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Abstract

The fundamental role that alpha-synuclein (aSyn) plays in the pathogenesis of neurodegenerative synucleinopathies,
including Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy, is a well-accepted fact. A
wealth of experimental evidence has linked this relatively small but ubiquitously expressed protein to a plethora of
cytopathologic mechanisms and suggests that aSyn may be capable of seeding the progressive spread of
synucleinopathy throughout the brain. Beyond the synucleinopathies, the abnormal deposition of aSyn is frequently
seen in a variety of other neurodegenerative proteinopathies including Alzheimer’s disease. In spite of the fact that the
frequency of concomitant aSyn pathology in these disorders is such that it can be considered the rule rather than the
exception, the potential role that aSyn may have in these disorders has received relatively little attention.
In this article we postulate that aSyn may in fact be a key protein in driving the pathogenic processes in neurodegenerative
comorbidities. In addition to reviewing the frequency of concomitant deposition of aSyn in the neurodegenerative
proteinopathies, we also consider our current understanding of the interaction of aSyn with other neurodegenerative
disease-associated proteins, including tau, TDP-43, amyloid-β and prion protein, in the context of neuropathologic studies
describing the anatomical sites of potential concomitant pathology. We conclude that a growing body of evidence,
encompassing neuropathology studies in human brain, animal models of concomitant proteinopathies and studies
employing sophisticated methods of probing protein-protein interaction, cumulatively suggest that aSyn is well positioned
to exert a strong influence on the pathogenesis of the neurodegenerative comorbidities.
We hope to stimulate research in this emerging field and consider that future studies exploring the contribution of aSyn to
the pathogenic processes in neurodegenerative comorbidities may provide critical information pertaining to diagnosis and
the development of vital disease modifying treatments for these devastating diseases.
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Background
Alpha synuclein (aSyn) is a 14 kDa protein ubiquitously
expressed in the presynaptic terminals of the brain,
where it has been estimated to account for up to 1% of
all cytosolic proteins [1, 2]. Since the discovery in 1997

that a mutation in SNCA, the gene that encodes aSyn, is
linked to an autosomal dominant early-onset form of
Parkinson’s disease (PD) [3] there has been an explosion
of studies demonstrating the involvement of aSyn as a
critical element of PD pathogenesis (Fig. 1). This more
than of 20 years of research has yielded a wealth of evidence
demonstrating that aggregated aSyn is a key feature of the
neuropathology of PD and is heavily implicated in the neuro-
degenerative process in PD (reviewed in [4]). Some forms of
aSyn aggregates can be neurotoxic and have been linked with
a variety of deleterious effects in neurons including downreg-
ulation of mitochondrial complex1 activity [5], endoplasmic
reticulum stress [6], neuroinflammation [7], disrupted cell
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membrane integrity [8] as well as inhibition of the ubiquitin
proteasome system and impairment of the autophagy lyso-
somal pathway, which may in turn result in decreased deg-
radation of aberrant aSyn, fueling a vicious neurotoxic cycle
[9]. In addition, much recent attention has been paid to the
observation that aSyn fibrils are seeds capable of inducing
further aggregation of physiologic aSyn in a wide variety of
model systems [10]. Collectively these findings have posi-
tioned aSyn at the epicenter PD research over the last 20
years. However, we are becoming increasingly aware that
aSyn may also play a role in the pathogenesis of several other
neurodegenerative proteinopathies.
There are several diseases in which pathologic aggregates of

aSyn are a defining feature, collectively termed synucleinopa-
thies. Primary synucleinopathies include Lewy body disorders,
such as dementia with Lewy bodies (DLB), Parkinson’s disease
(PD) PD with dementia (PDD) and pure autonomic failure
(PAF). These are characterized by the predominance of intra-
neuronal cytoplasmic and neuritic deposits (Lewy bodies and
Lewy neurites). The classification of these disorders is based
on the clinical presentation and spatiotemporal development
of aberrant aSyn pathology [11]. A further disorder, multiple
system atrophy (MSA) is dominated by glial cytoplasmic in-
clusions (Papp-Lantos bodies). In addition to these primary
synucleinopathies, deposition of aSyn is also commonly ob-
served in the brains of individuals with other primary diagno-
ses (reviewed in [12, 13]). Aberrant accumulation of aSyn is
frequently observed in brains with abnormal deposition of
Tau, transactive response DNA binding protein 43 kDa (TDP-
43), amyloid-β (Aβ) or prion protein. The frequency of these
pathologic comorbidities is so common that their presence is
the rule rather than the exception in neurodegenerative

diseases. However, this frequency of co-occurrence is not
reflected in published research, which has largely ignored this
phenomenon. As illustrated in Fig. 1, although there are a
large number of articles citing both aSyn and PD in the title,
the number of articles citing aSyn in combination with either
AD or tau in the title is disproportionately low.
Currently the pathological classification of neurode-

