cortex has
been reported as well [333]. The alterations of proBDNF
and mBDNF expression have been indicated in many
other diseases with anxiety- and depressive-like behavior
[334-337], highlighting the association between aberrant
BDNEF expression and anxiety and depression disorders.

Furin-targeting strategies for neurological diseases
Currently, the use of furin-targeting strategies to diag-
nose or treat neurological disorders has not been
reported in clinical studies. However, as described above,
furin expression levels are altered in several neurodegen-
erative and neuropsychiatric diseases; for instance, serum
furin level is decreased in AD mice. These highlight the
great potential of furin to be a predictive diagnostic
marker for neurological disorders in the future.
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The potentials of furin-targeting strategies to treat
neurological diseases have been suggested in several
animal models (Table 2). In AD animal models, injec-
tion of Furin-adenovirus into the cortex of Tg2576 mice
markedly increases the a-secretase activity of ADAM10
and TACE, which in turn reduces AP production [13].
Furin-transgenic mice with brain-specific overexpres-
sion of furin exhibit increased dendritic spine density and
enhanced learning and memory, which are attributed to
the increased mBDNF level caused by furin [26]. In aged
APP-C105 mice, treadmill exercise attenuates AD-related
symptoms, possibly by ameliorating iron dyshomeosta-
sis and enhancing furin expression, thereby promoting
a-secretase-directed processing of APP [23]. Gallic acid
treatment in APP/PS1 mice has been shown to increase
furin expression, which in turn promotes o-secretase
activity and decreases AP production, partly reversing
the learning and memory impairment in APP/PS1 mice
[338]. In addition, cerebrolysin, a peptidergic mixture
with neurotrophic-like properties, can improve the sur-
vival of neural stem cell grafts and alleviate AP deposi-
tion in the hippocampus of APP transgenic mice, and this
protective effect also involves the activation of furin and
increased BDNF expression [339]. On the other hand,
knockdown of astrocytic Grin2a in rats reduces furin
expression and in turn decreases the maturation and
secretion of NGE, aggravating the AB-induced memory
and cognitive deficits [238]. These findings suggest the
potential of increasing furin expression as an effective
approach for AD treatment, and open avenues for future
targets and strategies for AD prevention and therapeutic
interventions.

In paraquat-induced Drosophila model of PD, trans-
genic knockdown of Furl in DA neurons provides sig-
nificant protection against the loss of DA neurons [265].
In Drosophila models with LRRK2 overexpression, dis-
ruption of one allele of Furl or postsynaptic knockdown
of Furl using transgenic RNA interference approach
can attenuate the LRRK2-induced retrograde synap-
tic enhancement [266]. These findings suggest potential
involvement of furin in PD pathophysiology and treat-
ment. However, great efforts are urgently needed to
explore the role and pharmaceutical potential of furin in
PD patients or murine models.

In both KA-induced and PTZ-kindled epileptic mouse
models, lentivirus-mediated knockdown of furin in the
hippocampus decreases the spontaneous rhythmic elec-
trical activity of cerebral neurons, and suppresses epilep-
tic seizure activity and severity [25]. This protective role
is proposed to be associated with the regulation of syn-
aptic transmission by altering the transcription level of
postsynaptic gamma-amino butyric acid A receptor [25].
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Table 2 Treatment effects of modulation of furin expression on neurological diseases

