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Abstract 

Amyotrophic lateral sclerosis (ALS) is a disease characterized by upper and lower motor neuron (MN) loss with a signa‑
ture feature of cytoplasmic aggregates containing TDP-43, which are detected in nearly all patients. Mutations in the 
gene that encodes TDP-43 (TARBDP) are known to result in both familial and sporadic ALS. In ALS, disruption of neuro‑
muscular junctions (NMJs) constitutes a critical event in disease pathogenesis, leading to denervation atrophy, motor 
impairments and disability. Morphological defects and impaired synaptic transmission at NMJs have been reported in 
several TDP-43 animal models and in vitro, linking TDP-43 dysregulation to the loss of NMJ integrity in ALS. Through 
the lens of the dying-back and dying-forward hypotheses of ALS, this review discusses the roles of TDP-43 related to 
synaptic function, with a focus on the potential molecular mechanisms occurring within MNs, skeletal muscles and 
glial cells that may contribute to NMJ disruption in ALS.
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Background
Amyotrophic lateral sclerosis (ALS) is an adult-onset 
degenerative disorder characterized by loss of upper and 
lower motor neurons (MNs) and progressive muscle atro-
phy [1]. Its prognosis is poor with symptoms progressing 
from weakness to fatal paralysis of respiratory function 
within two to four years after disease onset [2, 3]. Cur-
rently, there is no known cure and the few approved 
disease-modifying treatment options (i.e., riluzole [4–
6], edaravone [7, 8] and the newly approved albrioza 
[9–11]) offer only modest benefits. About 10% of cases 
exhibit a Mendelian inheritance (termed familial ALS) 
and, to this day, > 30 genes have been associated with 
ALS through genetic studies [12]. The most commonly 

mutated genes include chromosome 9 open reading 
frame 72 (C9ORF72), superoxide dismutase 1 (SOD1), 
fused in sarcoma (FUS) and transactive-response DNA-
binding protein (TARDBP) [13]. TARDBP encodes TDP-
43, a ubiquitously expressed DNA/RNA-binding protein 
involved in multiple steps of RNA metabolism. Het-
erozygous missense mutations in TARDBP are found in 
3% and 1.5% of familial and sporadic ALS cases, respec-
tively [14–18]. Although these mutations occur in a small 
subset of patients, the significant role of TDP-43 as a 
causative factor in ALS has been highlighted by its iden-
tification as the main component of proteinaceous aggre-
gates in post-mortem tissues of ALS patients [19–21]. 
Interestingly, TDP-43-containing aggregates are present 
in over 95% of ALS cases, including those without patho-
genic mutations in TARDBP [19–21], suggesting conver-
gent disease mechanisms.

A longstanding debate in ALS research is the primary 
site of disease onset, which opposes the “dying-back” and 
“dying-forward” hypotheses. The dying-back hypothesis 
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posits that the disease process is initiated distally at the 
neuromuscular junction (NMJ) and progresses in a retro-
grade fashion to affect the axons and MN cell bodies. In 
support of this theory, studies have described early mus-
cle denervation before the appearance of motor deficits 
in both patients and mouse models [22–25]. Analysis of 
muscle biopsies from ALS patients revealed abnormally 
small motor terminals and frequently denervated end-
plates, accompanied by electrophysiological evidence of 
presynaptic involvement [26]. However, this theory does 
not offer a clear explanation on how neurodegenera-
tion of spinal MNs (lower MNs) may propagate to affect 
MNs of the motor cortex (upper MNs). In contrast, the 
“dying-forward” hypothesis proposes that the pathology 
has its origin in the motor cortex where dysfunctional 
upper MNs trigger the death of lower MNs via glutamate 
excitotoxicity, resulting in NMJ disruption and muscle 
atrophy. In line with this idea, studies have repeatedly 
reported early cortical hyperexcitability in ALS patients, 
sometimes preceding symptom onset [27–30]. Further-
more, chronic excitotoxic insults to lower MN soma have 
been shown to cause neurodegeneration, axonal frag-
mentation and NMJ retraction in mice [31]. A detailed 
overview of the evidence in support of both hypotheses 
is beyond the scope of this review; however, we direct the 
reader to several reviews on this topic [32–36].

