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Abstract

progression of this disease.

This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging
pathogenic processes involved in Parkinson’s disease (PD). Mitochondria provide cellular energy in the form of ATP
via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen
species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to
handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial
uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five
known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of
previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP™;
toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels
and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can
be influenced by nuclear factor kappa-B (NF-xB) signaling pathway specifically in UCP4. Furthermore, we previously
reported an interesting link between PD and metabolic processes through the protective effects of leptin
(hormone produced by adipocytes) acting via UCP2 against MPP*-induced toxicity. There is increasing evidence
that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses
including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic
target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the
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Review

Mitochondrial dysfunction, oxidative stress and
Parkinson’s disease

Parkinson’s disease (PD) is a common neurodegenera-
tive disorder and increasingly a major burden in an
aging population. Although its pathogenesis is unknown,
there is evidence to implicate common pathogenic pro-
cesses towards eventual cell death in PD. These pro-
cesses include mitochondrial dysfunction, oxidative
stress, neuroinflammation, excitotoxicity, and ubiquitin
proteasome dysfunction [1-4].
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There is considerable evidence to link mitochondrial
dysfunction and PD. Mitochondrial Complex I activity is
reduced in substantia nigra in PD [5]. Inhibition of
Complex I activity using 1-methyl-4-phenyl-1,2,3,6-tet-
rahydropyridine (MPTP) or rotenone (both toxins used
in experimental parkinsonian models) produce nigros-
triatal dopaminergic degeneration in animal models
[6,7]. Cybrid cell lines with normal nuclear genome
but with mitochondrial DNA from PD patients have
reduced Complex I activity and mitochondrial energy-
dependent activities [8], have abnormal mitochondrial
morphology [9], and are more susceptible to MPTP-
induced toxicity. The process of aging involves the mito-
chondria [10]. Furthermore, dopamine metabolism and
mitochondrial dysfunction generate oxidative stress.
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High basal levels of oxidative stress in substantia nigra
are found in normal brain, and are increased in PD.
Furthermore, antioxidant activity, such as glutathione
(GSH), is reduced in substantia nigra of PD patients
[11,12]. Based on the hypothesis that various genetic
and environmental etiological factors converge on these
common pathogenic processes in PD, targeting proteins
which modulate mitochondria bioenergetics appears to
be a logical approach in preserving neurons against
mitochondrial dysfunction in PD.

Mitochondria and ATP synthesis

Mitochondria are rod-shaped cellular organelles, which
range in size from between 1 and 10 microns in length.
They provide cellular energy by converting oxygen and
nutrients into adenosine triphosphate (ATP) via oxidative
phosphorylation. Human cells have hundreds to thou-
sands of mitochondria per cell depending on their energy
requirements [13]. Metabolically active tissues, such as
neurons and red skeletal muscles, can contain over a
thousand mitochondria, whereas less active tissues, such
as cartilage, contain only a few hundred. Mitochondria
numbers can also vary within the same cell by fission or
fusion, depending on energy requirements at a specific
time period. Two specialized membranes ensemble a
mitochondrion namely the mitochondrial inner and outer
membranes. The inner membrane is highly convoluted to
make up the cristae. It also contains a group of proteins
which form the electron transport chain (ETC). Oxida-
tion of biofuels (e.g. glucose) in the Krebs cycle supplies
high-energy electrons in the form of NADH or FADH,
to undergo oxidative phosphorylation which involves the
flow of these high-energy electrons along the ETC, from
Complex I and Complex II to Complex IV to molecular
oxygen. Along with the flow of electrons through the
ETC, there is a concomitant pumping of protons in
Complex I, III, and IV from the mitochondrial matrix to
the mitochondrial intermembrane space creating a proton
gradient (mitochondrial membrane potential; MMP)
across the inner membrane [14]. Complex V (ATP
synthase) utilizes this proton gradient to drive ADP phos-
phorylation and generate ATP by channeling the protons
back to the matrix [15]. During the process of oxidative
phosphorylation, some unpaired electrons are diverted
from the ETC to interact with molecular oxygen and
form reactive superoxides as harmful byproducts. These
ions readily interconvert to other reactive oxygen species
(ROS), e.g., hydroxyl ions and H,O,, causing oxidative
stress. Therefore, mitochondrial ROS generation and
ATP synthesis are inevitable linked.

