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Abstract 

Disruptions of circadian rhythms and sleep cycles are common among neurodegenerative diseases and can occur at mul‑
tiple levels. Accumulating evidence reveals a bidirectional relationship between disruptions of circadian rhythms and sleep 
cycles and neurodegenerative diseases. Circadian disruption and sleep disorders aggravate neurodegeneration and neuro‑
degenerative diseases can in turn disrupt circadian rhythms and sleep. Importantly, circadian disruption and various sleep 
disorders can increase the risk of neurodegenerative diseases. Thus, harnessing the circadian biology findings from preclini‑
cal and translational research in neurodegenerative diseases is of importance for reducing risk of neurodegeneration and 
improving symptoms and quality of life of individuals with neurodegenerative disorders via approaches that normalize cir‑
cadian in the context of precision medicine. In this review, we discuss the implications of circadian disruption and sleep dis‑
orders in neurodegenerative diseases by summarizing evidence from both human and animal studies, focusing on the bidi‑
rectional links of sleep and circadian rhythms with prevalent forms of neurodegeneration. These findings provide valuable 
insights into the pathogenesis of neurodegenerative diseases and suggest a promising role of circadian-based interventions.
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Background
Circadian rhythms are physiological and behavioral 
oscillations that manifest at every level of tissue from 
gene expression to interorgan functional coordination, 
which are regulated by an endogenous process with a 
periodicity of ~ 24 h that persists in the absence of envi-
ronmental cues [1]. The circadian system in the brain 

influences many important functions including sleep-
wake cycle, temperature, eating, and social interac-
tion, and is believed to be paramount for maintaining 
synchrony between internal physiology, behavior, and 
the stimulus from the environment. The importance 
of such system lies in several aspects of metabolic, cog-
nitive, immunological and oncogenic processes in the 
brain. Sleep-wake behavior is the most established and 
widely recognized sign of circadian system [2]. Accord-
ing to the different manifestations of electroencepha-
lography (EEG), eyes movements and electromyography 
(EMG), sleep is divided into two different phases: rapid 
eye movement (REM) and non-rapid eye movement 
(NREM) sleep. Disruptions of the circadian rhythm can 
profoundly affect health in a wide range of functions, 
including sleep, alertness, cognition, psychology, motor 
control and metabolism [3], and have been correlated 
with several health problems such as neurodegenerative 
disorders [2].
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Neurodegenerative disorders, especially Parkinson’s 
disease (PD), Alzheimer’s disease (AD) and Huntington’s 
disease (HD), involve a wide range of clinical symptoms 
(e.g., motor and non-motor symptoms), many of which 
exhibit diurnal and nocturnal variations in frequency 
and intensity. The prevalence of circadian and sleep 
dysfunction varies greatly across neurodegenerative 
diseases (Table  1) and plays an important role in 
differential diagnosis. Meanwhile, circadian and 
sleep dysfunctions are not only a consequence of 
neurodegeneration but may also play a causative role. 
In other words, dysregulated circadian rhythm and 
sleep could predispose disease onset or exacerbate 
disease progression, in which circadian dysfunction 
and neurodegeneration form a detrimental, self-
perpetuating transcriptional-translation feedback loop 
(TTFL) [4]. A deeper understanding of the relationship 
between circadian rhythms and neurodegeneration is 
essential for early identification and management of 
neurodegenerative diseases.

In this review, we summarize the existing literature 
on the circadian/sleep disruption in neurodegenerative 
diseases, focusing on the bidirectional links of circadian 

rhythm and sleep disruptions with neurodegeneration, 
based on molecular changes, clinical symptom varia-
tions, as well as the available treatment options.

Mechanisms underlying circadian rhythm 
and sleep‑wake activity
Circadian rhythms
Key neuroanatomical pathways of the circadian system
Circadian rhythms govern a wide range of physiologi-
cal and behavioral processes in organisms, and can be 
observed at the central and the peripheral. Suprachi-
asmatic nucleus (SCN), which consists of thousands of 
neurons that exhibit self-sustaining and synchronous 
circadian rhythms in their electrical activity, is an impor-
tant basis for behavioral and physiological rhythms. 
In humans, the regulation of circadian rhythm begins 
with the propagation of light information. Light is first 
detected by intrinsically photoreceptive retinal ganglion 
cells (ipRGCs) and then delivered to the SCN; the SCN 
receives and encodes light information, and then syn-
chronizes circadian oscillations and projects signals to 
other brain regions [5] (Fig. 1).

Table 1  Prevalence of sleep disorders in neurodegenerative diseases

EDS excessive daytime sleepiness; RBD rapid eye movement (REM) sleep behavior disorder; NREM non-REM; SDB sleep-disordered breathing; RLS restless leg 
syndrome; PD Parkinson’s disease; MSA multiple system atrophy; DLB dementia with lewy bodies; FTD frontotemporal dementia; CBD corticobasal degeneration; PSP 
progressive supranuclear palsy; AD Alzheimer’s disease; HD Huntington’s disease; OSA obstructive sleep apnea

Sleep-wake disorder Parasomnia SDB RLS

Insomnia EDS REM parasomnia NREM 
parasomnia

RBD Nightmares

PD 32%–44% 
[241–243]

21%–76%  
[27, 243]

39%–46%  
[242, 243]

17.2%–30%  
[241, 244]

Sleepwalking: 
(0.9%–1.8%) [158, 
241]
Night terror: 3.9% 
[241]
NREM arousal-
related disorder: 
10.3% [245]

27.6%–48%  
[32, 246]

14% [57]

MSA 19% [247] 28% [248] 88% [249] – Stridor: 30%–42%
OSA:15%–37% 
[250]

4.7%–28% [251]

DLB 26%–75% [252] 11%–100% [252] 76% [112] 83% [252] – 34.8%–60% [253] –

PDD 72% [252] 83% [252] 17% [252] 78% [252]

FTD 48% [254] 64% [254] Rare [254] Rare [255] – 68% [254] 8% [254]

CBD Rare [256, 257] – 14.3% [258] – – Rare [259] Rare [259]

PSP 60% [260] 60% [260] 11.4%–28% [258, 
261]

– – 55% [262] 3.7%–58% [263]

AD 40% [48] 45% [264] Rare [265] – – 15%–54% [56, 
63, 64]

4%–6% [55, 56]

HD 25%–51% [266, 
267]

35.4%–50% [268, 
269]

12%–25.8% [269, 
270]

22.5% [269] – 30.8% [271] 15.4%
& one family 
case report [60, 
271]
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The signals encoded by the SCN are mainly projected 
to the hypothalamus, which acts as a mediator to regu-
late the specific circadian rhythm. These brain regions 
include paraventricular nucleus (PVN), dorsomedial 
hypothalamic nucleus, subparaventricular zone, and 
medial preoptic nucleus (MPN) [6] (Fig. 1).

Schema of the circadian clock system
Macroscopically, amplitude, phase, and period are key 
rhythmic parameters driven by the circadian system. 
Microscopically, circadian rhythm disorders can be lim-
ited to alterations in period due to defects in the core 
molecular mechanism, i.e., the TTFL [7]. TTFL is mainly 
regulated through heterodimeric partnership between 
the brain and muscle aryl hydrocarbon receptor nuclear 
translocator (ARNT)-like 1 (BMAL1) and the circadian 
locomotor output cycles kaput (CLOCK) (Fig. 2). Period 
(PER) and cryptochrome (CRY) are involved in this path-
way. In addition, the TTFL is complemented by a second 
loop, in which the REV-ERBα/β repressor and ROR (reti-
noic acid receptor-related orphan receptor) α/β activator 
proteins co-maintain the periodic expression of BMAL1 
[8, 9] (Fig. 2). The cycle of TTFL is about 24 h [10, 11].

Several studies have reported the occurrence of circa-
dian disruption in PD or AD animal models, including 
changes in circadian rhythm, sleep pattern or clock genes 
in model animals including mice, rats, Drosophila and 
zebrafish. The current reports on dysrhythmia in PD and 
AD models, including neurotoxin-induced and trans-
genic animal models, are summarized in Tables 2 and 3.

