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Abstract

Background: Amyloid beta peptide (Aβ) is the main component of extraneuronal senile plaques typical of
Alzheimer’s disease (AD) brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large
amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of
Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through
activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase
of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and
how this distribution is effected when Aβ secretion is inhibited.

Methods: Using retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied
intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle
markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular
distribution of Aβ.
Results: Under normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya.
Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late
endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of
these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of
intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of
intralysosomal Aβ although the majority of Aβ still remained extralysosomally.

Conclusion: Our results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes
secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and
extralysosomal Aβ.
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Introduction
The mechanisms behind Alzheimer disease (AD), the
main cause of senile dementia, are poorly understood.
One of the important hallmarks of AD is the formation
of extracellular senile plaques, preferentially composed
of amyloid beta-protein [1]. The most common isoforms
of Aβ are Aβ40 (90%) and Aβ42 (10%), the latter being
more toxic, more prone to aggregation, more resistant
to degradation, and specifically increases in all forms of
familial AD [2].
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Aβ is proteolytically cleaved from a large transmem-
brane amyloid precursor protein (APP) by β and γ secre-
tases [3]. APP is normally synthesized in the endoplasmic
reticulum (ER) and transported to the Golgi apparatus.
Eventually it can be trafficked from the trans-Golgi net-
work (TGN) to the cell surface and secreted into extracel-
lular space [4], recycled back to the Golgi complex for
further packaging and trafficking [5] or reinternalized
from the cell surface into the endosomal-lysosomal system
via endocytosis [6-8]. Aβ generation from APP is thought
to occur in a variety of organelles where APP, β and γ
secretase reside. Thus, Aβ has been found in many intra-
cellular sites, such as ER, Golgi complexes, mitochondria,
endosomes, lysosomes, multivesicular bodies (MVB), and
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cytosol (reviewed in [9]). Autophagic vacuoles have also
been shown involved in the production of Aβ [10].
The toxicity of Aβ and its involvement in senile plaque

formation are considered important pathophysiological
targets for primary prevention in AD (reviewed in [11]).
It has been proposed that senile plaques originate from
intraneuronal Aβ as a result of its release after neuronal
death [12]. Intracellular Aβ has been pointed out to be
involved in early stages of the disease, directly causing
neurotoxicity and initiating AD pathology [12-19]. It has
been reported recently that Aβ –related synapse damage
and memory impairment in AD-transgenic mice corre-
lated with intracellular levels of Aβ but not with plaque
burden [20]. Moreover, cultured neurons from AD-
transgenic mice showed reduced secretion and enhanced
intracellular accumulation of Aβ [21]. Much evidence
supports that the lysosomal system, a vacuolar compart-
ment with acidic pH (3.5-6.0), is associated with Aβ gener-
ation and neurotoxicity [22-26]. In AD and experimental
AD models, Aβ has been detected in abnormally enlarged
endosomes [12,17,27], autophagosomes [10], and lyso-
somes [28-30].
Our previous studies showed that normobaric hyper-

oxia (a chronic, mild oxidative stress) enhanced macro-
autophagy, inducing intralysosomal Aβ accumulation,
lysosomal membrane permeabilization and consequent
apoptosis [29-32]. However, it is not clear how Aβ is dis-
tributed in relation to the lysosomal system and other
organelles normally and how and why this distribution is
changed in AD. Here we studied the relation of Aβ to
the lysosomal vacuolar compartment (early and late
endosomes, lysosomes and autolysosomes) as well as to
cellular structures associated with related process of pro-
tein secretion (such as Golgi-derived secretory vesicles
and synaptic vesicles) using double immunofluorescence
microscopy (for Aβ and different organelle markers).
RA-differentiated neuroblastoma cells and neonatal rat
cortical neurons were used as in vitro models. Cells were
cultured under normal conditions as well as in the pres-
ence of the exocytosis inhibitor, tetanus toxin (TeNT).
Materials and methods
Human neuroblastoma SH-SY5Y cell culture
Human SH-SY5Y neuroblastomacells were obtained
from the American Type Culture Collection (Rockville,
MD, USA) and cultured in Dulbecco’s Modified Eagle
Medium (DMEM; Gibco, Paisley, UK) supplemented
with 4500 mg/l glucose, 110 mg/l sodium pyruvate,
584 mg/l glutamine, 10% fetal bovine serum, 50 IU/ml
penicillin G and 50 mg/ml streptomycin in 25 cm2 plas-
tic culture flasks (Corning, Corning, NY, USA) at 37°C,
with 5% CO2. For differentiation, neuroblastoma cells
were exposed to 10 μM all-trans retinoic acid (RA,
Sigma, St. Louis, MO, USA) for 14 days. The medium
was changed every second day.