generative diseases is based on the predominant protei-
nopathy [11]. However, ignoring the existence of these
comorbid proteinopathies that frequently exist simultaneously
in the same brain likely impedes our understanding of disease
pathogenesis, precludes the accurate early diagnosis of neuro-
degenerative proteinopathies and stratification of patients for
clinical trials and jeopardizes the development of much
needed disease modifying therapies. Here we review both the
frequency of aSyn deposition in different neurodegenerative
conditions and the available experimental studies on inter-
action of aSyn with other proteins associated with neurode-
generative disease with a focus on evidence suggesting aSyn
may be a key protein in driving the neurodegenerative pro-
cesses in these conditions. For clarity, it is our opinion that re-
ferring to the concomitant deposition of aSyn in diseases not
classified as synucleinopathies as a “co-pathology” may infer a
lesser importance of aSyn compared to the other abnormally
deposited protein. We believe that, as the relative contribution
of each aberrantly deposited protein to the neurodegenerative
process is presently unknown, the term “concomitant path-
ology” is more appropriate. Concomitant is defined as “natur-
ally accompanying or associated” reflecting both the frequency
of this observation whilst remaining unbiased as to the relative
importance of each aberrantly deposited protein to the neuro-
degenerative process as a whole.

Fig. 1 The number of articles in Pubmed by year containing the words alpha synuclein and either Parkinson’s disease, Alzheimer’s disease or tau
from 1997 to 2018 ((alpha synuclein) AND Parkinson’s disease/Alzheimer’s disease/tau) AND (“1997”[Date - Publication]: “2018”[Date - Publication])
in the title
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Main text
Mechanisms of aSyn aggregation and propagation
Prior to considering any role aSyn may have in driving
neuropathologic comorbidities it is important to appre-
ciate the mechanisms by which aSyn has been shown to
propagate synucleinopathy alone. This topic has been
the focus of an impressive amount of research over the
last decade inspired initially by the observation that aSyn
pathology is evident in embryonic dopamine neurons
grafted into the brains of human PD patients, leading to
the hypothesis that aSyn may be capable of propagating
synucleinopathy in a prion-like fashion [14]. There is
now a wealth of experimental evidence ranging from
studies in cultured cells to animal models demonstrating
that aSyn seeds are capable of being transmitted from
neuron to neuron and incorporating the aSyn of the host
neuron into misfolded aggregates, leading to neuronal
dysfunction and ultimately cell death (recently reviewed
in [15]. Several studies interrogating the ability of aSyn
to seed pathology in recipient cells or tissues have
exploited preformed fibrils (PFFs) of misfolded aSyn
generated by sonicating β-sheet rich fibrils of recombin-
ant aSyn [16]. PFFs are rapidly taken up by numerous
cell lines in culture, including primary dopamine neu-
rons, whereby they induce the formation of aSyn aggre-
gates bearing several similarities to Lewy bodies,
including a high degree of phosphorylation at serine 129,
polyubiquitination and coexpression of p62 [16–19].
Similarly, inoculation of both wildtype and transgenic
animals with PFFs results in the development of wide-
spread synucleinopathy throughout synaptically con-
nected networks, neurodegeneration and behavioural
deficits (reviewed in [15, 20]. Other studies have demon-
strated similar effects utilizing aSyn derived from human
brain tissue from individuals with synucleinopathies [17,
21]. Identifying the mechanisms for uptake (putatively
receptor mediated), processing (predominantly lyso-
somal) and release of these toxic aSyn seeds is the topic
of ongoing research efforts (reviewed in [15]), as well as
the possible contribution of different conformational
strains of aSyn to the different pathological inclusions
observed among the synucleinopathies. Thus, aSyn ex-
tracted from glial cytoplasmic inclusions has been shown
to have a different proteolytic profile and a much more
potent biological activity than that of Lewy body derived
aSyn [21]. There are obvious therapeutic implications of
this aspect of aSyn biology with several efforts underway
to prevent aSyn spreading synucleinopathy throughout
the brain, including the recent initiation of clinical trials
of antibodies directed at aSyn. Certainly a better under-
standing of the mechanisms of release, uptake and traf-
ficking of internalized aSyn should help provide several
novel targets with disease modifying potential in PD and
related synucleinopathies in the near future.

aSyn and comorbidity: a critical overview of
neuropathological aspects
The association of synucleinopathy with different neuro-
degenerative conditions can be discussed from two per-
spectives. First, when aSyn appears as comorbidity (i.e.,
concurrent presence of brain disease with overlapping
pathogenic aspects [13]) in diverse neurodegenerative
conditions, and second when other proteinopathy co-
morbidities are observed in primary synucleinopathies.
This is a somewhat arbitrary grouping as in cases with
complex constellations of proteinopathies, it can be diffi-
cult to elucidate which is the predominant feature. In
spite of the fact that emerging research is focusing on
the description of concomitant pathologies, comparison
between different studies will likely be hampered by the
current lack of consensus regarding harmonization of
nomenclature and evaluation strategies. There are sev-
eral layers of complexity that must be kept in mind
when evaluating the role of aSyn in proteinopathic co-
morbidities, thus simply referring to the presence of
Lewy body pathology as a concomitant pathology might
be insufficient for the reasons described below [13].
First, the classification of disorders with Lewy bodies