Sleep‑wake activity
Sleep-wake activity is regulated by internally driven 
rhythm of the circadian clock. Disruption of the sleep-
wake cycle has been found in a variety of PD and AD 
models with multiple assessment methods, including 
running wheels, infrared beams, piezoelectric 
systems, and electrophysiological measures such as 
EEG and EMG. Sleep-wake disturbances in PD and 
AD seem to be associated with genetic mutations. 
For instance, Drosophila with pink1 (phosphatase 
and tensin homolog-induced putative kinase 1) and 
parkin mutants show fragmentation of sleep [12]. 
Heterozygous (D409V/WT) GBA1 (glucocerebrosidase 
1) mutant mice show increased NREM sleep and 
reduced REM sleep durations [13]. Additionally, 
α-synuclein BAC transgenic mice exhibit REM sleep 
without atonia (RSWA), which is a key feature of REM 
sleep behavior disorder (RBD). Regarding the sleep 
alterations in animal models of PD and AD, Fifel, 
Medeiros and their colleagues have comprehensively 
discussed this topic, together with the strengths and 
limitations [14, 15].

The sleep-wake activity may be related to proteo-
stasis in the brains of patients with neurodegenerative 
diseases. A few studies have shown that the sleep-wake 
activity regulates the clearance of misfolded proteins 
in the glymphatic system of the brain [7]. Interrupted 
sleep has also been shown to increase the level of Aβ 
protein in the cerebrospinal fluid [16, 17]. One possi-
ble explanation is that Aβ or α-synuclein induces sleep 
disorders, which in turn hinders their clearance by the 

Fig. 1  Key neuroanatomical pathways of the circadian system. (1) SCN indirectly regulates melatonin release from the pineal gland by projecting 
light signals to PVN. (2) DMH receives light signals from SCN and then projects them to LC and VLPO, which in turn regulates sleep/awake activity. 
(3) SCN regulates  thermoregulation and aggressive tendency by DMH through SPZ or not through SPZ. DMH dorsomedial hypothalamic nucleus; 
SPZ subparaventricular zone;
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lymphatic system, and ultimately accelerates the patho-
logical progression of the disease.

PD
Recent attempts to redefine PD have viewed it as a com-
plex combination of motor and non-motor disorders, 
with a natural history that includes a prodromal phase 
dominated by a range of non-motor symptoms (e.g., 
sleep, psychiatric disorders, autonomic dysfunction, 
cognitive impairment and sensory deficits) [18]. As with 
parkinsonian motor abnormalities, non-motor symp-
toms may  also exhibit diurnal fluctuations that change 
throughout the course of the disease. A dysfunctional 
circadian system is therefore expected to exacerbate the 

clinical symptoms of PD patients. It is reasonable to link 
the symptom fluctuations in PD patients with dysregula-
tion of circadian rhythms affected by chronobiology [19].

Diurnal oscillations are present in characteristic motor 
and non-motor symptoms of PD. Circadian biomarkers 
such as melatonin and clock gene, and the neurological 
processes underlying circadian rhythm, are altered by not 
only the neurodegeneration of PD, but also dopaminergic 
treatments used to mitigate parkinsonian symptoms [20]. 
In general, these circadian dysfunctions in PD can be 
classified into three categories: behavioral, physiologic, 
and molecular alterations (Fig. 3).

Fig. 2  Schema of the circadian clock system—the transcription-translation feedback loops. The circadian clock consists of a network of TTFL that 
generates endogenous circadian rhythm. TTFL includes two loops: (1) The first loop of TTFL begins with BMAL1:CLOCK complex translocating into 
the nucleus, activating transcription of target genes containing E-box cis-regulatory enhancer sequences in their promoter regions, such as PER and 
CRY. The CRY and PER are then transferred to the nucleus and interact with CLOCK:BMAL1 complex to inhibit their own transcription. The decrease 
of PER and CRY protein levels reduces the suppression of BMAL1:CLOCK activity, which allows for the establishment of a new oscillatory cycle. (2) In 
the second loop, the REV-ERBα/β repressor and the RORα/β activator proteins co-maintain the periodic expression of BMAL1
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Behavioral alterations in PD
The rest-activity rhythm is often characterized using 
nonparametric analysis of actigraphy data. The circadian 
rhythm disruption in PD is characterized by a reduction 
in the amplitude of the circadian rhythm, resulting 
in an overall flattening of the rhythm, but with no 
significant shift in circadian phases [4, 21]. One recent 
study quantified the actigraphy data, and found that the 
activity rhythms are associated with disease severity and 
fluctuations of symptom intensity [22].

Non-motor symptoms in PD are associated to a certain 
extent with an impaired circadian rhythm. Increasing 
lines of evidence have shown that circadian dysfunction 
plays a role in cognitive impairment associated with 
PD, either by directly affecting cognition or indirectly 
by exerting effects on sleep and alertness [23]. Several 
other functions (emotional disorders and gastrointestinal 
dysfunctions) that are relevant for optimal behavior are 
known to be altered in PD. However, their link with the 
circadian clock remains poorly understood [4].

Sleep disorders are the most common non-motor 
symptoms and comprise the entire spectrum of sleep 
disorders, mainly presenting with disorders of regulation 
of sleep and wakefulness (such as insomnia and daytime 
sleepiness), parasomnias (mainly REM sleep behavior 
disorders, but also, albeit more rarely, sleepwalking and 
overlap parasomnia), sleep-related movement disor-
ders (restless leg syndrome,  RLS) and sleep‑disordered 

breathing (SDB) [24]. Insomnia is a frequent symptom 
in PD and most PD patients often complain about sleep 
fragmentation and early awakening. The prevalence of 
insomnia in PD increases over time and requires peri-
odic assessments. PD patients with depressive symptoms, 
motor fluctuations and the use of higher doses of dopa-
mine agonists tend to suffer more severe insomnia [25]. 
Interestingly, insomnia is often one of the characteristics 
of PD where motor symptoms are improved upon awak-
ening from sleep and prior to drug intake. However, the 
underlying mechanism of this phenomenon (“sleep ben-
efit”) is unclear, and there is no direct evidence for its 
correlation with the circadian type predominance [26]. 
Excessive daytime sleepiness (EDS) is a major health 
hazard in PD, affecting 21%–76% of PD patients with 
an incidence of 6% per year [27]. In our previous study 
employing 586 PD patients, male sex, disease duration 
and depression were found to be main risk factors for 
EDS in PD patients, while depression was a predictive 
factor for poor night-time sleep quality in all PD patients, 
whether they were male or female, and had early- or late-
onset PD [28]. Circadian dysfunction may underlie the 
excessive sleepiness in PD. Compared with PD patients 
without EDS, patients with EDS have significantly lower 
amplitude of the melatonin rhythm and 24-h area-under-
the-curve for circulating melatonin level [29]. RBD is a 
parasomnia, characterized by dream-enacting behaviors 
(DEB) and nightmares linked to RSWA. Compared with 

Table 2  Circadian rhythm disorder in PD models

ASO: alpha-synuclein overexpressing; TP-αS: three alanine replacements by prolines (at positions A30P, A56P and A76P)

Species Genotype Toxin Results/effects Reference

Mouse MitoPark Loss of dopamine leads to circadian alterations of the rest/activity cycle. [272]

Mouse A53T Impaired light entrainment of the circadian system [273]

Mouse ASO Diurnal and circadian rhythms of wheel running behavior are disrupted [274]

Mouse MPTP Expression of Bmal1, Per1, Per2, Cry1, Dec1 and Rev-erbα shows decreased 
amplitude of circadian oscillation

[275]

Rat 6-OHDA Endogenous circadian rhythm in constant darkness is disrupted. [276]

Rat 6-OHDA The mRNA levels of Bmal1, Per2, and Clock are decreased. [277]

Rat LPS or rotenone The mRNA levels of Bmal1, Clock, Npas2, Per1 and Per2 are decreased. [278]

Rat 6-OHDA Rats housed in constant darkness are less active. [279]

Rat 6-OHDA The length of the locomotor activity period is decreased during the dark, and 
increased during the light period.

[280]

Rat 6-OHDA Decreased amplitude of heart rate and heart rhythm [281]

Rat 6-OHDA The circadian rhythms of blood pressure and temperature are disrupted. [282]

Monkey MPTP Loss of circadian locomotor activity in the absence of light/dark cues [283]

Drosophila pink1 and parkin mutants The fragmentation of sleep, the anticipation of dawn [12]

Drosophila pink1 and parkin mutants Weakened circadian rhythms in locomotor activity [284]

Drosophila TP-αS TP-αS expression in neurons interferes with the circadian rhythm of aging flies [285]

Zebrafish MPP +  Decreased activity, sleep disruptions, and impaired habituation to repetitive 
startles

[286]
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PD without RBD, PD with RBD exhibits clinical hetero-
geneity of motor and non-motor symptoms. More spe-
cifically, both DEB and RSWA are associated with the 
severity of PD. DEB symptom might fluctuate or disap-
pear over time whereas RSWA may continue to develop 
as PD progresses [30]. RLS has one essential diagnos-
tic characteristic, the presence of circadian variation of 
symptoms. The circadian clock-controlled gene, Tef, is 
also associated with sleep disturbances in PD, including 
RLS symptoms [31]. SDB is not more frequent in PD than 
in the general population. We previously explored the 
clinical characteristics of PD with comorbid obstructive 
sleep apnea (OSA), and found that age and male gender 
are risk factors for OSA in PD [32]. OSA may exacerbate 
neurodegenerative processes in PD. It is hypothesized 
that the OSA-related intermittent hypoxemia leads to 

oxidative stress, neuroinflammation, cerebrovascular 
effects, disruption of the glymphatic function by sleep 
fragmentation, and changes in the integrity of the blood–
brain barrier  [33].