Regardless of the primary site of neurodegeneration, 
the disruption of NMJs is a critical event in the patho-
genesis of ALS, leading to denervation atrophy and 
weakness. Both loss-of-function and ALS mutations 
in TARDBP have been linked to axonopathy and NMJ 
pathology in several animal and cellular models (Table 1), 
further implicating TDP-43 as a key player in this dis-
ease. In this review, we describe the physiological and 
pathological roles of TDP-43 as they relate to synaptic 
maintenance and function, with an emphasis on TDP-43 
dysregulation in MNs, skeletal muscles and glial cells as 
a potential driver of NMJ disruption in ALS. Further, we 
aim to discuss the proposed mechanisms from the per-
spectives of the dying-back and dying-forward hypoth-
eses and provide suggestions for future investigations.

Pathological dysregulation of TDP‑43 is linked 
to NMJ disruption
Several reports using various TDP-43 models have linked 
TDP-43 dysfunction to NMJ abnormalities (Table  1). 
Earlier studies using loss-of-function or overexpression 
models have established that tightly regulated levels of 
TDP-43 are essential for normal NMJ development [37–
40]. In Drosophila, both gain- and loss-of-function of 
TDP-43/TBPH cause morphological alterations at NMJs 
(e.g., abnormal axonal branching and changes in synaptic 
bouton number and shape), resulting in impairments of 

synaptic transmission, locomotive deficits and reduced 
lifespan [37–47]. Similarly, zebrafish lacking TDP-43 dis-
play aberrant motor axonal projections with reduced syn-
aptic transmission at the NMJ and impaired locomotor 
function [48–52]. These efforts have led to the hypothesis 
that dysregulation of TDP-43 in ALS contributes to NMJ 
pathology, and motivated investigations on the effects of 
ALS-associated TDP-43 variants at this synapse. Similar 
to loss-of-function models, zebrafish expressing TDP-
43 variants (A315T, A382T and G348C) show abnormal 
NMJ morphology and function along with swimming 
deficits [48, 49, 53, 54]. Several TDP-43 rodent models 
show early NMJ denervation and axonopathy that some-
times precede or coincide with the onset of motor defi-
cits [55–66], consistent with a potential role of TDP-43 
dysregulation in NMJ disruption.

Recently, the development of in  vitro NMJ models 
using induced pluripotent stem cells (iPSCs) allowed 
exploration of the impact of ALS TDP-43 variants at 
this synapse in a human model. Patient-derived MN 
spheroids expressing TDP-43G298S co-cultured with 3D 
skeletal muscle bundles form fewer thick neural fibers 
and NMJs compared to control motor units, resulting 
in reduced muscle contraction force [67]. Sensorimotor 
organoids derived from gene-edited TDP-43G298S iPSCs 
exhibit a decreased area of innervated NMJs compared 
with isogenic controls [68]. Taken together, these studies 
present compelling evidence connecting TDP-43 to NMJ 
defects.

Potential mechanisms underlying MN dysfunction 
and NMJ disruption
In healthy cells, TDP-43 is predominantly localized in the 
nucleus where it regulates multiple steps of gene expres-
sion including transcription [69] and splicing [70] and 
participates in DNA repair [71, 72]. In addition, a small 
proportion of the protein is localized in the cytoplasm 
where it is involved in mRNA stabilization and trans-
port [73–76], translation [77, 78], microRNA biogenesis 
[79, 80] and stress granule assembly [81–84]. In the con-
text of ALS, TDP-43 becomes depleted from the nucleus 
and mislocalizes in the cytoplasm where it accumulates 
and forms insoluble aggregates [19–21]. These changes 
in subcellular localization and solubility may critically 
alter the functions of TDP-43 (most probably via a com-
bination of loss- and gain-of-function mechanisms), 
which eventually exerts deleterious effects on NMJs and 
MN survival. In the translucent zebrafish, optogenetic 
induction of cytoplasmic mislocalization and aggrega-
tion of wild-type TDP-43 is sufficient to trigger axonal 
defects and endplate denervation [85], consistent with 
the hypothesis that pathogenic dysregulation of TDP-43 
may underlie NMJ disruption. We focus our attention on 
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Table 1  Genetic models exploring association of TDP-43 with NMJ pathology