awaits further crystallization. Diseases with Lewy bodies are
grouped based on the early clinical presentation (movement
disorder vs cognitive decline) [11]. However, although clus-
ter analysis suggests that there are several distinct subtypes
of PD [22], and several studies raise the concept that DLB
might be distinct from PD and PDD [23–25], there are cur-
rently no known biochemical or morphological features of
aSyn pathologies allowing a clear division of subtypes of
Lewy body disorders. Importantly, the anatomical distribu-
tion of synucleinopathy and the concomitant presence of
further protein deposits (e.g., Aβ and tau-positive neurofib-
rillary tangles) might be an important aspect for distin-
guishing clinically different Lewy body disorders [23, 25].
Finally, there are conditions, detectable only by neuropath-
ologic study, when Lewy bodies accumulate solely in the
amygdala or the olfactory bulb or lower brainstem without
any clinical manifestation (i.e, incidental Lewy body dis-
ease), or only in peripheral organs [11, 26]. Currently, two
neuropathological approaches are used to describe Lewy-
body related pathology. Braak staging of Lewy body path-
ology, delineates the sequential involvement of brain re-
gions starting in the medulla oblongata (stage 1), pons
(stage 2), mesencephalon, in particular the substantia nigra
(stage 3), limbic areas (stage 4), and finally reaching neocor-
tical areas (stages 5 and 6) [27]. Intriguingly, not all cases
strictly follow the sequential distribution described by Braak
staging [28]. A second set of criteria, which originates from
the classification of Kosaka [29], are implemented in the
diagnosis of DLB as either brainstem, limbic or neocortical
types [30]. Since these approaches do not recognize the
early or pure involvement of the olfactory bulb and various

Visanji et al. Translational Neurodegeneration            (2019) 8:28 Page 3 of 13



predominances of aSyn deposition, this was included in fur-
ther strategy, the so called unified staging system for Lewy
body disorders. This suggests classification of cases into
one of the following stages: I. Olfactory Bulb Only; IIa
Brainstem Predominant; IIb Limbic Predominant; III Brain-
stem and Limbic; IV Neocortical [31].
Second, historical studies focused exclusively on the

presence of Lewy bodies and their clinicopathological rele-
vance. However, the spectrum of aSyn accumulations in
Lewy body disorders is much broader than the mere pres-
ence of Lewy bodies and involves depositions in synapses,
neurites, astrocytes, and oligodendrocytes [11, 32–34]. In
addition, the use of modern techniques, such as the prox-
imity ligation assay, has revealed further pathological al-
terations in neurons in Lewy body disorders [35].
Unfortunately, documentation of most of these aspects is
lacking in the majority of existing clinicopathological stud-
ies, many of which also employed different antibodies for
immunostaining, altogether jeopardizing our understand-
ing of the role of aSyn pathology in diverse neurodegener-
ative conditions. These limitations call for a harmonized
approach involving the evaluation of several anatomical
regions using novel antibodies with standardized immu-
nohistochemical, and other methods and a consensus de-
scription of anatomical patterns of different cellular or
synaptic aSyn deposits to enable the comparison of differ-
ent cohorts to enhance our understanding of the full
spectrum of aSyn pathology in synucleinopathies.
The clinical subtypes associated with MSA pathology

[36] cannot be clearly translated into biochemical or
morphological differences. For the diagnosis of MSA the
presence of oligodendroglial inclusions/glial cytoplasmic
inclusions (CGIs) (Papp-Lantos bodies) is sufficient [37],
however, neuronal aSyn pathology and further patholo-
gies, described recently by sophisticated methods [38],
should be also considered. The distribution of glial in-
clusions might follow either a striatonigral or olivopon-
tocerebellar predominance or even be associated with
frontotemporal lobar degeneration (FTLD) and promin-
ent neuronal aSyn accumulation in the medial temporal
lobe [39, 40]. Although incidental MSA cases are de-
scribed [41], MSA is usually not sought in the diagnostic
screening for concomitant pathologies since early steps
of the disease might involve only the cerebellum [42].
Indeed, an aging study showed that by immunostaining
several anatomical regions asymptomatic MSA cases
could be identified in elderly communities [43].
Despite the relative frequency of concomitant neuro-

degenerative disorders, pure forms of proteinopathies
are still apparent using current diagnostic methods. This
supports the current protein-based molecular classifica-
tion [13]. The interpretation of different studies is com-
plicated by the fact that abnormally deposited proteins
exist in different phases of aggregation or fibrillization,

and in different phases or stages of sequential involve-
ment of anatomical brain areas, which in turn are influ-
enced by genetic variations, age and sex effects and
multimorbidities including systemic and vascular disor-
ders [13]. Furthermore, TDP-43 pathology has only re-
cently been added to the spectrum of concomitant
proteinopathies and only a very few studies report its fre-
quency. In addition, tau pathology is perceived mostly as
neurofibrillary tangles related to AD, thus, subcortical and
astroglial tau pathology or even primary age-related tauo-
pathy (PART) or the limbic tauopathy argyrophilic grain
disease (AGD) is considerably underappreciated in most
studies. These caveats have led to a wide range of reported
frequencies of neurodegenerative comorbidities depending
on diverse case collection and neuropathological meth-
odological strategies, which we have summarised below.
TDP-43 pathology is clearly more frequent in Lewy

