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Perivascular spaces relate to the course 
and cognition of Huntington’s disease
Xiao‑Yan Li1†, Juan‑Juan Xie1,2†, Jin‑Hong Wang3, Yu‑Feng Bao1, Yi Dong1, Bin Gao1, Ting Shen2, Pei‑Yu Huang4, 
Hao‑Chao Ying5, Han Xu1,6, Anna Wang Roe2,6*, Hsin‑Yi Lai1,2,6* and Zhi‑Ying Wu1,6,7*   

Huntington’s disease (HD) is an autosomal dominant 
neurodegenerative disease that is caused by a cytosine-
adenine-guanine (CAG) expansion in the first exon of 
the huntingtin (HTT) gene, which codes for the hun-
tingtin protein. It typically manifests with a triad of 
symptoms, including motor disorders, cognitive impair-
ment and psychiatric disturbances [1]. HD  primar-
ily  affects  the  basal  ganglia (BG), especially the caudate 
and putamen, after which it extends to more widespread 
gray and white matter [2]. Perivascular spaces (PVSs) are 
fluid-filled extensions of the subarachnoid spaces that 

enclose cerebral blood vessels and extend from the cer-
ebral cortex through the brain parenchyma. The physi-
ological role of PVSs is the drainage of brain interstitial 
fluid into perivascular pathways for the elimination of 
waste products through the glymphatic drainage sys-
tem. An increasing number of studies have demonstrated 
that enlarged PVSs indicate glymphatic dysfunction and 
are associated with many neurological diseases, such as 
Alzheimer’s disease, Parkinson’s disease and small vessel 
disease [3]. With the advantage of strong field strengths, 
7.0  T images show superior resolution and signal-to-
noise ratios than 3.0 T, which facilitate the visualization 
of PVS. And automated segmentation methods could 
accurately identify PVS in a short time with no inter-
rater variability. In the current study, we used U-shaped 
networks (U-net), a class of deep learning methods, 
to explore the PVS distribution in HD and controls. To 
date, PVS distribution in HD is still unclear. Only two 
studies have investigated PVSs in HD, and both dem-
onstrated increased visible PVS burden in manifest HD 
compared to controls [4, 5]. However, whether PVS bur-
den increases in premanifest HD (pre-HD) individuals 
remains unknown, and the relationship of PVS with cog-
nitive decline has never been studied.

In this study, 49 healthy controls, 32 pre-HD individuals 
and 25 HD patients were enrolled and assessed by using 
7.0  T MRI. Cognitive performance was assessed with a 
battery of cognitive tests, including Symbol Digit Modal-
ity Test, Stroop Word Reading Test, Stroop Color Nam-
ing Test, and Stroop Interference Test. U-net algorithm 
was used to automatically segment PVS with a diam-
eter < 3 mm on T2-weighted images. Three metrics were 
computed to assess the performance of segmentation on 
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the training set and validation set: Dice similarity coef-
ficient (DSC), sensitivity (SEN) and positive prediction 
value (PPV). PVS volume proportion (%) was calculated 
as the regional PVS volumes over the total regional vol-
umes. Detailed methods are provided in Additional file 1: 
Supplementary Methods.

There was no difference in sex ratio among control, 
pre-HD and HD groups (P = 0.520). The HD group had 
a significantly older age than the pre-HD and control 
groups (F = 24.03, P < 0.0001; F = 12.09, P = 0.001, Bon-
ferroni-corrected threshold = 0.017). However, there 
was no difference in age between the control and the 
pre-HD groups (F = 0.250, P = 0.619). Detailed demo-
graphic and clinical features of the participants are 
shown in Additional file 1: Table S1. In the training sub-
set of 30 subjects, the average value of DSC was 0.85, 
and the PPV and SEN values were 0.94 and 0.78, respec-
tively. In the validation data, the DSC was 0.76, and the 
PPV and SEN values were 0.89 and 0.67, respectively. 