Animal model/
study

TDP-43 
expression

Observed phenotypes

NMJ defects Impaired 
synaptic 
transmission at 
the NMJa

Axonopathy Muscle 
pathology

Motor deficits Decreased 
lifespan

MN loss

Fruit fly (Drosophila melanogaster)
Feiguin et al. 
[37], Godena 
et al. [39], Donde 
et al. [41]

TBPH KO 
(chromosomal 
deletion)

✓ na na X ✓ ✓ X

Li et al. [38] hTDP-43 OE in 
MNs

✓ na ✓ na ✓ ✓ ✓

Lin et al. [43] TBPH KO (impre‑
cise excision)

✓ na ✓ na ✓ ✓ na

TBPH OE in MNs ✓ na ✓ na ✓ ✓ na

TBPH KD in 
neurons

✓ na na na ✓ na na

Wang et al. [40] TBPH KO 
(chromosomal 
deletion)

X na na na ✓ ✓ na

TBPH OE in MNs ✓ na na na na na na

hTDP-43 OE in 
MNs

✓ na na na na na na

hTDP-43 M337V 
OE in MNs

X na na na na na na

Diaper et al. [44] TBPH KO (impre‑
cise excision)

X ✓ na X ✓ ✓ ✓

TBPH OE (single 
inserts)

X ✓ na na ✓ ✓ ✓

TBPH KD in 
neurons (RNAi)

na ✓ na na ✓ na na

TBPH KD in 
muscle (RNAi)

na X na na na na na

TBPH KD in 
upper MNs 
(RNAi)

na ✓ ✓ na ✓ X ✓

TBPH OE in 
upper MNs

na ✓ ✓ na ✓ X ✓

Estes et al. [42] hTDP-43 WT OE 
in MNs

✓ na ✓ na ✓ ✓ ✓

hTDP-43 A315T 
OE in MNs

X na X na ✓ ✓ ✓

hTDP-43 A315T 
OE (high expres‑
sion) in MNs

✓ na X na ✓ ✓ ✓

Estes et al. [45] hTDP-43 WT, 
D169G, G298S, 
A315T, N345K 
OE in neurons

✓ na na na ✓ na na

hTDP-43 WT, 
D169G, G298S, 
A315T, N345K 
OE in glia (pan-
glial)

✓ na na na ✓ na na

Coyne et al.[103, 
203]

hTDP-43 WT, 
G298S OE in 
MNs

✓ ✓ na na ✓ ✓ na
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Table 1  (continued)

Animal model/
study

TDP-43 
expression

Observed phenotypes

NMJ defects Impaired 
synaptic 
transmission at 
the NMJa

Axonopathy Muscle 
pathology

Motor deficits Decreased 
lifespan

MN loss

Romano et al. 
[46]

Inducible KD of 
TBPH in neurons 
(RNAi)

✓ na na na ✓ ✓ na

Inducible OE of 
TBPH in neurons

na na na na ✓ na na

Deshpande et al. 
[47]

TBPH KO 
(chromosomal 
deletion)

✓ na na na na ✓ na

hTDP-43 OE in 
MNs

✓ na na na na ✓ na

Strah et al. [104] TBPH KO 
(chromosomal 
deletion)

✓ ✓ ✓ na ✓ na na

TBPH KD in 
muscle (RNAi)