body disorders (generally around 20%) [44], while less fre-
quent in MSA (4–7%) [44, 45]. Further studies indicate
that TDP-43 deposition in DLB (33.3%) is less frequent
than in mixed AD/DLB cases (52.6%), or in AD (73.9%);
but more frequent then in aged controls (17.9%) [46]. A
recent study reported more extensive Lewy body distribu-
tion correlating with more frequent Aβ deposition in
brainstem (50%), limbic (57%) and neocortical forms
(80%) of Lewy body disorders or TDP-43 deposition (0, 16
and 22%, respectively) [44]. When comparing the clinical
phenotypes, PDD and DLB are associated with more fre-
quent AD-related pathology and TDP-43 proteinopathy
than PD, but a similar frequency of AGD, and lower
prevalence of PART [47]. These changes are associated
with different loads of Aβ and tau pathologies in diverse
anatomical regions [25]. Importantly, in MSA TDP-43 im-
munoreactivities comprise subpial astrocytic inclusions
and glial cytoplasmic inclusions in addition to neuronal
inclusions, dystrophic neurites, and perivascular inclusions
[45]. Furthermore, concomitant Lewy bodies have been
described in up to 10% of MSA cases [48]. Regarding AD-
related pathology, intermediate to high levels of AD
neuropathological changes have been described in ~ 8%,
and PART in approximately 40% of MSA cases [44]. Any
type of ageing-related tau astrogliopathy (ARTAG) is de-
tected in up to 56% of synucleinopathy cases, specifically
grey matter ARTAG has been reported in 36.8% of Lewy
body disorders and 17.1% of MSA cases [49]. In a small
group of neuropathological controls (i.e. lack of any neu-
rodegenerative disease entity including PART) any type of
ARTAG was observed in 28.6% and grey matter ARTAG
was lacking (0%) [49].
On the other hand, Lewy body pathology is reported

in a wide range of neurodegenerative disorders and in
unimpaired aging (Fig. 2). Studies in ageing cohorts, irre-
spective whether the individuals showed neurological
symptoms or not, have typically focused on the presence

Visanji et al. Translational Neurodegeneration            (2019) 8:28 Page 4 of 13



of Lewy bodies related to AD-related pathological
change and have reported frequencies ranging from 6 to
39% [12]. Studies employing various methods have sug-
gested a frequency of concomitant Lewy bodies in ~ 20% in
CBD and PSP, which is thought to be only slightly higher
than that in the general aged population [44, 50, 51]. A
somewhat lower prevalence of concomitant Lewy body path-
ology has been reported in FTLD-TDP and ALS-TDP cases
(11–15%) [44] and in sporadic Creutzfeldt-Jakob disease
(prion disease) (9–23%) [52, 53]. In comparison the preva-
lence of Lewy pathology in unimpaired aging has been re-
ported as ~ 13% in a single study [54].

Experimental studies on the interaction of aSyn with
other neurodegenerative disease-associated proteins

1) Tau

Experimental studies suggest that aSyn and tau, including
oligomeric forms, may directly interact with each other, fur-
thermore, co-deposition of both proteins in Lewy bodies,
Lewy neurites and tangles has been shown using antibodies
against different epitopes of tau and aSyn in postmortem
tissues (reviewed in [55]). The latter depends on the ana-
tomical location and disease type exemplified by the relative

paucity of co-localization in the substantia nigra in con-
comitant progressive supranuclear palsy and Lewy body
pathology, whereas it is more likely to detect co-localization
in the amygdala in concomitant AD and Lewy body path-
ology [56–58]. Whereas aSyn has a tendency to self-aggre-
gate [59], the aggregation of tau relies on a variety of
cofactors, many of which likely remain to be identified [60].
A seminal study by Giasson and colleagues implicated aSyn
as a possible cofactor in the aggregation of tau [61]. Using
recombinant aSyn and tau these authors showed a synergis-
tic relationship whereby one protein can act to cross-seed
the aggregation of the other in vitro. More recent studies in
cultured cells, whilst supporting the ability of recombinant
aSyn fibrils to induce aggregation of tau, however, have cast
some doubt on the reciprocal ability of tau fibrils to cross-
seed the aggregation of aSyn [62]. These discrepancies may
reflect the disparate techniques used to determine inter-
action between these two proteins. Indeed, one study
using Fluorescence Resonance Energy Transfer (FRET)
microscopy, failed to show any cross-seeding between
aSyn and tau [63]. This method together with proximity
ligation assay also failed to provide clear evidence on the
close proximity allowing direct interaction of tau and aSyn
in human brain tissue in spite of rare co-localization in in-
clusion bodies in the amygdala [56]. Alternatively, these