Neonatal rat cortical neuron culture
Primary culture of neonatal rat cortical neurons was pre-
pared as described previously [33]. Neurons were
obtained from the cerebral cortex of newborn Wistar
rats and plated onto 35 mm Petri dishes coated with
poly-D-lysine (Sigma). The culture medium consisted of
DMEM (Gibco) containing 20% fetal bovine serum,
2.5 μg/ml insulin and 45 mM glucose. The percentage of
fetal bovine serum was gradually reduced to 5%. The
medium was changed twice a week.

Inhibition of exocytosis
Tetanus toxin (TeNT, Sigma), an exocytosis inhibitor,
was used to block the transport of secretory vesicles to
the plasma membrane [34]. RA differentiated neuro-
blastoma cells and primary neurons were treated with 5
or 20 nM tetanus toxin (TeNT) respectively for 24 h.

Antibodies
Primary anti-Aβ1–42 antibodies [35] (Chemicon, Temecula,
CA, USA), and anti-Aβ1–40 antibodies [36,37] (Chemicon,
Temecula, CA, USA), were rabbit polyclonal, while anti-
human-Rab8 [38] (marker for TGN and Golgi-derived
secretory vesicles, BD biosciences, Franklin Lakes, NJ,
USA), anti-Rab9 [39] (marker for TGN and late endo-
somes, Abcam, Cambridge, UK), anti-Rab5 (marker for
early endosomes, Pharmingen, San Diego, CA, USA), anti-
LAMP-2 (marker for lysosomes and late endosomes,
Southern Biotechnology, Birmingham, AL, USA), anti-
VAMP 2 (synaptobrevin/VAMP 2, marker for synaptic
vesicles, Synaptic Systems, Göttingen, Germany), and anti-
Rab3 (marker for synaptic vesicles, Synaptic Systems) anti-
bodies were mouse monoclonal IgG. Secondary antibodies
were Alexa Fluor 488-conjugated goat anti-rabbit IgG and
Alexa Fluor 546-conjugated goat anti-mouse IgG (both
from Molecular Probes, Eugene, OR, USA).
The anti-Aβ42 antibodies (Chemicon) are specific for

C-termini of Aβ peptide, and they do not cross-react
with full-length APP, APP C-terminal fragments (CTF),
or with Aβ40 [40]. We have also tested the specificity of
anti-Aβ40 and anti-Aβ42 antibodies doing double immu-
nostaining for Aβ and APP in control neuroblastoma
cells. The anti-APP antibodies (Zymed, mouse anti-APP,
clone LN27) recognize epitope within the first 200
amino acids in the APP N-terminus and react with all
three known APP proteins. There is no cross-reactivity
between Aβ and APP.

Immunofluorescence microscopy
For immunofluorescence microscopy, cells on coverslips
were washed twice in phosphate-buffered saline (PBS)
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and fixed in 4% neutral phosphate-buffered formalde-
hyde for 20 min at room temperature, rinsed in PBS,
permeabilized with 0.1% saponin in PBS containing 5%
serum for 20 min and incubated with primary antibodies
for either single or double immunofluorescence for 1 h,
followed by rinsing in PBS and 1 h incubation with sec-
ondary antibodies. Dilutions were 1:100 and 1: 400 for
primary and secondary antibodies, respectively. For
double immunostaining, different primary or secondary
antibodies were applied simultaneously. The experi-
ments were repeated at least three times.
After washing in PBS and distilled water, the speci-

mens were mounted in Vectashield containing DAPI
(Vector Laboratories, H-1200) and inspected with an
inverted confocal laser scanning microscope (LSM 510
META, Zeiss) using a 488 nm argon laser and 543 nm
helium-neon laser. For colocalization assessment, optical
sections were no thicker than 0.6 μM. We also per-
formed Nikon Microphot-SA fluorescence microscopy
using a standard FITC / Texas Red double band-pass fil-
ter. Images were taken with a Hamamatsu ORCA 100
color digital camera (Hamamatsu, Japan). Images were
prepared with Adobe Photoshop 7.0 (Adobe System).