Uncoupling proteins
Uncoupling proteins (UCPs) belong to a distinctive
superfamily of mitochondrial transporters that uncouple
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biofuel oxidation from ATP synthesis by providing an
alternative route to partially dissipate the mitochondrial
membrane potential across the inner membrane in form
of heat [16,17] (Figure 1). UCP activity has been pro-
posed as a protective mechanism to minimize ROS gen-
eration during oxidative phosphorylation by dissipation
of hyperpolarized MMP, termed as “mild uncoupling”
[18,19]. Such slight dissipation of membrane potential
has been proposed to reduce the formation of ROS
without significant effects on ATP synthesis [20].
Uncoupling protein-1 (UCP1) was initially identified
from brown adipose tissues (BAT) [21]. It functions to
regulate energy expenditure via uncoupling biofuel oxi-
dation from ATP synthesis and dissipates the proton
gradient in the form of heat, contributing to the “non-
shivering” thermogenesis in mammals. UCP1 (or ther-
mogenin) is a key protein in maintaining body tempera-
ture in hibernating animals. However, the physiological
significance of UCP1 in human is unclear because
human adults possess little if any BAT [22]. At least
four other structural homologues (UCP2-5) have been
identified in different mammalian tissues [16]. Unlike
UCP1, UCP2 is ubiquitously expressed at varying levels
in different tissues including brain [23], and it is prob-
ably the most extensively studied UCP homologue so
far. UCP3 is expressed in skeletal muscles and heart
[24]. UCP4 and UCP5 are predominantly expressed in
neural tissues [25,26], although their mRNAs are also
expressed at lower levels in other peripheral tissues,
such as heart, lung, and kidney [27-29]. These UCP
homologues form a subfamily of mitochondrial anion
carriers [30,31] distinct from other anion carriers such
as ATP/ADP carriers (ANT) and phosphate carriers.
These homologues have different expression levels and
responses against oxidative stress among various tissues
[32-35].
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Figure 1 Simplified diagram of oxidative phosphorylation and
involvement of uncoupling proteins (UCPs) in mitochondrial
uncoupling. UCPs act as an alternative route to dissipate proton
gradient across the inner membrane and bypass ATP synthase.
Through mitochondrial uncoupling, UCPs help to minimize ROS
generation caused by interactions between leaking electrons (e’)
and molecular oxygen (O,).
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Overexpression versus knockdown studies in

neuronal UCPs

There has been some concern over the validity of func-
tional studies using cells that overexpress neuronal
UCPs in that overexpression may cause misfolded pro-
tein accumulation in yeast mitochondria, leading to arte-
factual observations [22]. Whilst we cannot exclude such
a possibility, we think it is unlikely as misfolded proteins
generally tend to result in abnormal cells with poorer
function against cellular stresses. In contrast, we found
that UCP4 and UCP5 overexpression resulted in heal-
thier neural cells with faster cellular proliferation, better
preservation of cellular ATP levels, and lower oxidative
stress under MPP"- and dopamine-induced toxicity
[36,37]. Furthermore, UCP4 and UCP5 overexpressed
proteins were clearly confined to the mitochondrial frac-
tion, and did not extend to the cytosolic fraction in cell
lysates. In electron microscopy of neural cells which
overexpressed UCP4, we observed normal mitochondrial
morphology with intact inner membrane and cristae
(Philip WL Ho: Uncoupling protein-4 (UCP4) increases
mitochondrial ATP supply by respiratory Complex 11
activation in neuronal cells, submitted). Nevertheless,
studies using knockdown or overexpression cellular sys-
tems are not mutually exclusive, and it would be ideal if
both sets of systems are tested concurrently.