Fig. 2 Approximate frequency of Lewy pathology reported in other neurodegenerative proteinopathies and in the unimpaired aged population.
These estimates do not capture the amount of Lewy pathology present or anatomical distribution of Lewy pathology in relation to the primary
pathology, but instead reflect the reporting of the presence of any amount of Lewy pathology in any brain region. Lewy body (LB); multiple
system atrophy (MSA); unimpaired aging (Ua), frontotemporal lobe dementia (FTLD), amyotrophic lateral sclerosis (ALS), sporadic Creuzfeldt-Jakob
disease (sCJD); Alzheimer’s disease (AD); progressive supranuclear palsy (PSP); corticobasal degeneration (CBD)
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discrepancies may relate to variability in the capability of
different conformational strains, or different antibodies
raised against distinct biochemical modifications of these
proteins in human studies, a further source of variability
between studies, to interact with each other, as previously
demonstrated by Guo and colleagues [64].
The observation that individuals from the Contursi kin-

dred, who express the aggregation prone A53T mutation in
aSyn, also have tau filamentous amyloid inclusions, as do
mice that overexpress A53T or E46K mutant aSyn, provides
evidence that mutant aSyn can drive aggregation of tau in
vivo [61, 65, 66]. Furthermore, affinity chromatography in
human brain lysates has revealed a direct interaction be-
tween the C terminus of wildtype aSyn and the microtubule
binding domain of tau [67]. In addition, mice injected with
recombinant preformed fibrils (PFFs) of wildtype aSyn
develop not only a widespread synucleinopathy but also de-
velop tau deposits, further supporting a synergistic relation-
ship between aSyn and tau aggregation in vivo [68].
Interestingly, in an experimental setting there is little evi-

dence of overlap between tau and aSyn deposits in either
cultured cells or in mice exposed to aSyn PFFs [62, 69].
Furthermore, as tauopathy is frequently found in the ab-
sence of synucleinopathy in human brain [70], although
evidence suggests aSyn may well be a co-factor able to drive
the aggregation of tau, many further studies should be
undertaken to determine the magnitude of any such effect
in human comorbid proteinopathies.

2) TDP-43

TDP-43 is frequently associated with tau and Aβ, yet
to date only two recent studies, from the same group,
have addressed the interaction between aSyn and TDP-
43 at an experimental level. SHSY5Y cells, double trans-
fected with both aSyn and a mutant TDP-43 lacking the
nuclear localization signal (TDP-43dNLS) developed
abundant aggregates of phosphorylated TDP-43 upon
exposure to aSyn PFFs [62]. These aggregates were not
formed in cells expressing wildtype TDP-43, suggesting
that the predominantly cytosolic TDP-43dNLS is more
susceptible to the aggregation catalysing effects of aSyn
PFFs than the predominantly nuclear wildtype TDP-43.
In a second in vivo study, wildtype mice inoculated with
intracerebral aSyn PFFs developed a synucleinopathy as
well as abnormal dot-like TDP-43 deposits [68]. Similar
to the distribution of PFF-induced synucleinopathy and
tau deposition, inclusions of aSyn and TDP-43 were only
partly colocalized in cells exposed to aSyn PFFs and
rarely colocalized in mice exposed to aSyn PFFs calling
into question the significance of any synergistic effect of
aSyn on TDP-43 aggregation in disease [62, 68]. In hu-
man tissue rare co-localizations are observed for TDP-
43 in amygdala Lewy bodies or aSyn in amygdala TDP-

43 inclusions [56], while in MSA–related oligodendro-
glial aSyn inclusions occasionally TDP-43 immunoreac-
tivity can be observed [45].

3) Amyloid-β

In 1993 Ueda and colleagues reported a study on an
unrecognized component of amyloid in AD and tenta-
tively named this 35-amino acid peptide NAC (non-Aβ
component of AD amyloid) and its precursor NACP [71],
which soon was defined as aSyn [1, 2]. Later it was shown
that the amyloid core of Aβ plaques itself lacks aSyn de-
position [72] but the protein is seen in the dystrophic
neurites of plaques. These observations in human tissue
sparked interest in examining these two proteins as poten-
tial interactors.
Indeed, experimental studies provide a wealth of evi-

dence thought to support the binding and coaggregation
of Aβ and aSyn. In vitro, Aβ can co-seed the aggregation
of aSyn in both cell free and cell-based systems [73–78]
and recombinant Aβ can induce phosphorylation of
aSyn at ser 129 (aSyn-ser129P) [79]. In animal models,
there is conflicting evidence regarding the interaction
between aSyn and Aβ. Thus, the combined expression of
human Aβ and aSyn has been shown to increase the de-
position of intraneuronal fibrillar aSyn and accelerate
the development of both motor and cognitive dysfunc-
tion in double transgenic mice [73]. Similarly in a mouse
model of DLB-AD, that simultaneously expresses
PS1(M146 V), APP(Swe), tau(P301L) and aSyn(A53T), a
substantial increase in deposition of Aβ, tau and aSyn
was observed, accompanied by accelerated cognitive de-
cline, suggestive of a synergistic effect of these proteins
in driving both pathology and phenotype [80]. Support-
ing this possible synergistic effect, aSyn knock-down in
an APP transgenic mouse model of AD has been shown
to reduce the degeneration of cholinergic fibers and hip-
pocampal neurons [81]. Interestingly these effects were
in the absence of any effect on either APP expression or
Aβ deposition, and may point to an as yet unknown in-
fluence of aSyn on the selective vulnerability of choliner-
gic neurons in AD. Together these studies provide
evidence supporting the provocative hypothesis that
aSyn may be more than merely an idle passenger in AD
pathogenesis. In contrast, some studies have suggested
that aSyn may inhibit the formation of Aβ plaques, with
one demonstrating a significant increase in Aβ plaque
load in APP (Tg2576) mice when crossed with aSyn
knockout mice [82], whilst a second study found that
aSyn knockdown in APP mice increased plaque burden
but decreased levels of extracellular Aβ oligomers [83].
A further study found that inoculation of APPPS1/aSy-
n(A30P) mice with brain homogenate derived aSyn re-
duced the formation of Aβ plaques and that the seeding
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capacity of Aβ brain homogenates was significantly re-
duced in the presence of aSyn [84].
Recent studies have also suggested a further, albeit indirect