Nocturia is a condition that is   caused by the 
dampening or reversal of the daily pattern of urine 
excretion, which is associated with poor quality of life, 
falls, and institutionalization in PD. The prevalence of 
nocturia ranges between 76% and 86% according to a 
previous questionnaire survey [34]. Recent advances 
in circadian biology and sleep science have raised the 
importance of considering nocturia as a form of circadian 
dysfunction, with a focus on the influence of circadian 
genes on the bladder as studies have demonstrated 
circadian gene cycling in all levels of bladder tissue, and 
abnormal nocturnal urine production [35].

Table 3  Circadian rhythm disorder in AD models

3×Tg: three mutations that have been associated with AD in humans (APP LysMet670–671AspLeu, MAPT Pro301Leu and PSEN1 Met146Val); J20: Two familial 
AD mutations (two in human APP: Swedish (K670N/M671L) and the Indiana (V717F)); 5×FAD: Five familial AD mutations (three in human APP: K670N/M671L 
(Swedish),I716V (Florida),V717I (London) and two in human PSEN1: M146L,L286V)

Species Genotype Toxin Results/effects Reference

Mouse 3×Tg Decreased nocturnal activity, increased daytime activity, and shorter free 
running time 

[287]

Mouse TgCRND8 More stereotypic behavior with increasing age [288]

Mouse APPswe/PS1ΔE9 Chronic sleep deprivation Abnormal expression of Bmal1, Clock, and Cry1 [105]

Mouse P301S tau Perturbed oscillations in BMAL1expression [289]

Mouse Bmal1 KO Disruption of daily hippocampal interstitial fluid Aβ oscillations and 
accelerated amyloid plaque accumulation

[164]

Mouse Tg4510 Per2 and Bmal1 are evidently disrupted in the hippocampus [290]

Mouse Aβ31-35 Disrupted daily sleep‐wake cycle and circadian oscillation of Bmal1 mRNA 
and Per2 mRNA

[291]

Mouse Aβ1–42 Rhythm absence under LD or DD conditions [292]

Mouse J20 Altered peak acrophase [293]

Mouse APP/PS1 Dysregulation of Bmal1 mRNA and Per2 mRNA [294]

Mouse Beta/A4 amyloid Disruption of circadian regulation [295]

Mouse APP/PS1 Phase delays of ~ 2 h in the onset of daytime wakefulness bouts and peak 
wakefulness

[296]

Mouse CRND8/E4 Intermediate disruptions in circadian rhythms [297]

Mouse  5×FAD Altered circadian behavior, and altered expression of Bmal1 and Per2 [298]

Mouse Aβ31-35 Disturbances in circadian rhythms [299]

Mouse Aβ31-35 Altered expression of Per1 and Per2 in the SCN, hippocampus and heart [300]

Mouse Fus1 KO More sleep time during the diurnal cycle [301]

Mouse APPSwe/PS1dE9 Alteration of levels and patterns in circadian rhythm of locomotor activity, 
and altered expression of Cry1 and Cry2

[302]

Mouse 3×Tg Increased activities in the resting phase, decreased and scattered activities in 
the active phase, decreased overall activity intensities, amplitude, robustness, 
and increased intradaily variability; phase delay in the expression of Per1 and 
Per2 mRNA in the SCN

[303]

Mouse Aβ31–35 An unclear movement phase and resting phase and a prolonged free 
running period

[304]

Mouse APP/PS1 A mild but persistent phase delay of nocturnal activity onset in LD conditions [305]

Drosophila Express human Aβ Fragmentation of daytime sleep [306]

Drosophila Tau-deficient Dysregulation of daily circadian rhythms and sleep patterns [307]
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Physiologic alterations in PD
The physiological facets of circadian dysfunctions in PD 
include dysfunction of the autonomic nervous system 
and dysrhythmias of neuroendocrine secretion.

Rhythmic abnormalities in the autonomic nerve 
function in PD are well recognized, including reversal 
or even a full arrhythmia of blood pressure and heart 
rate variability (HRV), and impairment of the core 
body temperature (CBT) rhythm [20]. Nocturnal 
hypertension is nearly ubiquitous in PD, and most PD 
patients exhibit either a blunted nocturnal fall of blood 
pressure or higher blood pressure during the night than 
during the day (known as reverse dipping), leading  to 
the difference between daytime and night-time BP 
closed [36]. HRV, an index for the autonomic, especially 
parasympathetic functions, is lower all day but higher 
at night in individuals with PD than in healthy controls 
[37]. Research has shown that impaired HRV may 
be related with the disease severity, motor symptom 
duration and dopaminergic dose in PD [38]. PD patients 
also show disruptions of circadian thermoregulation, 
with significant reductions in the mesor (the mean value 
around which the core temperature rhythm oscillates) of 
the CBT rhythm and dampened CBT rhythms, both of 
which are strongly correlated with REM sleep [39].

Melatonin synthesis and corticosteroid secretion are 
directly or indirectly regulated by SCN, and can be 
used as markers of the central clockwork to reflect the 

endogenous rhythmicity [40]. Two well-known stud-
ies have  examined rhythms of melatonin in PD. One 
study showed a significantly diminished amplitude and 
amount of melatonin secretion in PD patients (n = 20) 
receiving stable dopaminergic therapy compared with 
controls (n = 15). Among PD patients, those with EDS 
exhibit the most prominent impairment in circadian 
melatonin secretion [29]. The other study also sug-
gested reduced circulating melatonin levels in patients 
newly diagnosed with PD (n = 30), compared with the 
matched controls (n = 15) [41]. Neither of these studies 
found any difference in the timing of melatonin onset 
or offset [29, 41]. Different from these observations, 
some other studies [42] found an earlier peak of noc-
turnal melatonin level in PD patients receiving levo-
dopa than in the control group. However, secretion and 
diurnal rhythmicity of some other circadian-modulated 
hormones are unaffected in PD, including growth hor-
mone, thyroid stimulating hormone, prolactin, as well 
as certain fat tissue-associated hormones [43, 44].

Circadian disruptions in AD and other 
neurodegenerative disorders
Individuals with AD often experience more severe cir-
cadian disruptions than the healthy elderly, which in 
turn exacerbate neurodegeneration in AD [45]. In the 

Fig. 3  Circadian dysfunctions in neurodegeneration. Circadian dysfunctions in neurodegeneration can be classified into three categories: 
behavioral, physiologic, and molecular alterations. There are bi-directional relationships of circadian rhythm and sleep disorder with 
neurodegeneration
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following, we will discuss in detail the behavioral and 
physiological circadian alterations in AD.

Behavioral alterations in AD
Sleep disturbances
The prevalence of sleep disturbances in AD is roughly 
14%–69% [46, 47]. Sleep-wake disorders, including 
insomnia and EDS, are the most common form of sleep 
disturbances in AD. Additionally, SDB and RLS are also 
frequently observed in AD patients. As for parasomnia, 
RBD is rarely reported in AD when compared to PD and 
dementia with Lewy bodies (DLB), while evidence for the 
presence of NREM parasomnia in AD is lacking.

A multicenter study reported that sleep-wake 
disorders occur in over 50% of AD patients [48] and 
are primarily manifested as increased sleep latency, 
nocturnal awakenings, excessive daytime naps, difficulty 
in maintaining sleep, and early awakening [47, 49]. Sleep-
wake disorders could precede the development of classic 
AD symptoms and may progress throughout the course 
of the disease [50]. Long-term disruption of sleep could 
result in exacerbation of neuropsychiatric or behavioral 
symptoms around the timing of sunset in 2.5%–66% of 
AD patients [51–53], which is called sundowning, or 
sunset phenomenon. Studies suggest that the phase delay 
of the body temperature and the hormone secretion 
patterns may contribute to this unique phenomenon [54].