Functional properties of neuronal UCPs

1) Thermogenesis and neuronal plasticity

Among the five homologues, UCP2, UCP4 and UCP5
(neuronal UCPs) are found in neural tissues, and they
will be collectively termed as neuronal UCPs for the
purposes of this review. They share a similar six trans-
membrane tertiary structure (Figure 2) indicating similar
channel-like functions despite having significant differ-
ences in their amino acid identity [25,26,28]. The phy-
siological significance of neuronal UCPs in human is
unclear, particularly for UCP4 and UCP5. It is unclear
whether these homologues work synergistically in neu-
ronal system, and whether there is some degree of func-
tional redundancy evolved from a common ancestral
gene [38]. Although they are predominantly expressed
in neural tissues, the link between their uncoupling
activities, neuronal function, and plasticity is unclear.
Based on micro-regional temperature changes in mouse
brain, it was suggested that UCP2 expression may regu-
late thermogenesis via mitochondrial uncoupling in the
microenvironment, where the resultant elevated tem-
perature facilitates chemical diffusion and neural trans-
mission in synapses [39,40]. Compared to UCP2, UCP4
and UCP5 are expressed in neural tissues at a much
higher level by at least one order of magnitude [29,41].
It is not surprisingly that UCP4 and UCP5 may well
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Figure 2 Computer prediction of tertiary structures of human
UCP2, UCP4, and UCP5 proteins. These homologues share a
similar six trans-membrane channel-like structure despite having

significant differences in their amino acid identities.

exert a more profound regulatory role than UCP2 in
determining neuronal plasticity and survival.
2) Neuroprotection against oxidative stress
Although major anti-oxidative defenses such as superox-
ide dismutase, glutathione, and catalase in mitochondria
can reduce harmful effects of superoxides, there is
increasing evidence that neuronal UCPs can also play an
important role to protect against oxidative stress from
their specific location in mitochondria and uncoupling
properties. The “mild uncoupling” hypothesis has been
proposed to explain the protective mechanisms of how
UCPs can decrease ROS generation in mitochondria
[18,19]. (Figure 1).

There is evidence to show the neuroprotective proper-
ties of UCPs. UCP2 expression was critical in reducing
ROS generation in brain of UCP2-knockout mice, and
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mice that overexpress human UCP2 have lower dopami-
nergic cell loss against MPTP toxicity [42]. UCP2 can
reduce mitochondrial ROS by facilitating fatty acid
hydroperoxides cycling and proton leak [43]. Superox-
ides generated during respiration can induce lipid per-
oxidation, which in turn activates UCPs to increase
proton leak to diminish superoxide production in a
negative feedback loop [44]. Neuronal UCP expression
appears to be responsive to oxidative stress in various in
vitro and in vivo experimental models of PD [32-34].
UCP2 and UCP5 expression were up-regulated in brains
of patients after developing ischemic lesions from
embolic stroke and multiple infarction [33]. Similar
induction of UCP2 and UCP5 expression was also
observed in colonic cells under oxidative stress, demon-
strating a potential local feedback mechanism in
counteracting oxidative damage and mitochondrial dys-
function [35]. We observed a time- and dose-dependent
induction of UCP2, 4, and 5 expression in human neu-
ronal cells after exposure to MPP*, the toxic metabolite
of MPTP [32]. MPP" specifically inhibits mitochondrial
Complex I activity, which impairs oxidative phosphory-
lation and subsequently causes ATP deficiency and
oxidative stress. Neuronal UCP mRNA expression
increased with increased MPP"-induced toxicity. We
postulated that these increases in their gene expression
served to protect the neurons against MPP" toxicity. To
explore this hypothesis, we knocked down UCP5 expres-
sion by siRNA in SH-SY5Y neuronal cells and found
that reduced UCP5 expression exacerbated MPP
*-induced mitochondrial depolarization and induced
apoptosis, indicating that UCP5 played a significant role
in protecting the neurons against MPP"-induced toxicity
[45]. This finding was supported by our later study
where we stably overexpressed UCP5 expression in
these cells, and demonstrated its protective properties
[37]. We found that overexpressing UCP5 could pre-
serve MMP and ATP levels, and suppress oxidative
stress induced by MPP". Similarly, we demonstrated the
neuroprotective properties of UCP4 using SH-SY5Y
neuronal cells overexpressing UCP4 under MPP" toxi-
city. We found that increasing UCP4 expression could
preserve cellular ATP levels and MMP, which made
these neuronal cells more resistant to MPP*-induced
ATP deficiency and oxidative stress. Furthermore, it is
interesting to note that UCP2 expression in response to
MPP"-induced mitochondrial dysfunction could be
effectively suppressed by overexpressing UCP4, indicat-
ing a functional link between UCP2 and UCP4 [36].