mechanism by which aSyn may mediate deposition of Aβ.
Following the observation that exposure to recombinant
aSyn leads to increased levels of Aβ in cultured PC12 cells or
primary hippocampal neurons [85, 86] a recent report has
suggested that aSyn may induce the production and secre-
tion of Aβ through enhanced cleavage of APP in cultured
neuronal cells [87]. It is tempting to speculate that this ob-
servation could underly the frequently observed accumula-
tion of Aβ in synucleinopathies if so, then probing the
precise mechanisms by which aSyn mediate the processing
of APP could prove invaluable in the development of poten-
tially disease-modifying therapeutics.

4) Prion protein

The cellular prior protein (PrPC) has previously been
suggested as a receptor for Aβ oligomers [88, 89] al-
though others have reported evidence to the contrary
[90]. Similarly, cell surface PrPC has also been described
as a putative receptor that promotes the uptake of aSyn
via binding to the N-terminal domain [91, 92], although
others have more recently disputed these claims [89].
Thus, Aulic and colleagues reported that PrPC knock-
down in murine neuroblastoma cells attenuated the up-
take of recombinant aSyn oligomers with a similar effect
noted when comparing aSyn uptake in mouse primary
hippocampal neurons prepared from wildtype or PrPC

knockout mice. In addition, PrPC knockout mice devel-
oped lower levels of aSyn aggregates in the cortex, stri-
atum, thalamus and hippocampus following intrastriatal
inoculation with aSyn fibrils, suggesting that PrPC may
facilitate the uptake and aggregation of aSyn oligomers.
These same authors provided evidence that the replica-
tion of scrapie prions was blocked by aSyn oligomers
[93] providing a possible explanation for the observation
that individuals with Creutzfeldt-Jakob disease have a
more protracted disease course when there is concomi-
tant synucleinopathy [94]. Conversely, La Vitola and col-
leagues found no evidence of binding between PrPC and
aSyn oligomers [89] and noted that both PrPC knockout
mice and wildtype mice were equally susceptible to aSyn
oligomer-mediated toxicity and that PrPC expression
was not a prerequisite for these toxic effects. It remains
possible that these discrepancies are a result of meth-
odological differences between the studies. Certainly,
there are many different species of aSyn oligomers, which
may have a differential binding capacity with PrPC and it
remains possible that future studies could reveal that both
PrPC -dependent and PrPC -independent pathways play a
role in synucleinopathies [95]. On the other hand, aSyn
has an unexpected role in inducing a transmissible

spongiform encephalopathy with accumulation of disease-
associated PrP [96]. Accordingly, aggregated aSyn is po-
tent in cross-seeding of prion protein misfolding and ag-
gregation in vitro, producing self-replicating states that
can lead to transmissible prion diseases upon serial passa-
ging in wild type animals.

Anatomical sites of potential concomitant pathology in
the human brain
An understanding of the typical anatomical deposition
profiles of different neurodegenerative disease-associated
proteins throughout the brain is vital to considering the
possible impact of aSyn on the pathogenesis of other co-
morbid proteinopathies. As an example, Fig. 3 illustrates
the predicted overlap of aSyn in PD (the most common
synucleinopathy) with deposition patterns for Aβ in AD
(the most common neurodegenerative proteinopathy)
and Fig. 4 illustrates the predicted overlap of aSyn in PD
with tau in AD/PART [97–101]. In the majority of cases,
according to Braak et al. [97], in the early stages (1 to 3)
of PD aSyn is predominantly deposited in the brainstem,
then progresses through the limbic (including amygdala)
and subcortical (including basal ganglia) regions, eventu-
ally reaching the neocortical areas in later stages of the
disease. In AD, however, the pattern of Aβ deposition is
essentially the opposite, with deposits first observed in
the neocortex (i.e. Thal phase 1) then in the limbic and
subcortical regions (i.e. Thal Phase 2 and 3) and finally
being found also in the brainstem (Thal Phase 4) pro-
gressing to the cerebellum in Thal Phase 5 [102]. Thus,
the opportunity for aSyn and Aβ to coexist in the same
anatomical region of the brain does not present until at
least one of the comorbidities is at an advanced stage.
The region of the brain in which co-deposition may
occur is dependent on the relative stage of each disease.
Thus, an individual with early PD, but more advanced
AD-related pathology would be predicted to have over-
lapping pathology in the brainstem only (Fig. 3). Con-
versely an individual with early AD, but a more
advanced PD would have overlapping pathology only in
the neocortex (Fig. 3). Individuals with advanced AD
and PD would have the maximum potential for con-
comitant pathologies throughout the brain.
With respect to co-occurence of tau in AD/PART and