The occurrence of RLS in AD patients is around 4%–6% 
[55, 56]. In the context of PD, RLS is more frequently 
observed with a prevalence of 14% [57]. RLS is rarely 
reported in patients with multiple system atroph (MSA), 
progressive supranuclear palsy and HD [58–60]. The 
relatively high prevalence of RLS in PD may be attributed 
to the common dysfunction of the dopaminergic 
system as some researchers proposed [61]. However, 
controversies remain on this issue [61]. In fact, diagnosis 
of RLS in AD can be quite challenging due to the inability 
of patients to accurately report. Additionally, RLS and 
sundowning may have common symptoms (i.e., agitation) 
and timing (i.e., late afternoon), making it more difficult 
to achieve a reliable diagnosis. Therefore, Richard et  al. 
have further proposed a new diagnostic method, which 
combines a novel behavior observation test with clinical 
measurements and comorbidities, and yields a relatively 
high accuracy [62].

SDB has been reported in 15%–54% of AD patients 
[56, 63, 64]. Emerging evidence suggests that SDB serves 
as an independent risk factor for the development of 
AD [65, 66]. Indeed, there seems to be a bidirectional 
relationship between SDB and neurodegeneration. 
A recent meta-analysis pooling several randomized 
controlled trials indicated that continuous positive 
airway pressure treatment for SDB in AD patients can 

ameliorate cognitive performance, mood, EDS, slow-
wave sleep (SWS) and apnea–hypopnea index (AHI) [67]. 
Although studies with a larger sample size are warranted, 
these studies shed light on the possibility of reversing 
cognitive decline in AD patients with comorbid SDB.

Accumulating evidence has suggested that RBD 
should be considered as the prodromal stage of 
α-synucleinopathies [68]. However, apart from a report 
of a rare case of drug-induced RBD in AD [69], two 
cross-sectional studies reported that the prevalence of 
RBD is approximately 10% in AD [70–72] and several 
longitudinal studies revealed the development of AD 
in RBD patients [73–76]. Notably, the diagnosis of AD 
in these longitudinal studies was not totally confirmed 
by autopsy. In addition, DLB and AD could be difficult 
to differentiate due to some overlapping clinical 
manifestations when postmortem analysis is lacking. 
Nonetheless, even autopsy findings are obtained, there 
remains a possibility of misdiagnoses when different 
neuropathological techniques are applied. For instance, 
a 72-year-old male patient diagnosed as AD was later 
defined as ‘Lewy body variant of AD’ when a new 
staining method was used [77–79]. Therefore, whether 
the development of AD in RBD patients indicates a 
mixed subtype of dementia or it is merely a technically 
false diagnosis needs further observations.

As for NREM parasomnia, although AD patients 
experience a reduction of SWS and spindle activity 
[80], there is limited evidence for any definitive NREM 
parasomnia in AD patients.

Rest‑activity rhythm changes in AD
The rest-activity rhythm is one of the most commonly 
studied indicators of circadian disruption in AD. Recent 
studies showed that AD patients exhibit increased 
fragmentation of rest-activity rhythm, increased night-
time awakening, and decreased daytime activity. 
However, there are mixed findings regarding alterations 
of the circadian amplitude or phases [81, 82].

Physiological alterations in AD
Physiological facets of  circadian dysfunctions in AD 
mainly include dysfunctions of the autonomic nervous 
system and dysrhythmias of hormone secretion.

Dysregulations of the autonomic function in AD 
primarily manifest as orthostatic hypotension [83], 
non-dipping or reverse dipping in mainly systolic blood 
pressure [84], reduction in HRV index [85] and a phase 
delay in CBT [86]. Intriguingly, Kim et  al. reported 
that HRV might be a potentially useful tool for early 
differentiation between AD and DLB [87].

Additionally, AD patients exhibit reductions of 
melatonin levels and a phase delay in melatonin secretion 
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[88, 89]. Findings in HD are largely inconsistent with 
those in AD [90, 91]. As for cortisol, elevated cortisol 
levels and a phase-advanced cortisol-secretion pattern 
are observed in AD patients [92, 93], which bear some 
resemblance to those in late-stage HD [94]. In addition 
to higher cortisol levels, early-stage HD also displays an 
increased amplitude in the cortisol secretion rhythm 
[90].

Pathogenic mechanisms linking circadian rhythms, sleep 
and AD
The mechanisms linking circadian rhythms, sleep and 
AD have not come to a definitive conclusion. Mounting 
evidence has suggested a bidirectional relationship 
between them. Previous studies indicated that circadian 
dysfunctions worsen neurodegeneration in AD 
through cholinergic disturbances and melatonin loss. 
Autopsy studies have revealed loss of neurons in the 
SCN of AD patients, particularly neurons expressing 
vasopressin, melatonin receptor type 1 and vasoactive 
intestinal peptide (VIP) [95, 96]. In addition, the 
decreased melatonin levels [97] are associated with 
the rest-activity rhythm disorder [95, 98]. Moreover, 
AD patients with circadian dysfunctions show loss of 
ipRGCs [82, 99], which was reported to be associated 
with Aβ deposition in one study [82]. Additionally, AD 
patients or mouse models with cholinergic disturbances 
demonstrate impaired circadian pattern [100, 101]. 
Melatonin suppresses Aβ generation and amyloid fibril 
formation. There is evidence showing a reduction of 
melatonin level in the prodromal and progressive stages 
of AD [102]. On the contrary, circadian disruptions 
promote neurodegeneration in AD. Sleep deprivation 
or disruption significantly increases neuroinflammation 
and subsequent Aβ production in the cerebrospinal 
fluid (CSF) of AD patients [103], increases Aβ and 
phosphorylated tau (ptau) levels in transgenic AD 
mouse models [104, 105], and decreases glymphatic 
flow and Aβ clearance in human CSF and in animal 
models [104, 106], which may lead to further progression 
of neurodegeneration in AD. Notably, chronic sleep 
disruption may increase the dissemination of tau 
protein in neural networks [107]. Musiek et  al. have 
reported severe astrogliosis, oxidative injury and 
synaptic degeneration in Bmal1-deleted mice, indicating 
that circadian dysregulation of the neuronal redox 
homeostasis may also contribute to neurodegeneration in 
AD [1].

Other neurodegenerative disorders
Circadian disruption and sleep disorders are also 
observed in other neurodegenerative disorders, including 
MSA, DLB, frontotemporal dementia (FTD), and HD.

Although no α-synuclein deposition is found in either 
the SCN or the pineal gland in MSA cases, the circadian 
dysfunction may be secondary to degeneration of other 
systems, such as the autonomic networks [108]. The 
circadian rhythm is regulated by VIP-expressing neurons, 
which are more involved in autonomic control and 
depleted in the SCN of patients with MSA [95]. MSA has 
a wider impairment of circadian regulation of endocrine 
and autonomic functions, such as plasma cortisol 
concentration [109], blood pressure, gastric myoelectrical 
activity [110], and nocturnal polyuria.

Patients with DLB present with decreased amplitude 
of CBT during night and more severe daytime sleepiness 
than controls, as well as more frequent RBD than AD 
and healthy controls [111]. Notably, inclusion of RBD has 
been proven to improve the diagnostic accuracy of DLB 
[112].

Although neurodegenerative disorders exhibit 
fragmentation of sleep, patients with FTD [113] show 
phase-advanced activity rhythm while HD patients [114] 
are with phase delay.

Bi‑directional relationship of circadian 
rhythm dysregulation and sleep disorder 
with neurodegeneration
Although initially considered to occur consequently after 
disease onset, the impairment of sleep and circadian 
rhythm is now recognized to predate clinical diagnosis 
or occur in the early stage of neurodegeneration [4, 
115, 116], posing individuals at risk of the incidence or 
progression of neurodegenerative diseases. Therefore, 
a potential bi-directional relationship can be inferred 
between sleep disorder/circadian rhythm dysregulation 
and neurodegeneration.