3) Regulation of mitochondrial membrane

potential and ATP level

Neurons require considerable energy for their activities,
including synaptic neurotransmission, and hence have
significant numbers of mitochondria, especially at their

Page 4 of 9

synaptic nerve terminals. Oxidative phosphorylation in
mitochondria plays a major role to supply neurons with
ATP. Unlike other cell types that are able to utilize gly-
colysis as an alternative energy source, glycolysis in fully
differentiated neurons is intrinsically suppressed to
maintain their antioxidant status [46]. This property
makes neurons highly vulnerable to ATP deficiency, and
may be a factor in the susceptibility of nigrostriatal
dopaminergic neurons to cell death in PD where their
major energy supply via mitochondrial Complex I is
impaired [47].

The “mild uncoupling” hypothesis postulates that the
UCP-mediated proton leak from the intermembrane
space to the mitochondrial matrix across the inner
mitochondrial membrane, which results in mild uncou-
pling, reduces the harmful effects of excessive ROS gen-
eration at the expense of ATP production. Although
this indicates that the amounts of proton leak should
parallel levels of MMP in the uncoupling process, there
is as yet little definite evidence that UCP expression can
directly affect cellular ATP levels. There is evidence that
changes in MMP may not necessarily correlate to over-
all ATP levels. Knockdown of UCP2 and 3 in human
epithelial cells did not affect either MMP or ATP levels
[48]. We found that SH-SY5Y neuronal cells with stably
knocked down UCP2 expression showed higher MMP
but decreased cellular ATP levels [49]. Although UCP2
overexpression in mouse liver cells was reported to
decrease ATP levels [50], other groups reported mark-
edly higher ATP levels in the hippocampus of UCP2
transgenic mouse [51]. It is unclear whether changes in
ATP levels is a secondary effect from dissipation of
MMP by UCPs, or a result of direct UCP interaction
with other factors such as the ATP synthesis machinery
or mitochondrial biogenesis. Furthermore, there are also
other ion carriers in mitochondria that can affect MMP,
such as ADP/ATP translocase (ANT). Hence, the role of
neuronal UCPs and their effects on MMP and ATP
levels may be much more complex than it appears.
Nevertheless, we observed that neuronal cells overex-
pressing UCP4 showed a significantly higher level of
cellular ATP compared to those cells expressing endo-
genous levels of UCP4 [36]. To explain such increase in
ATP level, we recently discovered that UCP4 overex-
pression resulted in increased mitochondrial oxygen
consumption through interacting with respiratory Com-
plex II to promote ATP synthesis (Philip WL Ho:
Uncoupling protein-4 (UCP4) increases mitochondrial
ATP supply by respiratory Complex II activation in neu-
ronal cells, submitted), in keeping with a recent study
where UCP4 was shown to increase succinate transport
via Complex II in C. elegans [52]. UCP4 overexpression
in rat PC12 adrenal pheochromocytoma cells induced
glucose uptake and shifted the mode of ATP synthesis
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from oxidative phosphorylation to glycolysis to maintain
overall ATP supply [53]. Although the role of glycolysis
in maintaining overall ATP supply in fully differentiated
neurons is still unclear, the evidence so far indicates an
important role for UCP4 in maintaining cellular energy
supply to protect neuronal cells against ATP deficiency.
Unlike UCP4, UCP5 overexpression resulted in lower
ATP levels under normal culture conditions. It appears
that UCP2 and UCP5 had “typical” uncoupling proper-
ties unlike UCP4. It is unclear why these neuronal UCP
homologues had such a divergent effect on ATP levels
even though they all showed neuroprotective properties
under MPP"-induced oxidative stress and ATP defi-
ciency. Although they are all evolved from a common
ancestral gene [54], we postulate that this functional dif-
ference in neuronal UCPs sited at the inner mitochon-
drial membrane may serve to better protect the cell
from various forms of cellular stresses by providing a
possible alternative mechanistic route on protection.
Even accounting for functional redundancy, there is no
reason why neuronal UCPs sited in the same location of
the mitochondria need to act in exactly the same man-
ner to protect the cell from cellular stresses. It has been
postulated that dissimilarity of UCP4 from the other
UCP homologues may be due to structural differences
in that UCP4 exhibits a distinctive helical profile when
associated with negatively charged phospholipid vesicles
and shows different purine nucleotide binding properties
compared to other UCP homologues [55].