✓ na na X ✓ ✓ na

Lee et al. [254] hTDP-43 OE in 
glia (pan-glial)

✓ na na na ✓ ✓ na

Zebrafish (Danio rerio)
Kabashi et al. [48, 
49], Campanari 
et al. [52]

hTDP-43 A315T, 
G348C, A382T 
OE

na na ✓ na ✓ na ✓

tardbp KD (AMO) ✓ na ✓ na ✓ na X
Armstrong & 
Drapeau [53], 
Patten et al. [54]

hTDP-43 G348C 
OE

✓ ✓ na X ✓ na ✓

Dzieciolowska 
et al. [50]

tardbpl KD 
(AMO)

✓ X na na X X na

tardbp Y220X 
(unstable and 
degraded tdp-
43)

✓ X na na X X na

tardbp 
Y220X + tardbpl 
KD

✓ ✓ na na ✓ ✓ na

Bose et al. [51] tardbp Y220X ✓ X na na X X na

tardbpl KO (5 bp 
deletion with 
CRISPR/Cas9)

✓ X na na X X na

tardbp Y220X 
and tardbpl KO 
(het/hom)

✓ ✓ na na ✓ X na

tardbp Y220X 
and tardbpl KO 
(hom/hom)

✓ ✓ na na ✓ ✓ na

Asakawa et al. 
[85]

Optogenetic WT 
tdp-43

✓ na ✓ na na na na

Optogenetic WT 
hTDP-43

na na na na X na na

Optogenetic 
hTDP-43 A315T

na na na na ✓ na na
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Table 1  (continued)

Animal model/
study

TDP-43 
expression

Observed phenotypes

NMJ defects Impaired 
synaptic 
transmission at 
the NMJa

Axonopathy Muscle 
pathology

Motor deficits Decreased 
lifespan

MN loss

Rat (Rattus norvegicus)

Zhou et al. [56] Inducible OE of 
hTDP-43 M337V 
(TET-off )

✓ na ✓ ✓ ✓ ✓ ✓

Mouse (Mus musculus)
Shan et al. [133] WT hTDP-43 OE ✓ na ✓ ✓ ✓ ✓ X
Swarup et al. [59] WT, A315T, 

G348C KI in 
TARDBP (BAC)

✓ na ✓ na ✓ na X

Arnold et al. [60] hTDP-43 Q331K 
OE

✓ ✓ ✓ ✓ ✓ na ✓

hTDP-43 Q331K 
(low) OE

X na na X ✓ na ✓ (trend)

hTDP-43 M337V 
OE

X na na X ✓ na ✓ (trend)

Mitchell et al. 
[61]

hTDP-43 Q331K 
OE

✓ na X ✓ ✓ X ✓ (trend)

Coexpression of 
hTDP-43 WT and 
Q331K

✓ na ✓ ✓ ✓ ✓ ✓

Wegorzewska 
et al. [55], 
Marques et al. 
[188]

hTDP-43 A315T 
OE

✓ ✓ ✓ ✓ ✓ ✓ ✓

Walker et al. 
[117], Spiller 
et al. [118], Alt‑
man et al. [136]

Inducible 
hTDP-43ΔNLS 
(TET-off )

✓ ✓ ✓ ✓ ✓ ✓ ✓

Chand et al. [62] hTDP-43 Q331K 
OE

✓ ✓ ✓ na ✓ na ✓

Wang et al. [256] Selective cKO of 
Tardbp in oligo‑
dendrocytes

X na ✓ na ✓ ✓ X

White et al. [87] Q331K-equiva‑
lent KI in Tardbp 
(CRISPR/Cas9)

X X na X X na X

Ebstein et al. [63] M337V, G298S KI 
in TARDBP (BAC)

✓(hom) na na na na na ✓

Gordon et al. 
[64], Williamson 
et al. [65], Sleigh 
et al. [58]

M337V KI in 
TARDBP (BAC)

✓ na ✓ ✓ ✓ ✓ X

White et al. [66] hTDP-43 Q331K 
OE

✓ na ✓ ✓ ✓ na ✓

Huang et al. [57] A315T, N390D-
equivalent KI in 
Tardbp (BAC)

✓ (N390D) na ✓(N390D) ✓(N390D) ✓ (N390D) ✓(N390D) ✓ (N390D)
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perturbed TDP-43 functions of potential importance for 
the loss of NMJ integrity in ALS (Fig. 1).

