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Abstract

α-Synucleinopathies are a subgroup of neurodegenerative diseases including dementia with Lewy bodies (DLB) and
Parkinson’s disease (PD). Pathologically, these disorders can be characterized by the presence of intraneuronal
aggregates composed mainly of α-synuclein (αSyn), which are called Lewy bodies and Lewy neurites. Recent report
showed that more than 90% of αSyn aggregates are present in the form of very small deposits in presynaptic
terminals of the affected neurons in DLB. However, the mechanisms responsible for presynaptic accumulation of
abnormal αSyn remain unclear. In this article, we review recent findings on the involvement of presynaptic
dysfunction in the initiation of neuronal dysfunctional changes. This review highlights that the presynaptic failure
can be a potential trigger of the dying-back neuronal death in neurodegenerative diseases.
Introduction
Neurodegenerative diseases are age-associated and pro-
gressive disorders, which detrimentally affect patients’
quality of life. Medical remedies that can fully cure the
diseases are currently unavailable and invention of novel
therapeutic applications is urgently required. Accordingly,
it is important to identify the initial trigger(s) of the patho-
physiological alterations in these diseases.
α-Synucleinopathies are a subgroup of neurodege-

nerative diseases including dementia with Lewy bodies
(DLB), Parkinson’s disease (PD), and multiple system at-
rophy (MSA). Pathological hallmark of these disorders is
the formation of intracellular aggregates composed mainly
of α-synuclein (αSyn), which are called Lewy bodies and
Lewy neurites [1-3]. Pathological examination of DLB pa-
tients has identified the presence of abnormal α-synuclein
(αSyn) aggregates in the presynaptic terminals [4-6]. How-
ever, the mechanisms responsible for presynaptic accumu-
lation of abnormal αSyn remain elusive.

Role of αSyn in SNARE formation
αSyn is abundantly localized in the presynaptic nerve
terminals [7,8]. The physiological functions of αSyn have
yet to be defined, while several lines of evidence impli-
cated this protein in the modulation of neurotransmitter
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release through the regulation of soluble N-ethylmaleimi-
de-sensitive factor attachment protein receptor (SNARE)
complex formation [9-11] and size of synaptic vesicle
pool [12-15]. Vesicle-associated membrane protein-2
(VAMP-2) present in the synaptic vesicles, and syn-
taxin and synaptosomal-associated protein of 25 KDa
(SNAP-25) in the presynaptic plasma membrane form
the core SNARE complex, which regulate docking and fu-
sion of synaptic vesicles to the presynaptic membrane
[16]. A recent study showed the physical interaction of
αSyn with VAMP-2 promotes SNARE assembly [10].
Cysteine-string protein-α (CSPα) also participates in
SNARE assembly and mutant mice lacking CSPα dis-
played impaired SNARE formation and premature death,
but both of these phenotypes are counteracted by trans-
genic expression of αSyn [9,17]. On the other hand,
overexpression of αSyn with no overt toxicity inhibits
neurotransmitter release, due to a defective reclustering of
synaptic vesicles after endocytosis [15]. Additionally,
overexpressed αSyn indirectly inhibits SNARE-mediated
exocytosis by sequestering arachidonic acid, which up-
regulates syntaxin and enhances its engagement with
SNARE complex [11]. Importantly, abnormal redistribu-
tion of SNARE proteins has been observed in human PD
patients and mice overexpressing a truncated form of hu-
man αSyn, which showed decreased release of dopamine
(DA) in the striatum [18]. Therefore, presynaptic SNARE
dysfunction is considered an initial pathogenic event
in α-synucleinopathies.
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Accumulation of α-synuclein triggered by presynaptic
dysfunction
In our recent study, we investigated the effects of SNARE
dysfunction on endogenous αSyn using Snap25S187A/S187A

mutant mice [19]. These mice have homozygous knock-
in gene encoding unphosphorylatable S187A-substituted
SNAP-25. Snap25S187A/S187A mutant mice present a con-
comitant reduction of neurotransmitter release, including
serotonin and DA, from the amygdala, and develop con-
vulsive seizures and anxiety-related behavior in general
activity and light-and-dark preference tests [20]. We
found that the mutant mice displayed a significant age-
dependent change in the distribution of αSyn and its
Ser129-phosphorylated form in abnormally hypertrophied
glutamatergic nerve terminals in the striatum. Electron
microscopic analysis revealed the atypically condensed
synaptic vesicles with concomitant mislocalization of αSyn
protein to the periactive zone in the glutamatergic nerve
terminals (Figure 1). However, the Snap25S187A/S187A mu-
tant mice harbored no abnormalities in the nigrostriatal
dopaminergic neurons [19]. Our results suggest that
SNARE dysfunction is the initial trigger of mislocalization
and accumulation of αSyn, and probably underlies the
pathomechanism of α-synucleinopathies.