4) Calcium homeostasis

Another important function of UCPs is the regulation of
calcium homeostasis. Unlike many other types of neu-
rons, dopaminergic neurons in substantia nigra are
autonomously active. The L-type Ca®>* channels during
autonomous pacemaking were shown to sensitize dopa-
minergic neurons to toxins in PD experimental models
[56]. In a study using human endothelial cells, UCP2
and UCP3 were shown to be crucial for mitochondrial
Ca®* sequestration in response to cellular stresses [57].
Whether UCP2 and UCP3 play a similar role in dopami-
nergic neurons is unclear. UCP4 overexpression in
neural cells stabilized Ca®* homeostasis in response to
thapsigargin-induced endoplasmic reticulum Ca®* store
depletion, preserved mitochondrial function, reduced
mitochondrial ROS generation, and increased cell survi-
val against oxidative stress [58]. UCP4 knockdown in
primary hippocampal neurons resulted in calcium over-
load and cell death [53]. Superoxides can affect mito-
chondrial free Ca®* by regulating UCP expression in
neuronal cells [59]. It is interesting to note that mice
with knock out of DJ-1 (mutations of which has been
associated with an autosomal recessive young onset
form of PD) had reduced UCP4 and 5 expression speci-
fic to the substantia nigra pars compacta, sparing the
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cortex, hippocampus and the ventral tegmental area,
indicating that these neuronal UCPs may play a role in
calcium-induced uncoupling specifically in SNc DA neu-
rons [60].