Impaired RNA processing
In ALS, it is hypothesized that the loss of nuclear locali-
zation of TDP-43 may alter RNA processing that usually 
occurs in the nucleus, which may lead to dysfunction 
of cellular pathways critical for neuron health and NMJ 
integrity. In fact, mutations in TARDBP have been shown 
to cause various RNA abnormalities such as changes in 
gene expression, mis-splicing and reduced transcript sta-
bility [60, 86–89]. While TDP-43 normally functions as 
a splicing repressor regulating the inclusion of alterna-
tively spliced exons [41], widespread splicing alterations 
have repeatedly been described in TDP-43 downregu-
lation and mutant models [60, 87–94]. Pathologically 
altered TDP-43 can induce (1) the inclusion of normally 
excluded exons (cryptic exons) [91–94], and (2) the exclu-
sion of normally constitutively expressed exons (skiptic 
exons) [88], suggesting both loss- and gain-of-function 
mechanisms with regard to TDP-43 splicing functions 
[88]. Incorrect splicing can cause a frameshift, introduc-
tion of a stop codon and/or generation of an aberrant 
splicing product that yields a non-functional protein. Of 
note, splicing alterations have sometimes been observed 
without detectable aggregation or nuclear clearing [60] 

and in the absence of neurodegeneration [89], implying 
that impaired RNA processing may be an early event in 
ALS pathogenesis.

The first studies characterizing RNA targets of TDP-
43 using cross-linking immunoprecipitation combined 
with high-throughput RNA sequencing revealed that 
TDP-43 binds to thousands of transcripts derived from 
genes implicated in RNA metabolism, neurodevelop-
ment, neuronal survival and synaptic function [90, 95–
97]. Polymenidou and colleagues found that the most 
downregulated genes in TDP-43-depleted mouse brains 
encode proteins critical for synaptic formation and neu-
rotransmission such as glutamate receptor subunits 
(Gria2/3, Grik2, Grin1, Grin2a/b), ion channels (Cacna1, 
Kcnma1) and synaptic vesicle proteins neurexin 1 to 3 
(Nrxn1/2/3) and neuroligin 1 (Nlgn1) [90]. Similarly, 
analysis of post-mortem cortical tissues of patients with 
TDP-43 pathology revealed significant downregulation 
of genes involved in synaptic functions, including syn-
aptic vesicle proteins synaptobrevin 1 (VAMP1), synap-
totagmins (SYT1, SYT13) and synaptosomal-associated 
protein 25 (SNAP25) [98]. Recently, loss of TDP-43 was 
found to induce cryptic splicing of the critical synaptic 
gene UNC13A in iPSC-derived motor and cortical neu-
rons and post-mortem brain neuronal nuclei, resulting in 
depletion of the UNC13A transcript and protein [94, 99]. 

Table 1  (continued)

Animal model/
study

TDP-43 
expression

Observed phenotypes

NMJ defects Impaired 
synaptic 
transmission at 
the NMJa

Axonopathy Muscle 
pathology

Motor deficits Decreased 
lifespan

MN loss

Peng et al. [255] Selective cKO 
of Tardbp in 
astrocytes

X na na na ✓ na X

Human cell-based models
Osaki et al. [67] Patient-derived 

TDP-43 G298S 
iPSCs differenti‑
ated into MN 
spheroids and 
co-cultured with 
WT human iPSC-
derived skeletal 
muscle

✓ ✓ ✓ ✓ – – ✓

Pereira et al. [68] CRISPR/Cas9-
edited TDP-43 
G298S iPSCs 
differentiated 
into sensorimo‑
tor organoids