Effect of SNAP-25 dysfunction
Previous studies using neural preparations showed that
the neurotransmitter release is regulated by protein kin-
ase C, which phosphorylates Ser187 residue in SNAP-25,
augmenting exocytosis of synaptic vesicles [21,22]. Patch-
clamp analysis showed chromaffin cells that overexpressed
the S187A mutant form of SNAP-25 had impaired rate
of presynaptic vesicle pool refilling [23]. Recently, we
Figure 1 A hypothetical diagram showing enlarged presynaptic nerve
terminals with uniform distribution of vesicles were observed in wild type
condensed synaptic vesicles and predominant localization of αSyn proteins
suggesting that SNARE dysfunction leads to presynaptic accumulation of e
between exocytosis and endocytosis.
reported that Snap25S187A/S187A mice showed reduced DA
and serotonin release in amygdala [20]. In human DLB
brains, more than 90% of αSyn aggregates are located in
the presynaptic terminals in the form of small deposits
[4-6]. This is consistent with our findings of abnormal ac-
cumulation of αSyn in presynapses [19], suggesting that
this process is the initial pathological event in DLB, even-
tually leading to the death and degeneration of neuronal
cells [24]. Another finding that lends support to the role
of αSyn aggregates in the presynaptic terminals in DLB is
the lack of histopathological changes in the dopaminergic
terminals in our study [19].

Role of αSyn in nerve terminals
In experiments on glutamate release conducted in hip-
pocampal slices prepared from αSyn knockout mice
[25], paired-pulse facilitation was significantly weaker,
and high-frequency-induced long-term potentiation and
frequency facilitation were not observed. These findings
suggest that αSyn contributes to mobilization of glutam-
ate-containing vesicles from the reserve pool [25]. αSyn
may act as a positive regulator of neurotransmitter re-
lease at presynaptic terminals. Therefore, presynaptic ac-
cumulation of αSyn observed in our Snap25S187A/S187A

mice might reflect a compensatory response to a pos-
sible SNARE dysfunction-related chronic shortage of
neurotransmitter release in the VGLUT1-positive nerve
terminals [19].

Relation between glutamatergic and dopaminergic nerve
terminals in the striatum
In the striatum, the medium spiny neurons, which con-
stitute more than 90% of all striatal neurons, receive
terminals in SNAP-25 mutant mice. Normal presynaptic nerve
mice while abnormally enlarged presynaptic nerve terminals with
in the periactive zones were found in SNAP-25 mutant mice,
ndogenous αSyn and perturbations to the finely-tuned balance
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input from glutamatergic axons that contact the spine
head and dopaminergic axons that synapse with the den-
dritic spine neck. DA released from dopaminergic axons
regulates the release of glutamate via D2-like receptors
on the corticostriatal nerve terminals [26,27]. We found
no significant changes in the striatal tissue levels of DA
and its metabolites in Snap25S187A/S187A mice. These fin-
dings confirmed the results reported in our previous
study using the same mouse model, in which the micro-
dialysis analysis revealed marked reduction of DA release
from the amygdala [20]. In another in vitro study using
PC12 cells, phosphorylation of SNAP-25 at S187 po-
tentiated calcium-dependent DA release and recruit-
ment of synaptic vesicles containing DA [28-30]. These
observations suggest decreased striatal DA release in
Snap25S187A/S187A mice, resulting in increased demand for
neurotransmitter release at glutamatergic nerve terminals.
Thus, presynaptic accumulation of αSyn might reflect a
possible compensatory response to low DA inhibitory
control over cortical glutamatergic drive.

Correlation of VAMP-2 with αSyn
Increased expression of VAMP-2 protein accompa-
nied increased αSyn expression in the striatum of
Snap25S187A/S187A mice [19]. Binding of the carboxy
terminus of αSyn to the amino terminus of VAMP-2
primes subsequent SNARE complex assembly [31].
Therefore, the increased VAMP-2 level might also re-
flect a compensatory response to the impaired synaptic
vesicle release by enhancing SNARE complex formation
in concert with increased αSyn.