5) Link between metabolism and neuroprotective effects of

leptin: role for UCP2

Metabolic pathways have been linked to aging and neu-
rodegenerative processes. Metabolic intervention can
prolong lifespan, decrease the incidence of age-related
diseases, improve stress responses, and maintain physio-
logical function in experimental and epidemiological
studies [61-63]. Metabolic intervention, e.g. low-calorie
diet, can promote survival of dopaminergic neurons in a
primate model of PD by amelioration of neurochemical
and motor deficits [64]. Leptin, a hormone produced by
adipocytes [65], regulates basal metabolism by modulat-
ing neuropeptides in hypothalamus [66], where its levels
are affected by glucose levels and fasting [67-71]. Leptin
acts on an array of signaling pathways by specific bind-
ing to leptin receptors (ObR), which are widely
expressed in brain, including DA neurons [72]. Leptin
has anti-apoptotic properties [73]. We found that leptin
protected neuronal cells against mitochondrial dysfunc-
tion induced by MPP" by inducing UCP2 expression to
preserve MMP and ATP levels [49]. Such protective
effects were abolished by knocking down UCP2 expres-
sion using siRNA, indicating that UCP2 mediates leptin
protection against MPP™ toxicity to promote neuronal
cell survival by preserving mitochondrial function [49].
One possible reason to explain why leptin could pre-
serve cellular ATP levels under MPP"-induced ATP
deficiency may be its well-known function in activating
AMPK and regulating cellular energy homeostasis [74].
Furthermore, leptin can induce an insulin-like signaling
pathway involving PI3K-dependent activation of PDE3B
(phosphodiesterase 3B) which reduces cAMP in the cen-
tral nervous system. Because multiple cAMP-response
elements have been identified in the promoter region of
human UCP2 [75], and its expression is stimulated by
the cAMP/PKA signal cascade [76], modulation of
UCP2 expression by leptin may well be mediated via
cAMP signaling. Leptin can enter the brain [77], and
directly acts on neurons, including dopaminergic neu-
rons [78]. Obese (ob/ob) mice, which lack functional
leptin, have increased “proton leak” compared with lean
controls, which demonstrates beneficial effects of leptin
to mitochondrial function [79].

Gene regulation of neuronal UCPs

Nuclear factor kappa-B (NF-£B) is a heterodimeric tran-
scription factor that translocates to the nucleus and
mediates the transcription of proteins involved in cell
survival and proliferation, inflammatory response, and
anti-apoptotic factors in neurons, astrocytes, microglia,
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and oligodendrocytes [80-83], including defense against
oxidative stress. NF-xB is crucial in regulating neuronal
survival by specific activation of diverse NF-xB com-
plexes [84,85], which are composed of five different sub-
units: RelA (p65), c-Rel, RelB, p50 (NF-xB1), and p52
(NF-xB2). A close association of NF-xB activation exists
with the neuropathology found in neurodegenerative
processes in PD [85-87]. Activation of NF-«xB has been
reported in the substantia nigra of mice treated with
MPTP [88,89]. The subunit p50/c-Rel can activate sev-
eral pro-survival genes, such as bcl-2 and Mn-SOD
[90,91]. Within 2 kb of the 5'-flanking region upstream
of the transcription start site of human UCP4 gene, we
identified a functional NF-xB binding site in the promo-
ter region. UCP4 promoter activity and gene transcrip-
tion were activated via this binding site after exposure
to TNF-o (tumor necrosis factor) and MPP* [92]. TNF-
a is a cytokine involved in neuroinflammation and an
activator of NF-xB pathways involved in the cellular
stress response [93,94]. Based on the transcriptional
response of UCP4 gene expression by TNF-a and its
protective effects against ATP deficiency and oxidative
stress induced by MPP™" in neuronal cells, we proposed
a functional role for UCP4 to mitigate against mito-
chondria dysfunction and oxidative stress via p50/c-
Rel-mediated NF-xB pathway (Figure 3).

UCP5 was named brain mitochondrial carrier protein
(BMCP1) because of its partial homology with other
uncoupling proteins. The promoter region of human
UCP5 gene has not been fully characterized. However,
transcription of this gene gives rise to three alternative
spliced mRNA products, termed long, short, and short
with insert respectively [26,27]. Our search of the 5'-
flanking region of human UCP5 gene revealed four
cAMP response elements 5 kb upstream of the tran-
scription start site [95]. Our initial studies in treating
SH-SY5Y cells with dibutrylyl-cAMP indicated that
UCP5 mRNA (short form) exhibited a dose-dependent
increase after treatment. cAMP is an important second-
ary messager in intracellular signal transduction of a
wide variety of biological processes associated with pro-
tein kinase A (PKA). The significance of the transcrip-
tional response of UCP5 to cAMP awaits further
investigation.