aSyn in PD, the opportunity for the two proteins to be
deposited in the same anatomical region occurs first in
the brainstem, in particular the locus coeruelus, in early
stages of disease, indicated as subcortical stages of
neurofibrillary tangle pathology by Braak and colleagues
[100] (Fig. 4). The deposition of proteins then progresses
to limbic and subcortical regions. Since tau pathology
(Braak stages I-IV) predominates in the limbic areas and
the medial temporal lobe but not in the basal ganglia
while Lewy body pathology (Braak stage 4) in the basal
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ganglia and limbic areas, the most likely meeting point
would be the amygdala, hippocampus, entorhinal cortex
and and anterior cingulate. Finally, at more advances stages
the two proteins may also coexist in the neocortex (Fig. 4).
Irrespective of which proteins are co-deposited, clearly,

the degree of potential overlap is dependent on the tem-
poral stage of each disease, with fewer overlapping re-
gions predicted early in disease and a much higher
degree of potential overlap in later stages, thus empha-
sizing the potential contribution of comorbid proteino-
pathies to pathogenicity particularly in later disease. It is
also important to note that these figures highlight the
potential brain regions where one would predict comor-
bid proteinopathies to coexist, but remain agnostic to
the amount of pathology present, or which if any protei-
nopathy is predominant. Finally, we emphasize that these
images (Figs. 3 and 4) represent our knowledge based on
current immunohistochemical methods to detect abnor-
mal pathology. Hence, it remains possible that future

studies mapping aberrantly deposited proteins using more
sensitive and sophisticated methods, may reveal a yet un-
expected and greater degree of anatomical overlap.
On an anatomical level the amygdala, a part of the

limbic system located deep in the medial temporal lobe,
suffers a high degree of overlapping aberrantly deposited
proteins with pathology present in AD, synucleinopa-
thies and tauopathies among others [58]. This observa-
tion has led Nelson and colleagues to recently propose
that the amygdala may serve as an “incubator” for mis-
folded proteins and suggest that the convergence of neu-
ropathologic comorbidities in this regions may act in
synergy to drive the evolution of a pure proteinopathy to
potentially more aggressive neuropathologic comorbidi-
ties [58]. This provocative hypothesis, if true, would have
profound implications for both the diagnosis of neurode-
generative diseases as well as the development of novel
therapeutics targeting proteinopathy. Over the next few
years we hope that, using modern techniques able to

Fig. 3 Predicted overlap (yellow) of aSyn in PD (green) with deposition patterns for amyloid-β in Alezheimer’s disease (red) in the brainstem,
limbic (e.g. amygdala, hippocampus, anterior cingulate) and subcortical areas (e.g. basal ganglia) and neocortical areas. According to the Thal
Phases the deposition of amyloid-β follows a neocortical to limbic/subcortical to brainstem path [102], which is opposite to that seen for aSyn
according to the Braak stages of Lewy pathology [97]
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probe the biochemical properties of aberrant proteins,
the careful study of the common neuropathologic co-
morbidities, particularly in brain regions with a high de-
gree of convergence, will provide vital information
regarding the relationship between these comorbidities,
the impact each may impart on the other and potentially
reveal novel targets for future biomarkers and disease
modifying therapies.

Conclusions
Given the frequency of occurrence, the impact of co-
morbid disease-associated proteins on disease pathogen-
esis in neurodegenerative proteinopathies has to date
been relatively underexplored. It remains possible that
the aggregation of multiple disease associated proteins in
a given condition are unrelated to each other, perhaps
the result of a common deleterious process in the brain,
for example neuroinflammation or disturbances of the
protein processing systems. However, emerging evidence

suggests that the concomitant deposition of multiple dis-
ease-associated proteins may impact upon disease patho-
genesis and have clinical significance. Based on
neuropathological studies, as depicted in Fig. 5, the pres-
ence of comorbid proteinopathies, aSyn (depicted in
green), AD-related pathology (depicted in yellow) and
TDP-43 (depicted in orange), increase in tandem with
each other. Thus, in premotor PD, Braak stages 1 & 2,
there is minimal comorbid AD-related pathology or de-
position of TDP-43. As PD progresses to a motor stage
the concomitant deposition of both AD-related path-
ology and TDP-43 to increase in parallel, with the high-
est levels of comorbidity observed in PDD and DLB
which encompass cognitive symptoms. Indeed, the exist-
ence of comorbid conditions often leads to a significant
overlap in symptoms. For example, the clinical spectrum
of parkinsonism is associated with the involvement of
anatomical regions beyond those important for the
organization of movement which in turn are affected by