✓ na X X – – X

✓ yes, X no, na not assessed, – not applicable, AMO antisense morpholino oligonucleotide, BAC bacterial artificial chromosome, cKO conditional knockout, het 
heterozygous, hom homozygous, hTDP-43 human TDP-43, iPSC induced pluripotent stem cell, KD knockdown, KI knock-in, KO knockout, LOF loss-of-function, MNs 
motor neurons, NLS nuclear localization signal, NMJ neuromuscular junction, OE overexpression, WT wild type
a Impaired synaptic transmission at the NMJ was assessed using electrophysiological or optogenetic methods.
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Furthermore, single nucleotide polymorphisms (SNPs) 
in UNC13A (associated with increased ALS and fron-
totemporal dementia (FTD) risk through genome-wide 
association studies) were found to promote this incorrect 
splicing in patient brain tissues [94].

Differential expression of synaptic transcripts was also 
observed in several cellular and animal TDP-43 mod-
els [46, 60, 100]. Of particular interest, some studies 
revealed interactions between TDP-43 and transcripts 
encoding proteins with critical roles at the neuromuscu-
lar synapse [52, 95]. TDP-43 binds the AGRN transcript 
encoding agrin [95], a key regulator of NMJ develop-
ment and maintenance [101]. AGRN was shown to 
undergo cryptic splicing upon TDP-43 depletion [93, 94]. 
Lower levels of agrin are detected in the cerebrospinal 
fluid of ALS patients compared with non-ALS patients 
and healthy controls [102]. Additionally, TDP-43 was 
found to directly interact with the MAP1B transcript 

[95], which encodes a protein responsible for stabiliz-
ing microtubules at presynaptic terminals during NMJ 
formation. Altered subcellular localization of MAP1B 
transcripts has been described in spinal cord specimens 
of ALS patients [103]. Levels of the MAP1B ortholog 
futsch have been repeatedly shown to be decreased with 
TBPH/TDP-43 loss-of-function in flies [39, 46, 104]. 
Interestingly, mutations in futsch phenocopy several 
pathogenic changes observed with TBPH/TDP-43 deple-
tion [105], supporting the idea that TDP-43 dysfunction 
may result in structural defects at the NMJ. Recently, a 
novel role of TDP-43 in regulating acetylcholinesterase 
(AChE) expression was described [52]. AChE, classically 
known for hydrolyzing the neurotransmitter acetylcho-
line (ACh) in the synaptic cleft, has been demonstrated 
to be involved in NMJ development and NMJ stabiliza-
tion at the adult synapse [106–109]. TDP-43 knockdown 
in zebrafish is associated with decreases of AChE activity 

Fig. 1  Potential mechanisms underlying MN dysfunction and NMJ disruption via dysregulated TDP-43. In the healthy cell, TDP-43 is involved in 
several key cellular functions including transcription, splicing, microRNA biogenesis, DNA repair, axonal transport, and translation. In the context of 
ALS, TDP-43 nuclear depletion, cytoplasmic mislocalization and aggregation may critically alter its functions, eventually leading to NMJ dismantling 
and MN loss. a Dysregulated TDP-43 may lead to synaptic destabilization through mis-splicing and/or altered expression of transcripts encoding 
proteins with critical roles at the NMJ. b Defective anterograde axonal transport of mRNAs along with impaired transport-translation coupling 
may impact local protein synthesis at presynaptic membranes, thereby compromising the integrity of NMJs. Impairments in retrograde axonal 
transport may disrupt the long-range signal transduction required to respond appropriately to external stimuli and maintain NMJ integrity and 
function. c Pathologically altered TDP-43 may confer increased susceptibility to activation of the Wallerian degeneration pathway, leading to 
axonal fragmentation and retraction of motor terminals. d Oxidative stress, enhanced mitochondrial localization of TDP-43 along with abnormal 
mitochondrial morphology and distribution may induce the loss of MNs and NMJs. e Failure of DNA repair mechanisms mediated by TDP-43 may 
trigger distal axonal defects and NMJ dismantling. f TDP-43 condensates may sequester mRNAs, microRNAs and proteins, thereby depleting MNs of 
key factors for NMJ maintenance
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and expression, while overexpression of human AChE 
ameliorates NMJ pathology and locomotive deficits [52]. 
Moreover, reduced transcript levels of ACHE have been 
reported in ALS spinal cord tissue sections related to the 
site of symptom onset [110], highlighting a potential con-
tribution of AChE to disease pathogenesis.