Sirtuin 1 (Sirtl) is a protein which can modulate cell
senescence and longevity. It is an important repressor of
UCP2 gene transcription by binding to the UCP2 pro-
moter region, and modulates the amount of insulin
secretion in pancreatic B-cells [96]. Sirtl can also affect
Agrp neuronal firing and synaptic plasticity via UCP2
[97]. UCP2 may well play a role in modulating mito-
chondrial energy homeostasis downstream of a Sirtl-
mediated regulatory cascade of cell senescence in
brain. UCP2 expression can be up-regulated by
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Figure 3 Schematic diagram showing proposed
neuroprotective properties of UCP4 against oxidative stress in
the pro-survival NF-xB pathway. External stimuli (e.g. TNF-o)
activate NF-xB subunits (e.g. c-Rel, p50) via phosphorylation of |xB-
a.. Nuclear translocation of c-Rel and p50 promote transcription of
UCP4 gene. Increased expression of UCP4 in mitochondria
suppresses oxidative stress by stabilizing mitochondrial membrane

potential and preserving cellular ATP level.

preconditioning in hippocampus [98], suggesting a role
of UCP2 in anti-oxidative protection against ischemic/
reperfusion injuries.

Therapeutic implications in Parkinson’s disease

Current treatment of PD does not address the underly-
ing dopaminergic nigrostriatal neurodegeneration, or
alleviate the progressive motor or non-motor disability
associated with degeneration of either dopaminergic or
non-dopaminergic pathways. Hence, treatment strategies
that can modify the progressive course of PD and delay
its progression should be developed to address this
unmet need. One such strategy involves alleviating the
harmful effects of downstream pathogenic processes by
targeting mitochondrial dysfunction and oxidative stress
in PD. Neuronal UCPs possess properties that can pro-
tect neuronal cells against various cellular stresses,
including stresses observed in experimental parkinsonian
models. Furthermore, the expression of these UCPs is
inducible. Compounds that can induce endogenous neu-
ronal UCP expression can be developed into potential
therapies in PD. We have shown that UCP4 expression
can be induced by activators of NF-xB signaling
pathway. In the central nervous system, NF-xB is an
important nuclear transcription factor in regulating neu-
rodegenerative pathways [99,100], and it plays a crucial
role in determining neuronal survival and neuroplasti-
city [101-103]. Although the relationship between NF-
kB activation and the pathogenesis PD is unclear, there
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is some evidence to link NF-xB activation with potential
disease-modifying effects in PD. There was an increase
in [kBa expression and inhibition of translocation of the
p65 NF-£B subunit to the nuclei of dopaminergic neu-
rons, glial cells and astrocytes; effects which were corre-
lated with the protective effects of pioglitazone in
exerting anti-inflammatory effects in mice exposed to
MPTP-induced toxicity [104]. In post-mortem studies,
NF-xB expression was increased in substantia nigra of
PD patients [105,106]. Furthermore, in vitro studies
showed activation of NF-xB in response to 6-hydroxy-
dopamine toxicity [107]. The link between NF-xB and
UCP4 may provide a possible therapeutic strategy to
preserve the function of affected neurons in PD, by for
example, inducing UCP4 expression using NF-xB c-Rel
activators, and alleviating mitochondrial dysfunction and
oxidative stress.

Apart from PD, UCP4 variants have been linked to
other neurological disorders such as multiple sclerosis
[108], schizophrenia [109,110], leukoaraiosis [111] and
Alzheimer’s disease [112]. Decreased UCP2, 4, 5 expres-
sion impaired the ability of neurons from brain affected
by Alzheimer’s disease brain to be protected from oxida-
tive damage [112]. Increasing evidence indicates that
neuronal UCPs may well play a crucial role in neuronal
survival when they are under stress. Neuronal UCPs
may be a potential therapeutic target for the treatment
of these neurological disorders.
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