Sleep disorders accelerate neurodegeneration
RBD
RBD is well recognized as a strong prodromal predictor 
of α‑synucleinopathies, especially PD. Schenck et  al. 
noted for the first time that 38% of individuals with 
initial diagnosis of isolated RBD (iRBD) finally developed 
a parkinsonian disorder within 3.7  years [117]. Now, 
it is recognized that most iRBD individuals will end up 
being diagnosed as α‑synucleinopathies, including PD, 
PD dementia, DLB and MSA. The estimated overall 
conversion rate is 6.3% per year and 73.5% within 
12  years in a large-scale multicenter study [118]. For 
those with longstanding iRBD without overt conversion, 
crucial prodromal PD markers such as olfactory loss, 
constipation and mild parkinsonism are commonly 
observed in these populations [119]. This suggests 
that iRBD is consistently influenced by an underlying 
neurodegenerative process, which is also supported 
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by findings of widespread Lewy body pathology and 
α-synuclein in iRBD individuals [120]. By pooling studies 
on biomarkers of iRBD–PD association, a recent meta-
analysis showed that motor dysfunction, constipation, 
orthostatic hypotension, hyposmia, mild cognitive 
impairment, and abnormal color vision in iRBD are 
significantly associated with subsequent PD risk [121]. 
Other biomarkers on imaging, polysomnography 
(PSG) or EEG can also be used to monitor the 
neurodegenerative process in iRBD [122]. Considering 
the long interval between onset of iRBD and overt 
α‑synucleinopathy, close monitoring of these biomarkers 
may provide opportunity for use of disease-modifying 
treatments in the prodromal stage of neurodegeneration. 
Approximately 3–11% of RBD patients were recorded in 
previous studies to develop incident clinical AD [73, 74]. 
However, there is still limited evidence from longitudinal 
or prospective studies on the conversion of RBD to 
mild cognitive impairment (MCI) or AD. Compared to 
individuals without probable RBD (pRBD), those with 
pRBD have a 2.2-fold increased risk of MCI [123]. In 
another population-based study, individuals with pRBD 
who eventually developed MCI and subsequent dementia 
were actually highly consistent with a diagnosis of DLB 
[124]. By further evaluating previous neuropathological 
studies with 16-year follow-up [117], researcher found 
that the clinically identified AD patients developing 
from RBD exhibited a ‘mixed pathology’ but not ‘pure 
AD’, that is, they had histopathological features of both 
AD and DLB. In sum, the clinically observed RBD–AD 
association may be due to the presence of dementia in 
α‑synucleinopathies.

Insomnia
Chronic insufficient sleep plays a vital role in the 
pathological process of AD pathology. Both animal and 
human studies showed that sleep deprivation causes 
increased Aβ formation and deposition [103, 104] and 
contributes to neurodegenerative   process that affects 
neuroinflammation and synaptic homoeostasis [125]. 
Besides, objective short sleep duration and circadian 
rhythm disruption may exert an add-on effect on the 
risk of AD. Xu et  al. [126] systematically reviewed 
studies on the association of sleep with all-cause 
cognitive decline or dementia, and found that insomnia 
significantly contributes to an increased risk of incident 
AD but not vascular dementia with a pooled relative 
risk of ~ 1.5. In a subsequent longitudinal analysis of 
U.S. adults aged over 65  years, individuals with an 
increase in the severity of insomnia over time have 
41%–58% higher risk of memory decline or dementia 
[127], suggesting the importance of early sleep health 
for AD prevention. In contrast, studies on the impact 

of insomnia on the susceptibility to PD are limited. In 
a large registry-based case–control study, significantly 
higher incidence of insomnia (RR = 1.38, 95% CI 1.11–
1.70) was observed 2  years before diagnosis of PD 
[128]. A recent study differentiating insomnia subtypes 
found that sleep-onset insomnia, in comparison to 
maintenance insomnia, is associated with more motor, 
cognitive, and autonomic symptoms [129]. To be noted, 
insomnia is not persistent throughout the disease 
course [25] and their subtypes [130] may change in 
PD. In addition, previous studies revealed that the 
observed insomnia–PD association may disappear 
with longer follow-up duration [128, 131]. Also, some 
studies showed that present insomnia could not predict 
conversion to neurodegeneration in iRBD individuals 
[132, 133]. Therefore, it is likely that insomnia is more 
likely to be a prodromal symptom instead of an etiology 
of PD.

OSA
OSA-related intermittent hypoxia, neuroinflammation 
and sleep fragmentation have been proven to accelerate 
neurodegeneration by disturbing Aβ clearance and 
aggravating neurofibrillary tangles of tau in AD [134], 
or by damaging the nigrostriatal dopaminergic system 
and promoting aggregation of α-synuclein in PD 
[135]. Mounting studies have confirmed the emerging 
role of SDB, either self-reported sleep apnea or PSG-
proven OSA, in the incidence or early progression 
of neurodegenerative conditions [66, 135, 136]. For 
example, Yaffe et  al. [136] found that women with 
OSA having AHI > 15 have a higher risk of developing 
MCI or dementia, with an odds ratio of 1.85. This was 
further confirmed in a recent prospective cohort with 
large sample size, which showed that only severe OSA 
individuals with AHI > 30 have 66%–135% higher risk 
of developing all-cause dementia or AD [137]. More 
evidence from the AD biomarker perspective suggests 
that cognitively intact OSA individuals have higher Aβ 
burden indicated by blood, CSF and imaging biomarkers 
compared to individuals free of OSA [138, 139]. 
Moreover, adherence to positive airway pressure therapy 
may lower the odds of incident diagnosis of AD or MCI 
and slow cognitive impairment or its progression to AD 
[140, 141]. Consistently, another longitudinal analysis 
revealed increased risk of PD in individuals with sleep 
apnea [142, 143]. Subsequent meta-analysis confirmed 
the association of OSA with incident diagnosis of PD 
by pooling 12 eligible studies and revealed similar risk 
between males and females [144]. These findings are 
further supported by Sun et  al. showing that levels 
of plasma total and phosphorylated α-synuclein are 
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significantly elevated in OSA individuals and are 
inversely correlated with oxyhaemoglobin saturation 
[145], indicating that OSA-related hypoxia is involved 
in the pathogenesis of PD pathology. Taking AD and PD 
together, however, a recent mendelian randomization 
study failed to reveal a causal association between 
genetically-predicted OSA and risk of AD or PD [146]. 
An explanation is that the OSA–neurodegeneration 
association may be not unidirectional but bi-directional, 
and that confounding factors such as comorbidities may 
also play a role [146].

EDS
EDS is another emerging predictor of neurodegeneration. 
Many studies have identified the temporal association 
between EDS and risk of dementia or AD, which is 
independent of comorbid chronic diseases or conditions 
[147–149] but can be partly confounded by lack of daily 
physical activity or social engagement [149]. In revealing 
the sleepiness–AD pathologic association, an imaging 
study by Carvalho et al. reported that EDS patients with 
normal cognition show more prominent grey matter 
thinning in age-susceptible regions which   is usually 
observed in AD pathology [150]. In 283 dementia-free 
participants aged 70 years and over receiving Pittsburgh 
compound-B positron emission tomography, the same 
team found that the baseline EDS   is longitudinally 
associated with increased Aβ accumulation in the 
cingulate gyrus and precuneus regions, indicating that 
the elderly persons with EDS are more susceptible to AD 
pathologic alterations [151]. This is supported by similar 
sleep-related animal studies showing abnormal Aβ 
generation or Aβ deposition due to impaired glymphatic 
clearance [104] and dysregulated cortical slow-wave 
activity [152]. EDS also serves as a robust prodromal 
marker of PD. Two studies have indicated that daytime 
sleepiness leads to a  2–3-fold increased risk of incident 
PD among the general population [153, 154]. However, 
results were inconsistent on if EDS predicts conversion 
to neurodegeneration in iRBD individuals [74, 132, 133]. 
The inconsistency may be due to the differences in sample 
size as well as ethnic and clinical backgrounds of the 
participants. In a neuropathological study, Abbott et  al. 
combined EDS assessments and α-synuclein staining in 
postmortem brain samples from 211 men to identify the 
relationship between Lewy body pathology (LP) and EDS 
[155]. They found that the prevalence of EDS became 
significantly increased only when Lewy body pathology 
extensively infiltrated into the neocortex (equivalent to 
Braak stages 5 and 6). However, absence of Lewy body 
pathology was noticed in 41% cases of EDS at the time 
of autopsy. In other words, it was uncertain whether EDS 
preceded Lewy body pathology in the remaining 59% 

cases, and whether sleep augmentation of the clearance 
of tau and α-synuclein underlies the relationship between 
sleepiness and PD pathology remains unknown.