Fig. 4 Predicted overlap (yellow) of aSyn in PD (green) with deposition patterns for tau in Alzheimer’s disease and primary age-related tauopathy
(red) in the brainstem, limbic (e.g. amygdala, hippocampus, anterior cingulate) and subcortical areas (e.g. basal ganglia) and neocortical areas.
According to the Braak stages of neurofibrillary tau pathology [98] the deposition of tau follows a similar involvement of anatomical systems (i.e.,
brainstem to limbic/subcortical to neocortex) as seen for aSyn for Lewy pathology [97]
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a wide variety of other neuropathologically defined dis-
orders and pathologically altered proteins. Therefore, the
clinical symptoms alone do not predict incontrovertibly
the underlying molecular pathology. This circumstance
jeopardizes the accurate early diagnosis of neurodegen-
erative proteinopathies and stratification of patients for
clinical trials. Thus, even though the methods and inter-
pretations of these aforementioned studies on comorbid
proteinopathies vary considerably, on the whole these
support the rationale for developing highly specific
markers of disease-associated proteins involved in neu-
rodegenerative conditions and particularly for examining
all of these together in neurodegenerative conditions.
Defining clusters of patients based on the patterns of co-
morbid proteinopathies will enhance research in disease
pathogenesis, lead to an improved prognostic predictive
value, and therefore, may be useful for stratifying pa-
tients for clinical trial and monitoring efficacy of novel
therapies [103].
In this review we speculate that aSyn may be an as yet

unrecognised potentiator of neurodegenerative diseases
beyond those formally recognized as synucleinopathies.
aSyn is bestowed with several characteristics that may
allow this protein to impact the pathogenesis of multiple
neurodegenerative proteinopathies. First, aSyn is abun-
dantly expressed in the synapses of the brain and indeed,
it is named after its localization on synaptic vesicles. All
neurodegenerative diseases involve synapses (reviewed in
[104]). Thus, it is very tempting to speculate that aSyn
may be implicated in the synaptic dysfunction that is a
feature shared by all neurodegenerative proteinopathies
irrespective of the predominant pathology. Second, al-
though disease-associated aSyn deposits are intracellular

(Lewy bodies, Lewy neurites, glial cytoplasmic inclu-
sions), aSyn and its neurotoxic oligomers are highly sol-
uble, can be excreted into the extracellular space and are
widely distributed throughout the brain [10]. This fea-
ture, (shared with tau, TDP-43 and prion protein), al-
lows aSyn unrestricted access to both intracellular and
extracellular compartments of the brain and thus per-
mits aSyn to impart widespread effects. Third, although
other neurodegenerative disease-associated proteins have
been shown capable of seeing proteinopathy, it has been
recently shown that aSyn may be particularly potent at
cross-seeding the aggregation of other disease-associated
proteins [96].
In addition to Lewy bodies or abnormally aggregated

aSyn, detectable with current immunohistochemical
methods, aSyn may also undergo more subtle biochemical
alterations, such as phosphorylation. These changes can
occur in human brains with or without neurodegenerative
proteinopathies and may also precede the development of
Lewy bodies [54, 105, 106]. Thus, soluble aSyn levels have
been found to be approximately doubled in AD in the ab-
sence of synucleinopathy, and to more closely correlate
with the degree of cognitive impairment than soluble Aβ or
tau [107]. Furthermore, it is well established that aSyn can
have detrimental effect on synaptic biology, in the absence
of synucleinopathy [108–110]. These observations suggest
that by focusing only on aggregated aSyn we may under-
estimate role of aSyn in comorbidities and it could perhaps
be a silent potentiator driving disease. Further studies inves-
tigating the molecular and biochemical features of synapto-
somal aSyn in AD, for example, have the potential to reveal
that aSyn may have a more widespread role in neurodegen-
erative diseases beyond the synucleinopathies. If born out,

Fig. 5 Neuropathological comorbidities associated with the clinical progression of dementia with Lewy bodies (DLB) or progression of premotor
Parkinson’s disease (Pm-PD) to Parkinson’s disease (PD) and in a subset of individuals to Parkinson’s disease dementia (PDD). Clinical progression
is depicted as increasing darkness of blue. Braak stage of Lewy pathology is depicted in green, frequency ad severity of Alzheimer’s disease (AD)
pathology is depicted in yellow and frequency of TAR DNA-binding protein 43 (TDP-43)) pathology in orange
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this would have clear implications for the development of
disease modifying therapies for neurodegenerative diseases.
For example, aSyn immunotherapy could have an attenuat-
ing effect on AD-related pathology and symptoms for ex-
ample. Such a hypothesis is certainly supported by the
observation that co-expression of aSyn and Aβ induces a
more aggressive cognitive decline in AD [80].
It is important to note, however, that the evidence linking

aSyn to other neurodegenerative proteinopathies is presently
largely correlative. Indeed, it remains possible that, being an
aggregation prone protein, biochemical and cellular changes
in other neurodegenerative proteinopathies trigger coinci-
dental aggregation of aSyn. Thus, until such studies have
been undertaken as to provide direct evidence supporting
that aSyn is the driving force for other neurodegenerative
proteinopathies caution should be exercised in interpreting
clinicopathologic observations.
In conclusion, it is likely that future disease modifying

therapies for neurodegenerative proteinopathies will en-
tail a precision-based approach tailored to the molecular
underpinning of disease in each patient. In order to
achieve this goal we first need a better understanding of
the interaction of different proteins in comorbid protei-
nopathies. This information will be vital to support ef-
fective stratification of patients for clinical trials and
eventually for the successful application of disease ap-
propriate therapeutic interventions.
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