The performance of the automatic segmentation of PVS 
was generally good, and examples of PVS segmentation 
are shown in Fig. 1a–b. We then assessed the associa-
tion of PVS volume with age. Global-brain PVS volume 
proportion (global-pPVS) increased with age in the 
controls (r = 0.35, P = 0.010) but not in HTT mutation-
carriers (r = −  0.11, P = 0.496). However,  the BG  PVS 
volume proportion (BG-pPVS) increased with age in 
both controls (r = 0.63, P < 0.0001) and HTT mutation-
carriers (r = 0.43, P = 0.007, Fig.  1c, d). The BG-pPVS 
differed among the pre-HD, manifest HD and control 
groups (F = 54.72, P < 0.0001) while the global-pPVS did 
not (F = 1.87, P = 0.159). After age adjustment, pre-HD 
and HD individuals had higher BG-pPVS than controls 
(F = 17.64, P = 0.001; F = 53.62, P < 0.0001). In addi-
tion, the HD group had higher BG-pPVS than pre-HD 
(F = 19.11, P < 0.0001, Bonferroni-corrected thresh-
old = 0.017, Fig.  1e–f ). By using partial correlation 
analysis to control for the age effect, we found that the 

Fig. 1 Perivascular space (PVS) distribution in HTT mutation‑carriers and its associations with brain atrophy and cognitive decline. a, b Performance 
of automatic segmentation of PVS on T2‑weighted axial images in the deep white matter and basal ganglia (BG). c, d Correlations of global‑brain 
PVS volume proportion (global‑pPVS) and BG PVS volume proportion (BG‑pPVS) with age in controls and HTT mutation‑carriers. e, f Group 
comparisons of global‑pPVS and BG‑pPVS between control, pre‑HD and HD groups. Box plots show median and interquartile range (IQR), and 
whiskers are data within 1.5 IQR of the median. A multiple linear regression was used for group comparison to control for the effect of age. g, h 
Correlations of BG‑pPVS with caudate and putamen volumes after age adjustment. i, j Correlations of BG‑pPVS with Stroop Word Reading Test and 
Symbol Digit Modality Test scores after age adjustment



Page 3 of 4Li et al. Translational Neurodegeneration           (2023) 12:30  

BG-pPVS was negatively associated with the putamen 
volume (r = − 0.32, P = 0.036) in controls (Additional 
file  1: Table  S2). In HTT mutation-carriers, BG-pPVS 
was inversely associated with both caudate volume 
(r = − 0.51, P < 0.0001) and putamen volume (r = − 0.39, 
P = 0.013) (Fig.  1g, h). In contrast, no associations of 
global-pPVS with brain atrophy were detected. We then 
explored the relationship of PVS burden with cogni-
tive measures. Consistent with our hypothesis, in HTT 
mutation-carriers, BG-pPVS was negatively correlated 
with cognitive scores on the Stroop Word Reading Test 
(r = − 0.35, P = 0.010) and Symbol Digit Modality Test 
(r = − 0.39, P = 0.009) after age adjustments (Fig.  1i, j 
and Additional file 1: Table S2).

In this study, with the advanced segmentation algo-
rithm and high-resolution 7.0  T MRI to quantify PVS 
burden, we found significantly increased BG-pPVS not 
only in HD patients but also in pre-HD individuals com-
pared to controls. We also found that BG-pPVS was 
closely related to cognitive decline and BG atrophy. The 
performance of our automatic segmentation algorithm 
was comparable to that reported in other studies. Lian 
et al. [6] used a multi-scale encoder-decoder network on 
7.0 T T2-weighted images to annotate PVS, and reported 
a performance of DSC 0.77, PPV 0.83 and SEN 0.74 at the 
voxel level. Zhang et  al. [7] used a structured-learning-
based segmentation framework to segment PVS on 7.0 T 
T2-weighted images and reported a DSC coefficient of 
0.66 at the voxel level. Boutinaud et al. reported DSC 0.73 
and SEN 0.71 for BG-PVS at the cluster level on 3.0  T 
T1-weighted images [8].

There were also some limitations in this study. First, 
the cognitive measures we used were mainly focused 
on the executive domain of cognition. Other cognitive 
tests assessing different cognitive domains should be 
used, such as the Cambridge Neuropsychological Test 
Automated Battery (CANTAB) Intra-Extra Dimensional 
Set-Shift (IED) task, which could detect mild cognitive 
impairments in pre-HD individuals far from onset and 
measure cognitive flexibility [9, 10]. Second, HD patients 
at the late disease stage were not included in this study, as 
they are unable to undergo MRI scanning due to obvious 
involuntary movements. Third, long-term follow-ups for 
imaging and cognitive measures are needed to determine 
the clinical relevance of PVS and the risk of dementia.

In summary, the current study shows that BG-pPVS 
increases in pre-HD individuals and is associated with 
early cognitive impairment and brain atrophy in HD. 
Diffusion tensor image analysis along the perivascular 
space should be carried out to accurately evaluate the 
glymphatic function in the future. Strategies to improve 
the glymphatic function may restore the cognitive 

impairment of HD patients and facilitate the delivery of 
intrathecal drugs.
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