RLS and other sleep disorders
In viewing the association between other sleep disorders 
and neurodegeneration, prospective cohort studies 
found that RLS is associated with a 1.5–2.5-fold higher 
risk of incident PD. However, it remains unclear if the 
dopaminergic system is a pathologically link between 
RLS and PD due to the absence of evidence from basic 
research [156]. When examining the overall effect of 
sleep-related movement disorders (SRMD) on dementia, 
Lin et al. [157] found individuals with diagnosis of SRMD 
had a 3.9-fold higher risk of incident all-cause dementia 
and the observed association was more prominent in 
women and in those aged 45 to 64  years. For NREM 
parasomnia, a recent large-scale cross-sectional study 
including 25,694 men showed that sleepwalking was 
associated with 4.8-fold odds of having PD, regardless of 
the confounding factors [158].

Circadian disruption aggregates process 
of neurodegeneration
Circadian activity disturbance, initially considered 
as symptoms of neurodegeneration, is believed to 
be involved in the occurrence or progression of 
neurodegenerative process. In other words, circadian 
disruption may precede clinical symptomology or add to 
the risk of neurodegenerative diseases.

Only few studies have examined the temporal 
association between circadian rhythm disruption and 
PD [159–161]. In a prospective study including 2930 
men, Len et  al. found that those who self-reported 
napping time of more than 1 h/day had a twofold risk of 
developing PD, compared to those with no EDS or having 
napping < 1  h/day [159]. From the same cohort, they 
also reported that weakened circadian rhythmicity was 
associated with increased risk of incident PD and such 
association remained significant even after excluding PD 
diagnosis in the first 2  years of follow-up [160]. These 
findings indicated that circadian rhythm disruption 
could be a prodromal marker for PD. To minimize the 
effect of reverse causality and potential confounding 
factors, recent mendelian randomization study using UK 
Biobank from European ancestry found that morning 
chronotype had an inverse causal effect while M10 
(average activity during the most active 10 consecutive 
hours of the day) had positive causal effect on the later 
onset age of PD [161]. They also noticed that better sleep 
efficiency was causally associated with a decreased AD 
risk. However, temporal associations between circadian 
rhythm and PD or other neurodegenerative diseases 
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such as HD and amyotrophic lateral sclerosis have not 
been thoroughly investigated as in AD and dementia. 
In addition, behavioral indicators like actigraphy do not 
necessarily parallel endogenous circadian biomarkers 
which maintain 24-h oscillations even in the case of 
sleep disturbance. Therefore, comprehensive evaluations 
of both behavioral and biological markers of circadian 
rhythm are needed to provide more convincing and 
detailed evidence on circadian rhythm disruption in 
PD-related neurodegeneration.

In a case–control study, more evident circadian 
misalignment, assessed by PSG and dim light melatonin 
onset, was noticed in MCI patients before AD diagnosis 
[162]. A recent study by Musiek et  al. including 189 
healthy elders showed that those with preclinical AD, as 
assessed by PET, demonstrated increased rest-activity 
rhythm fragmentation independent of aging and sex 
[163]. This finding suggested that circadian disruption is 
involved early in AD pathogenesis. In line with clinical 
findings, research on animal models revealed disruption 
of daily Aβ oscillations in the hippocampal interstitial 
fluid and acceleration of amyloid plaque accumulation in 
mice with disturbed circadian rhythm [164]. Inhibition of 
the circadian repressor REV-ERB is also associated with 
enhanced transcription of core clock gene BMAL1 and 
increased Aβ clearance [165]. These observations add to 
the evidence of the potential role of circadian regulation 
in AD.

The temporal association between circadian 
rhythm and AD or dementia has been explored in 
many epidemiological studies [166–172]. Habits of 
dysregulated circadian rhythm, such as long-time night-
shift or delayed rising time, are associated with increased 
risk of dementia among healthy populations [166, 167]. 
Assessment of behavioral indicators of circadian rhythm 
disruption via actigraphy can more objectively reveal 
the association [173]. Based on the same cohort of 
Study of Osteoporotic Fractures including 1283 women, 
Tranah et  al. [174] and Walsh et  al. [168] both found 
an association of decreased circadian amplitude with 
higher risk of cognitive decline or dementia during the 
5-year follow-up. Besides, they reported worse cognitive 
decline in association with phase delay, different from 
the report by Rogers-Soeder et  al. [169], which showed 
phase-advanced acrophase in the men-only cohort. In a 
prospective cohort study including 1401 healthy older 
adults, lower amplitude of 24-h activity rhythm and 
higher intradaily variability for hourly fragmentation 
of activity rhythm are associated with higher risk 
of developing AD dementia, while lower interdaily 
stability of 24-h activity rhythm predicts higher risk of 
transition from MCI to AD dementia [170]. The observed 
parameters also worsen as dementia deteriorates, 

indicating that the relationship between circadian 
disruption and AD progression is bidirectional. To 
specify the affected aspects of circadian rhythm, novel or 
refined analysis   has been applied in some studies [171, 
172]. A 24-h time-limited difference of circadian rhythm 
was observed in individuals with preclinical PD in 
various periods in comparison to healthy controls [172]. 
By using parametric and nonparametric analysis, reduced 
overall rhythmicity, lower amplitude and activity level, 
and later activity timing were revealed to be associated 
with development of MCI and dementia [175]. However, 
there are also some studies showing no association of 
24-h activity rhythm fragmentation with dementia risk 
or preclinical AD [172]. Discrepancies in these findings 
could be due to different sample sizes, study populations 
or statistical methods.

Progression of neurodegenerative disease promotes 
circadian disruption and sleep disorders
Although sleep-wake disturbance is commonly found in 
PD, the rhythmic change throughout disease process has 
been rarely noticed. Using continuous actigraphy, a study 
showed that PD patients with higher Hoehn and Yahr 
stage are significantly more active later in the day [22], 
indicating an alteration of circadian rhythm in relation 
to disease severity. Additionally, the coexistent sleep 
disorders in PD might increase the variability of circadian 
rhythm. In a study of 15 iRBD patients, 31 PD patients 
and 6 DLB patients [111], Raupach et  al. observed an 
inverse correlation between the CBT amplitude and 
RBD severity. Interestingly, the alterations in CBT were 
absent in PD patients free of RBD. This suggests that 
certain circadian rhythms might be particularly linked to 
RBD pathology and a further exploration of prodromal 
sleep disorders in PD is necessary. When discussing 
the longitudinal contribution of PD progression in 
relation to sleep disorders or circadian changes, the use 
of anti-PD medications is also of great importance [4]. 
In other words, whether these alterations result from 
dopaminergic treatment or from PD deterioration itself 
should be clarified. For example, a previous study found 
that only PD patients with levodopa-induced motor 
complications showed decreased ratio of melatonin 
secretion at night while such change was not observed in 
untreated patients or treated PD patients without motor 
complication [42]. Two other sleep disorders in PD, EDS 
and RLS, may also be consequences of dopaminergic 
therapy when symptoms aggregate as disease progresses. 
Drug-naive PD patients showed increased EDS severity 
from baseline to year 3 while no change was observed in 
the healthy control group. Meanwhile, the influence of 
dopaminergic medications on EDS was dose-dependent 
at years 2 and 3 of study follow-up [176]. The prevalence 
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of RLS in untreated PD patients does not differ 
significantly from that of the general population, but is 
significantly increased in those receiving dopaminergic 
medication [177].

Across the disease continuum, studies using functional 
and biological indicators of circadian disruption in AD 
showed severer or irregular changes [88, 162, 178]. The 
severity of increased fragmentation of rest-activity cycle 
and overnight activity correlates with AD severity, with 
disturbances being most prominent in institutionalized 
patients [179]. The phase delay identified in AD patients 
is more prominent in those with advanced AD pathology 
[180]. As for core body temperature, a significant phase 
advance in circadian thermoregulation was observed in 
MCI patients compared to the healthy group [178] while 
phase delay was noticed in AD patients [180]. Similarly, 
for biological indicators such as melatonin level, MCI 
patients have a phase advance in melatonin secretion 
whereas those with mild-to-moderate AD exhibit a 
phase delay [88, 162]. These observations indicate 
that the neurodegenerative process can alter circadian 
rhythmicity and the latter can become more irregular as 
pathology deteriorates. Another question is that whether 
it is AD itself, but not aging, that promotes circadian 
disruption and sleep disorders. Initial view contends that 
individuals with AD have circadian alterations similar 
to those seen in healthy older adults, but with higher 
severity [181]. However, a recent study by Musiek et  al. 
showed that preclinical amyloid pathology is associated 
with worse circadian fragmentation regardless of age 
[163]. This suggests that despite the same fragmentated 
circadian pattern, AD and normal aging drive circadian 
dysfunction in separate ways. Moreover, ageing 
alone is associated with a dramatically increased 
prevalence of preclinical AD to 30%–40% [182]. That 
is to say, in several epidemiological studies examining 
circadian dysregulation/sleep disorders preceding AD 
symptomology [168, 171, 175], the enrolled participants 
of advanced age might be already in the early stage of 
AD, which provides an interpretation for the observation 
that an underlying preclinical AD pathology may in turn 
lead to circadian and sleep dysfunction. The estimated 
prevalence of overall sleep disorders in individuals of 
AD is about 39% [46]. With self-reported assessment and 
overnight PSG, Hita-Yañez et al. found patients with MCI 
already showing disturbed sleep at both objective and 
subjective levels [183]. This work was further supported 
by a subsequent study showing significant relationship 
between Aβ deposition and sleep quality in preclinical 
AD [184]. As these cross-sectional observations were 
from an early stage of AD, this could be interpreted, 
from one perspective, that sleep is particularly sensitive 
to AD pathology. As dementia worsens, concurrent sleep 