Pathological changes in glutamatergic nerve terminals
Presynaptic neurotransmitter release is mediated by the
synaptic vesicle cycle, consisting of exocytosis followed
by endocytosis and recycling. Exocytosis incorporates
synaptic vesicles into the presynaptic terminal mem-
branes and increases the surface area, while endocytosis
retrieves excess plasma membrane components followed
by recycling to form other synaptic vesicles. Under nor-
mal conditions, the dynamics of balance between exocyt-
osis and endocytosis are well preserved to maintain the
correct surface area of the presynaptic terminal [32,33].
However, a mutant leucine-rich repeat kinase 2 (LRRK2)
bacterial artificial chromosome (BAC) transgenic mouse
model showed enlarged axonal endings in the striatal
dopaminergic neurons, suggesting imbalance between
exocytotic membrane addition and endocytic retrieval
[34]. Excessive accumulation of presynaptic vesicles and
enlargement of the VGLUT1-positive nerve terminals
was also observed in Snap25S187A/S187A mice [19]. Taking
into consideration the synaptic vesicle cycle, our findings
suggest that the balance of the cycle is likely biased to-
ward decreased endocytosis.
The enlarged VGLUT1-positive nerve terminals of
Snap25S187A/S187A mice showed concomitant accumu-
lation of αSyn and p-αSyn [19]. Kramer and Schulz-
Schaeffer [5] have previously reported that 90% or even
more of αSyn aggregates in DLB cases were located at
the presynapses in the form of very small deposits. In
parallel, dendritic spines were retracted, whereas the
presynapses were relatively preserved, suggesting that
neurotransmitter deprivation may explain the cognitive
impairment in DLB [5,6]. While the presynaptic aggre-
gates did not contain much p-αSyn in their examina-
tion [5,6], widespread varicosities and dot-like structures
containing p-αSyn are commonly observed in αSyn-
transgenic mouse model and human DLB brains [35,36].
This may represent axonal transport defects and pre-
synaptic dysfunctions [35,36]. Recent study showed that
mutant αSyn (A53T) diminished levels of various motor
proteins in neurons [37], supporting this scenario. Al-
ternatively, excessive amount of misfolded αSyn and
p-αSyn may aggregate at synapses, physically preventing
the targeting of other presynaptic proteins [5]. In experi-
ments using Caenorhabditis elegans overexpressing hu-
man αSyn, four genes related to the endocytosis process
were identified as genetic modifiers for αSyn toxicity
[38]. They included two subunits of the adaptor protein
(AP) complex 2, which interacts with clathrin and pro-
motes presynaptic clathrin-mediated vesicle recycling [39].
Furthermore, proteomics analysis revealed that p-αSyn
also preferentially interacted with the proteins involved in
endocytosis, including clathrin heavy chain and subunit of
AP-2 and AP-1 complexes, over the non-phosphorylated
αSyn [40]. Clathrin-mediated recycling of exocytosed
synaptic vesicles occurs in the periactive zone, a region
adjacent to the active zone where synaptic vesicle is endo-
cytosed [33]. Similarly, in Snap25S187A/S187A mice, immu-
noelectron microscopy showed preferential localization of
αSyn at the periactive zone of excitatory presynaptic nerve
terminals. This might reflect the interaction of αSyn and
p-αSyn with the proteins involved in clathrin-mediated
endocytosis. Taking these findings together, presynaptic
accumulation of αSyn and p-αSyn could disturb the endo-
cytosis process and consequently contribute to the deve-
lopment of VGLUT1-positive terminal enlargement [19].

Presynaptic accumulation of αSyn
Presynaptic accumulation of αSyn is considered an early
event in the pathogenesis of α-synucleinopathies [4-6].
Mice overexpressing human αSyn showed presynaptic
accumulation of αSyn and low DA release in the stri-
atum. Stoica et al. [41] reported a “dying back” type of
neuronal alteration, progressing from the dendrites to
the axon and then to the perikaryon and nucleus in a
spontaneously inherited autosomal recessive rat model
for PD that overexpressed αSyn in mesencephalic area.
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Transmission electron microscopy (TEM) examination re-
vealed that the retrograde pathological process in substan-
tia nigra and striatum starts at the synaptic level by
marked presynaptic accumulation of αSyn followed by
post-synaptic degeneration of axonal terminals, dendrites
and spine alterative changes and perikaryal aggregation of
mitochondria with relative preservation of neuronal nu-
clei. These findings were associated with abnormal distri-
bution of SNARE proteins, which colocalized with αSyn
aggregates. Similarly, accumulation of SNARE proteins
and αSyn were reported in the striatum of PD patients
[18]. These observations suggest that SNARE dysfunction
likely occurs at an early stage of pathogenesis in nig-
rostriatal dysfunction observed in PD. Considering the
findings observed in the VGLUT1-positive nerve termi-
nals, we expected that SNARE dysfunction might have
induced presynaptic accumulation of αSyn, which conse-
quently result in the development of neurodegenerative
changes in the nigrostriatal system. However, contrary to
our expectation, Snap25S187A/S187A mice showed no sig-
nificant neurodegenerative changes in nigrostriatal dopa-
minergic neurons, suggesting that SNARE dysfunction
alone was insufficient to cause nigrostriatal degeneration
as observed in PD, and appeared to be a downstream
event associated with abnormal accumulation of αSyn.

Conclusion
In conclusion, SNARE dysfunction leads to accumu-
lation of endogenous αSyn in the corticostriatal nerve
terminals. Presynaptic accumulation of αSyn is con-
sidered to be an early key event in the pathogenesis
of α-synucleinopathies. Although the “prion-like” pro-
pagation hypothesis of αSyn, including tau and TAR
DNA-binding protein 43 kDa, is currently receiving con-
siderable attention worldwide, our findings provide an
insight to understanding of the possible mechanisms that
lead to presynaptic accumulation of endogenous αSyn.
Moreover, given that SNAP-25 is reduced in the striatum
of MSA brains [42], we speculate that a discontinuous pat-
tern of αSyn pathologies usually found in MSA, i.e. glial
cytoplasmic inclusions (GCIs) in the putaminal oligoden-
drocytes, and neuronal cytoplasmic inclusions (NCIs) and
neuronal nuclear inclusions (NNIs) in the cortex [43,44],
might be potentially linked through the presynaptic accu-
mulation of αSyn in the corticostriatal neurons. Further
investigations on the Snap25 mutant mice with genetic
ablation of αSyn would contribute to understanding the
essential role of redistributed αSyn.
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