Disease

Model

Treatment

Targeted region

Furin expression Effects References

AD

AD

AD

AD

PD

PD

PD

Epilepsy

Tg2576 mice

Furin-Tg mice

APP-C105 mice

APP/PS1 mice

APP transgenic mice

Paraquat-treated
Drosophila

Drosophila with
LRRK2 overexpression

Drosophila with
LRRK2 overexpression

KA-induced epileptic
mice; PTZ-kindled
epileptic mice

Cerebral ischemia  Global ischemia rats

Furin adenovirus

Brain-specific trans-
genic overexpression
of furin

Treadmill exercise

Gallic acid

Cerebrolysin

Transgenic knock-
down of FurT

Disruption one allele
of Furl

Postsynaptic knock-
down of Furl

Lentivirus containing
sh-Furin

Monosialogan-
glioside; Flavanol
epicatechin

Cortex

Brain

Whole body

Whole body

Hippocampus

DA neurons

Whole body

Postsynaptic muscles

Hippocampus

Whole body

Cortex ¢ Reduces AB produc-  [13]
tion by increasing
a-secretase activity of

ADAM10 and TACE

Elevates production  [26]
of MBDNF, enhances
dendritic spine

density and promotes
learning and memory

Brain 1

Increases furin [23]
expression, promoted

APP cleavage by
a-secretase, and

attenuates AD-related
symptoms

Cortex 1

Increases furin [338]
expression, activates
ADAM10, and

reverses the loss of

learning and memory

Brain 1

Increases furin and [339]
BDNF expression,

improves survival of

neural stem cell grafts

and alleviates AB

deposition

Protects DA neurons  [265]
against the toxic
effect of paraquat

Reduces the [266]
retrograde synap-

tic enhancement

induced by postsyn-

aptic overexpression

of LRRK2

Reduces the [266]
retrograde synap-

tic enhancement

induced by postsyn-

aptic overexpression

of LRRK2

Reduces the spon- [25]
taneous rhythmic

electrical activity of
cerebral neurons and
suppresses epileptic
seizure activity and

severity

Hippocampus 1

DA neurons |,

Whole body |

Neuromuscular junc-
tion |

Hippocampus |

Increases the levels of  [340]
furin and NGF

Hippocampus 1

In a global ischemia/reperfusion rat model, mono-

sialoganglioside or flavanol epicatechin treatment both
can improve spatial memory retention and acquisition in
experimental ischemic rats [340], and these neurothera-
peutic effects are found to be related to the increases in
furin and NGF levels [340]. In addition, application of
furin inhibitor can protect primary cortical neurons from

cell death induced by activated NMDA receptors [341],
which is possibly attributed to the decrease of furin-
mediated cleavage of LRP1 [303]. These findings suggest
that manipulating furin expression is potentially a good
strategy for the treatment of ischemic brain injury.

In addition, some furin activators and inhibitors have
been identified with drug potentials. The small molecules
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phorbol esters dPPA (12-deoxyphorbol 13-phenylac-
etate 20-acetate) and dPA (12-deoxyphorbol 13-acetate)
exhibit great effects in promoting furin expression via
activation of the transcription factor CEBPf in neuronal
cells [34]. On the other hand, polyarginines, such as hexa-
D-arginine, significantly inhibit furin activity in vivo [342,
343]. The therapeutic effects of these furin activators and
inhibitors in prevention and treatment of neurological
disorders need to be investigated further in the future.

Conclusions

A growing body of evidence has suggested the cru-
cial role of furin in the pathophysiological conditions
of neurodegenerative and neuropsychiatric diseases.
Notably, reduced furin expression is closely associ-
ated with the pathogenesis of AD. Pharmaceutical
targeting of furin expression has shown great prom-
ise for AD treatment. In addition to AD, alterations of
furin expression also exist in patients or animal mod-
els of epilepsy, cerebral ischemia, or SCZ. Further-
more, changes in the expression of neurotrophins,
such as BDNF and NGEF, are common to these neuro-
degenerative and neuropsychiatric diseases, and many
are related to the abnormal cleavage of proneurotro-
phins. In addition to neurotrophins, other substrates
of furin such as MMPs and LRP1 also exhibit expres-
sion changes in these neurodegenerative and neuropsy-
chiatric diseases. These lines of evidence highlight the
important roles of furin and furin-mediated activities
in the progression of these diseases, and render furin as
a valuable therapeutic target. However, currently very
little is known about the cellular and molecular mecha-
nisms of furin regulation in these diseases. Future stud-
ies are needed to clarify the molecular mechanisms of
furin deregulation and its involvement in the pathogen-
esis of these diseases, and to develop new diagnostic
and treatment strategies.
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