disorders in AD such as EDS can be aggregated through 
potential mediating factors [184]. Comorbid depression 
and decreased social engagement resulting from 
impaired cognition in AD may add extra burden to EDS 
severity [185]. For SDB, around half of individuals with 
AD experience OSA and show five times higher odds of 
having OSA compared to age-matched cognitively intact 
individuals [184]. However, the longitudinal association 
between OSA or other specific sleep disorders (e.g., RLS) 
and AD progression has not been well explored to date 
[186].

As studies focusing on alterations of circadian rhythm/
sleep disorder after diagnosis of neurodegenerative 
diseases are generally lacking, more studies are needed 
to longitudinally examine alterations of circadian 
rhythm and sleep disorders with progression of 
neurodegenerative diseases.

Therapeutic strategies for circadian dysfunction 
and sleep disorders
Non‑pharmacological approaches
Non-pharmacological approaches are considered as 
the first-line therapies for the management of circadian 
dysfunction and sleep disorders in neurodegenerative 
diseases. Treatment plans must be tailored at individual 
level. Prior to treatment, a comprehensive set of clinical, 
neuropsychological, neuroimaging, and electrophysi-
ological assessments should be conducted, and the cir-
cadian disruption as well as the causes and subtypes of 
sleep disorders need to be carefully evaluated. Notably, 
sleep hygiene is recommended as an important behavio-
ral and environmental practice in every treatment plan to 
promote better-quality sleep in PD [187] and AD [188] 
patients. As different medications for different types of 
sleep disorder may interact with each other, it is neces-
sary to identify and treat coexisting or primary sleep dis-
orders before making medication plans (Fig. 4).

Physical activity
Exercise is a circadian modulator. In PD, exercise can 
improve subjective sleep quality and objective PSG 
parameters. A retrospective study reported that intense 
physical and multidisciplinary exercise for 28  days 
improves the total PDSS score in PD patients [189]. 
Recently, Amara et  al. [190] conducted the first study 
to demonstrate the impact of high-intensity exercise on 
objective sleep outcomes in PD patients and found that 
exercise   is more effective than sleep hygiene education 
in improving PSG parameters such as the total sleep 
time and sleep efficiency. Specifically, recent research 
suggested traditional Chinese exercise including Tai Chi 
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[191], Baduanjin [192] and Qigong [193] as useful tools to 
improve PD sleep.

Similarly, walking for 30  min per day reduces the 
awake time by 33.1 min per night in AD patients [194]. 
Although one study has found that exercise could 
improve the daily cortisol rhythm in AD patients [195], 
the underlying mechanisms remain to be clarified. 
Adaptive neuroplasticity, which is beneficial for neuron 
re-organisation, is a suggested mechanism of the effects 
of physical activity [196].

When applying exercise in patients with 
neurodegenerative disorders, factors that may cause 
potential bias, including intensity, modality and 

compliance, need to be well controlled. A recent 
meta-analysis pointed out that moderate-to-maximal 
intensities rather than mild-to-moderate intensities 
of exercise have significant effects on subjective sleep 
quality [197]. Multi-modal exercise therapy at vigorous 
intensities is recommended [197].

Bright light therapy (BLT)
Light exposure is a powerful modulator of circadian 
rhythm and plays an important role in enhancing 
the rest-activity rhythm and thus promoting sleep in 
healthy individuals. Although the mechanisms of light 

Fig. 4  Management of circadian disruption and sleep disorders in patients with neurodegenerative diseases in four steps. About circadian 
disruption, chronopharmacological methods which combine both pharmacological and non-pharmacological approaches can be considered
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therapy have not been well defined, retina, a key route 
of light entry into the brain, has been receiving more 
and more attention with regard to neurodegenerative 
diseases. Deposition of α-synuclein in retina has been 
well found in PD patients [198]. Light therapy could 
stimulate dopamine release by stimulating cells within 
the retina, thus improving the abnormal circadian 
rhythm and the motor symptoms of PD patients [199].

Recent studies found that BLT treatment is 
significantly associated with improvements of circadian 
rhythm and thus sleep quality of PD patients [200, 
201], especially the subjective sleep quality and 
actigraphic measures, including sleep fragmentation 
and daily physical activity. In AD, a large double-
blind, randomized, placebo-controlled trial found that 
light therapy (2500  lx) for 2  months could improve 
sleep quality and restore diurnal activity rhythms as 
measured by actigraphy [194].

BLT appears to be a feasible treatment for ameliorating 
sleep disorders in patients with neurodegenerative 
diseases. Although most studies recommend BLT 
as an alternative non-pharmacological method with 
few adverse effects such as headache [200, 202], 
the conclusion still needs to be confirmed in larger 
populations. Meanwhile, the effects of BLT may be 
confounded by medication, lifestyle, severity of disease, 
compliance of patients and co-morbidities [202].

Repetitive transcranial magnetic stimulation (rTMS) 
and transcranial direct current stimulation (tDCS)
rTMS and tDCS are two noninvasive brain stimulation 
techniques that can improve sleep quality in the healthy 
elderly.

In PD patients, rTMS therapy improves sleep 
fragmentation and sleep efficiency and reduces the 
average duration of nocturnal awakenings based on 
actigraphic results [203] and sleep scales [204]. Recently, 
rTMS has been demonstrated to improve daytime 
sleepiness in PD patients [205]. In AD patients, rTMS for 
4  weeks significantly improves Pittsburgh Sleep Quality 
Index scores [206]. So far, only two studies have assessed 
the therapeutic efficacy on motor symptoms in HD and 
results are contradictory [207, 208]. tDCS enhances 
the slow-wave sleep [209], which is thought to play an 
important role in clearing Aβ during sleep.

Pharmacological approaches
Melatonin and melatonin receptor agonists
Melatonin plays a role in regulating the circadian 
rhythm and promoting sleep. Replacement therapy with 
exogenous melatonin may have positive effects against 
sleep disturbances and even pathological progression 
of neurodegeneration. Several clinical studies have 

demonstrated the positive effects of melatonin 
on insomnia, RBD and rest-activity disruption in 
neurodegenerative disorders. However, the results are 
mixed. Melatonin could significantly improve subjective 
sleep quality and total sleep time in PD [210]. However, 
the effect of melatonin on EDS remains unclear. Of note, 
melatonin is recommended as the first-line therapy 
because it reduces RBD-related injuries with fewer side 
effects than clonazepam [211]. In the context of AD, one 
recent systematic review showed that melatonin shortens 
the sleep onset latency and increases sleep duration 
[212]. Several studies also proved that prolonged-release 
melatonin [213] and melatonin receptor agonists [214] 
can improve subjective sleep quality in both PD and AD 
patients. Although plasma concentrations of melatonin 
are shown to be reduced in HD [91], the efficiency of 
melatonin in HD patients has not been systematically 
investigated. Recently, a study demonstrated beneficial 
effects of melatonin in restoring clock gene expression in 
Drosophila model of HD, suggesting a promising clinical 
use in the future [215].

However, most melatonin-related studies have similar 
limitations. (1) The melatonin dose varied widely across 
studies (mostly 3–5  mg). (2) Most data were derived 
from case reports and long-term longitudinal studies 
are lacking. So far, most studies focused on the hypnotic 
effect rather than effects on the circadian rhythm. 
More studies evaluating alterations of the biomarkers 
of circadian rhythm during melatonin treatment are 
needed. (3) The circadian rhythm of melatonin secretion 
profile may be different among individuals, and can be 
influenced by other factors such as food, physical exercise 
and light. Solutions to these problems can increase the 
melatonin efficiency in personalized treatments.