Results
Exposure of neuroblastoma SH-SY5Y cells to RA for two
weeks resulted in their differentiation, which was charac-
terized by the suppression of mitotic activity and
development neurites (Figure 1A and C). Neonatal cor-
tical neurons showed multiple anastomosing neurites.
(Figure 1B and D). Aβ42 immunostaining showed intra-
cellular localization of Aβ42 in both cell types. Aβ
Figure 1 Aβ42 immunoreactivity in retinoic acid differentiated
neuroblastoma cells and neonatal rat cortical neurons. Phase
contrast and fluorescence (greyscale) images of RA differentiated
SH-SY5Y human neuroblastoma cells (A, C) and cultured rat cortical
neurons (B, D), respectively. Aβ42 positive granules are bigger and
more abundant in neurites than in perikarya. Bar, 50 nM.
granules were larger and more abundant in neurites than
in perikarya (Figure 1).
To investigate intracellular localization of Aβ and its re-

lationship with the lysosomal system and other organelles,
RA differentiated neuroblastoma cells cultured under nor-
mal conditions were double immunostained for mono-
meric Aβ (Aβ40 and Aβ42) and different organelle-specific
proteins. As shown in Figure 2, very few Aβ42 positive
granules is colocalized with rab8 (TGN and Golgi derived
vesicles marker), rab9 (TGN and late endosome marker),
LAMP-2 (late endosome and lysosome marker), rab5
(early endosome marker), rab3 (exocytotic vesicle marker)
or VAMP2 (or synaptobrevin, marker for synaptic ve-
sicles). The overwhelming majority of Aβ42 granules
were not colocalized with any of the markers. As shown in
Figure 3, the intracellular distribution of Aβ40 is more dif-
fused than that of Aβ42. Double immunostaining of Aβ40
and different organelle markers showed similar results
regarding colocalization with organelles (Figure 3).
To study Aβ localization in relation with different sub-

cellular compartments, we performed immunogold elec-
tron microscopy using antibodies for Aβ40 and Aβ42. Low
amount of Aβ labeling was found in the endoplasmic
reticulum, Golgi complexes, lysosomal compartment and
also mitochondria, but it was particularly abundant in the
cytosol, usually in the form of clusters (Zheng et al., un-
published results).
To study whether Aβ relation to lysosomes depends on

its secretion, RA differentiated neuroblastoma cells were
exposed to the exocytosis inhibitor TeNT, followed by
double immunostaining for Aβ42 and LAMP-2. Cells were
cultured under normal conditions (control) or treated
with 5 nM TeNT for 24 h. The staining for both Aβ42 and
LAMP-2 was brighter after the treatment with TeNT, sug-
gesting the increase in the amount of intracellular Aβ42 as
well as in the size of the lysosomal compartment. Both the
size and the number of Aβ42-positive granules was
increased after TeNT administration. Furthermore, al-
though most Aβ42 granules were still found extralysoso-
mally, more of them than in untreated cells were
colocalized with LAMP-2 positive structures (Figure 4).
The effect of exocytosis inhibition on the intracellular

distribution of Aβ42 was also studied using neonatal cor-
tical neurons, which were exposed to 20 nM TeNT for
24 h. Phase contrast images show increased neuronal
damage after TeNT treatment as compared to controls,
while immunofluorescence microscopy reveals larger
and more abundant Aβ42 positive granules along the
neuritis, reflecting disturbed Aβ secretion and intraneur-
onal Aβ accumulation (Figure 5).

Discussion
A large number of studies have explored the intracellular
sites of Aβ production, mostly in AD models. Aβ42 and



Figure 2 Double immunostaining for Aβ42 (green fluorescence) and different subcellular markers (red fluorescence) in RA
differenatiated SH-SY5Y cells. (A) Rab8 (Golgi derived vesicles marker), (B) Rab9 (trans-Golgi network, Golgi-derived vesicles and late endosome
marker), (C) LAMP-2 (late endosome and lysosome marker), (D) Rab5 (early endosome marker), (E) Rab3 (exocytotic vesicle marker) and (F) VAMP2
(synaptobrevin, marker for synaptic vesicles) were used as subcellular organelle markers. Scale bar, 5 μm.
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Aβ40 monomers have been previously demonstrated in ER
[6-8], TGN [41] and post-TGN secretory vesicles [8],
mitochondria [42], endosomes [27], lysosomes [43], multi-
vesicular bodies (MVB) [44], and cytosol [12,45-47]. How-
ever, little is known about intracellular localization of Aβ
in normal conditions, when Aβ is not overproduced.
In this study, we demonstrated that in differentiated