Hypnotics
Hypnotics including benzodiazepines, non-
benzodiazepines drugs, sedative antipsychotics, and 
sedating antidepressants, are widely used to treat 
insomnia in healthy adults. Recently, several studies 
have found its use for various sleep disorders in 
neurodegenerative disorders.

Clonazepam, a long-lasting benzodiazepine, is the first-
line pharmacological option for RBD [216]. Shin et  al. 
showed that clonazepam improves pRBD symptoms in 
patients with PD [217]. A 6-week randomized controlled 
trial showed that eszoplicone significantly reduces the 
number of awakenings after sleep onset and improves 
subjective sleep quality in PD patients [218]. Similar 
results have been obtained in AD patients [219]. In fact, 
current evidence for clonazepam is mainly based on case 
reports and observational studies [220, 221], thus more 
clinical trials are needed. Sedative antidepressants drugs 
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like trazodone and doxepin are also proven to be effective 
for nighttime percent sleep in AD [222] and insomnia in 
PD patients [223].

It is important to note that hypnotics may also 
produce adverse effects such as memory deterioration 
and worsening of daytime sleepiness or sleep-related 
breathing disorders, especially in elderly adults [24]. 
Neurologists should well assess the risk/benefit profile 
before prescribing these hypnotics agents for patients 
with neurodegenerative diseases.

Chronopharmacological principles: combination 
of pharmacological and non‑pharmacological approaches
Chronotherapy is a therapeutic approach that 
incorporates an individual’s circadian rhythm into disease 
treatment. It is based on the principle of prescribing 
drugs according to the different characteristics of 
an individual’s circadian rhythm or combining both 
pharmacological and non-pharmacological approaches. 
Characterized by maximizing drug effectiveness and 
minimizing its side effects, chronotherapy was initially 
used mainly in the treatment of hypertension and in 
oncology. Recent studies have found that chronotherapy 
has promising applications in neurodegenerative diseases 
[194, 224, 225].

A study suggests that combining BLT with mela-
tonin in demented patients may increase sleep effi-
ciency, attenuate agitated behavior and even improve 
nocturnal restlessness for 3.5 years [224]. Dowling et al. 
found that 1  h of morning light exposure (2500  lx) for 
10  weeks together with 5-mg melatonin in the even-
ing significantly increases the daytime awake time and 
activity levels and strengthens the rest-activity rhythm of 
AD patients, compared to the light therapy alone [225]. 
MuCurry et al. found that combination treatment (walk-
ing, light, and sleep education) and each treatment alone 
have similar effects in improving sleep outcomes in AD 
patients [194]. Preliminary studies of chronotherapy in 
neurodegenerative diseases have shown promising find-
ings. Personalized treatment plans are essential for effec-
tive implementation of chronotherapy, as the melatonin 
secretion curve varies from individual to individual. 
Therefore, the timing of pharmacological agents such as 
melatonin should be personalized according to the indi-
vidual’s circadian rhythm. The implementation time and 
dose are also to be studied in the future [226].

Neuroprotection and novel interventions
Animal studies have shown that rTMS has positive effects 
on neural regeneration and neuroprotection through 
inhibiting apoptotic cell death, as well as regulating 
neurotransmitters and neurotrophic factors [227]. Light 
therapy decreases oxidative stress markers [228] and 

removes Aβ via the lymphatic system of the brain [229] in 
AD mouse models, and reduces the loss of dopaminergic 
cells and increases tyrosine hydroxylase-positive cells in 
PD mouse models [230].

Orexin is a neuropeptide that contributes to the 
regulation of the sleep-wake cycle by increasing the 
arousal level and maintaining wakefulness. Suvorexant, 
one of the orexin receptor antagonists, has been approved 
to treat insomnia in elderly adults. Animal experiments 
showed that suvorexant can reduce amyloid-β plaques, 
improve synaptic plasticity, and restore the circadian 
phosphorylated CREB (cyclic AMP-response element 
binding protein) expression in the hippocampus of APP/
PS1 mice [231].

Furthermore, some small-molecule modulators have 
been developed to restore the disrupted circadian system. 
For example, casein kinase 1 δ/ε inhibitor CKI-7 [232] 
significantly reduces  endogenous Aβ peptide production 
[233], thus playing an important role in neuroprotection. 
Rev-erbα is a core negative component of the circadian 
clock and modulates the cellular clock and energy 
metabolism [234]. Rev-erbα knock-out mice show 
disrupted diurnal patterns [235]. The agonists (GSK4112) 
and antagonists (SR8278) of Rev-erbα could correct the 
abnormal circadian rhythms [232], providing biological 
evidence for future trials of these small-molecule 
modulators as a therapeutic for neurodegeneration.

In addition, traditional Chinese herbs or herbal extracts 
and non-pharmacological interventions are proven 
beneficial to patients with neurdegenerative disorders, by 
exerting antioxidant and anti-inflammatory effects [236, 
237]. Clinically, several studies showed that acupuncture 
[238] and Yang-Xue-Qing-Nao granules [239] improve 
sleep quality in PD patients. Future research should 
focus on the quality control of traditional Chinese 
medicine studies and figuring out the pharmacological 
mechanisms of main active ingredients.

Conclusions and future prospect
Collectively, all behavioral, physiological and molecular 
aspects of circadian disturbances in neurodegenerative 
disorders provide substantial evidence that the circa-
dian system is functionally impaired and most likely con-
tributes to the deterioration of health and quality of life 
in patients inflicted with neurodegenerative diseases. 
However, although neurodegenerative disorders have 
overlapping circadian symptoms, the underlying neuro-
pathophysiology may not necessarily be the same. Cur-
rent evidence shows that dysfunction of the central SCN 
clock starts very early during the prodromal phase of 
AD, while the SCN itself functions normally till the early 
symptomatic phases where its dysfunction starts in both 
PD and HD [5].
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Increasing research indicates that sleep dysfunction 
and circadian arrhythmicity are key aspects to consider 
when investigating neurodegenerative diseases. Although 
generally there are sleep and rhythmic disorders in 
different neurodegenerative diseases, each disease 
develops a specific phenotype to some extent [240]. 
For example, there is early impairment of the circadian 
homeostasis in AD, while in PD and HD, circadian 
homeostasis deterioration is more prevalent and occurs 
after diagnosis [240]. MSA and DLB have a higher 
prevalence of RBD. Our review reinforces the state of 
the field that bidirectional links of sleep and circadian 
rhythms with prevalent forms of neurodegeneration are 
likely.

Future research efforts are needed to center on the 
following fields. Despite great progress in understanding 
the basic mechanisms of the circadian clock and 
the neural circuitry of sleep, the knowledge of how 
these systems are affected in the brain in aging and 
neurodegenerative diseases is still rather superficial. 
It is necessary to fully characterize the putative 
bidirectional relationship of sleep and circadian circuits 
with neurodegeneration, in order to inform therapeutic 
targets. This will allow the field to expand the use of sleep 
and circadian rhythms as markers for early treatment 
of prodromal neurodegenerative disease and enable 
manipulation of the circadian system at the molecular 
and behavioral levels in longitudinal animal studies.

Systematically studying the circadian system in 
neurodegenerative diseases is another direction of 
future research, which calls for strict control of different 
circadian parameters, design of a set of evaluation 
tools, and development of personalized multi-
component circadian interventions. Large longitudinal 
clinical studies are also needed to examine changes 
in circadian rhythms associated with progression 
of neurodegeneration and the relationship between 
different circadian markers and subsequent risk of 
developing neurodegenerative diseases, and to clarify 
whether circadian interventions for sleep disorders could 
prevent or delay the onset of neurodegenerative diseases.

Normalizing sleep and circadian disorders has the 
potential to reduce risk of neurodegeneration and 
improve quality of life and symptoms in those with 
neurodegenerative disorders. First, circadian-based 
interventions are a critical test of the hypothesis that 
circadian disruption is an integral component of the 
disease. Therefore, it is critical to establish a collaborative 
research program between clinical investigators 
and basic/translational neuroscientists, in order to 
advance the understanding of circadian regulation in 
neurodegeneration and effects of complex medication 
regimens on circadian function in animal models. 

Second, developing screen and therapeutic strategies 
in early (or “prodromal”) stage of neurodegenerative 
disease may facilitate earlier detection, prevention 
of disease progression and development of more 
effective therapeutic interventions. Third, optimization 
of existing therapies, such as light therapy and 
chronopharmacological principles, or launching novel 
neural circuit-based therapeutic interventions to 
restore the circadian activity, might provide beneficial 
effects against circadian alterations in patients with 
neurodegenerative disorders.
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