neuroblastoma cells cultured under normal in vitro condi-
tions, only little Aβ (including Aβ42 and Aβ40) showed
colocalization with organelles such as TGN, Golgi-derived
vesicles, early and late endosomes, lysosomes, or
Figure 3 Double immunostaining for Aβ40 (green fluorescence) and d
differenatiated SH-SY5Y cells. (A-F), see Figure 2. Scale bar, 5 μm.
exocytotic vesicles, while the greater part of Aβ was
located in the cytosol or in undetermined compartments.
The absence of major Aβ immunoreactivity in these cel-

lular compartments, in which it was found in AD, as well
as in cellular and in vivo AD models, suggests that, under
normal conditions, this peptide is either relocated, or
degraded, or secreted extracellularly. The fact that lyso-
somes showed little Aβ immunoreactivity would suggest
that cells are able to perform a rapid proteolytic digestion
of this peptide under normal biological conditions. In sup-
port of this hypothesis, we have previously shown that
ifferent subcellular markers (red fluorescence) in RA



Figure 4 Double immunostaining for Aβ42 (green fluorescence) and lysosomal/late endosomal marker LAMP2 (red fluorescence) in RA
differenatiated SH-SY5Y cells cultured under normal conditions or exposed to exocytosis inhibitor tetanus toxin (TeNT, 5 nM) for 24 h.
Both Aβ42 and LAMP-2 specific fluorescence are increased in tetanus toxin exposed cells, and the colocalization of Aβ42 with LAMP-2 positive
structures (arrow and corresponding inset) is increased after TeNT treatment. Scale bar, 5 μm.
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inhibition of lysosomal enzymes induces Aβ accumulation
within the lysosomal compartment [29].
In addition, we have found that inhibition of exocytosis

by TeNT induced a general increase of intracellular Aβ,
Figure 5 Aβ42 immunoreactivity (greyscale) of neonatal rat cortical ne
exposed to 20 nM exocytosis inhibitor tetanus toxin (TeNT) for 24 h.
corresponding cells. Both drugs induce intracellular accumulation of Aβ42.
neurites.
both intra- and extralysosomal. As we previously reported
[30], the intralysosomal Aβ accumulation can be mediated
by enhanced Aβ autophagy. It is also possible that inhib-
ition of exocytosis results in Aβ accumulation along the
urons (A, C) cultured (under normal conditions (control) or (B, D)
(A and B) phase contrast images, (B and D) fluorescence images of
Bar, 50 nM. Intraneuronal Aβ42 is increased and accumulated in the
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secretory pathway, including ER, Golgi apparatus, trans-
port visicles and secretory vesicles [48].
Although under normal conditions late endosomes

and lysosomes seem to be free of Aβ, this is not the case
for AD neurons, in which Aβ has been demonstrated
intralysosomally [10,27,28]. It is not clear what causes
these changes and how Aβ relocation to lysosomes con-
tributes to the pathogenesis of AD. One possible explan-
ation is that oxidative stress might enhance autophagy,
leading to intralysosomal Aβ accumulation, consequent
lysosomal membrane damage and release of lysosomal
enzymes to the cytosol, culminating in apoptosis [29,30].
In AD, Aβ has been shown to accumulate within lyso-

somes, apparently promoting neuronal death through
lysosomal destabilization [22,25,49]. As we previously
demonstrated, intralysosomal Aβ accumulation can be
triggered by oxidative stress and consequent activation
of macroautophagy [29,30]. On the other hand, Aβ has
been shown to induce oxidant-mediated autophagic cell
death in cultured cells [50], while antioxidants can pro-
tect cells from Aβ-mediated oxidative damage [51].
The fact that in the majority of AD cases there is no

consistent overproduction of Aβ suggests that deficits in
its degradation could lie behind the pathogenesis of the
disease. On the other hand, intracellular accumulation of
Aβ is proposed to compromise normal neuronal func-
tion in AD. Our findings demonstrate that, under nor-
mal conditions, intracellular Aβ (including Aβ42 and
Aβ40) is mainly associated with cytosolic structures and,
to a large extent, is secreted from the cells. They may
also suggest that deficits in secretion or lysosomal pro-
cessing would result in intracellular Aβ accumulation
and its translocation to the cellular organelles, as seen in
AD and its models [12,21,52,53]. Our finding may con-
tribute to better understanding of AD pathogenesis, and
may help develop new therapeutic strategies against AD
(reviewed in [54]).
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