Overall, these findings strengthen the hypothesis that 
dysregulated TDP-43 may lead to synaptic destabilization 
through altered gene expression. Given the thousands of 
RNA targets regulated by TDP-43, the challenge now is 
to identify the transcriptomic changes most relevant to 
the development and progression of ALS.

DNA damage
In addition to impaired RNA processing, TDP-43 dys-
function has been linked to defective DNA damage 
response (DDR) [71, 72]. In healthy neurons, TDP-43 is 
involved in the detection and repair of double-stranded 
DNA breaks (DSBs) via non-homologous end joining 
(NEHJ) [71, 72], a major DNA repair pathway as neu-
rons are unable to divide or undergo homologous recom-
bination. TDP-43 is rapidly recruited at DNA damage 
sites where it interacts with factors of DDR and NHEJ-
mediated DSB repair, including the XRCC4–DNA ligase 
4 complex [71, 72, 111]. TDP-43 depletion in multiple 
neuronal cell models causes a significant accumulation of 
DSBs due to a reduction in NHEJ-mediated DSB repair 
efficiency [71, 72]. In particular, TDP-43 is involved in the 
prevention and repair of transcription-associated DNA 
damage, specifically, the formation of R-loops [112, 113]. 
These are three-stranded DNA:RNA hybrid structures 
which can lead to spontaneous DSBs when unresolved. In 
HeLa cells, silencing of TDP-43 leads to increased R-loop 
formation and R-loop-mediated DNA damage [113].

Hence, it is hypothesized that the loss of TDP-43 
nuclear functions in ALS may cause persistent DNA 
repair defects and genome instability. In fact, TDP-43 
nuclear clearing correlates with DNA damage and acti-
vation of DDR in sporadic ALS spinal cord tissues [71]. 
Similarly, transfection of TDP-43A315T and TDP-43Q331K 
in multiple cellular models lead to higher levels of the 
DSB marker γH2AX, indicating a loss of DNA repair 
function induced by ALS mutations [72, 114]. Increased 
DNA damage was detected in spinal cord tissues from 
patients expressing TDP-43Q331K [114] as well as in the 
frontal cortex of patients with FTD-TDP-43 [115]. Inter-
estingly, fibroblasts obtained from two pre-symptomatic 
individuals with TARDBP mutations encoding TDP-
43M337V also display increased levels of DNA damage 
and impaired NHEJ, implying that failure of DNA repair 
mechanisms by TDP-43 may occur early in the disease 
course [72].

Focussing here on potential mechanisms of NMJ disrup-
tion, it could be hypothesized that persistent DNA dam-
age can provoke MN death [116], thereby triggering the 
retraction of motor terminals. An alternative hypothesis 
is that DNA damage in MNs may cause NMJ dismantling 
prior to neurodegeneration. Consistent with this idea, early 
accumulation of DNA damage was detected in the cortex 
of inducible hTDP-43ΔNLS mice preceding NMJ den-
ervation, followed later by spinal MN loss [72, 117, 118]. 
Although this study did not examine the presence of DNA 
damage in spinal cord tissues, another group established a 
link between early DNA damage and distal axonal defects 
[119]. Naumann and colleagues performed a sequen-
tial characterization of mutant FUS phenotypes in iPSC-
derived MNs and reported early DNA damage, followed by 
defects in axonal trafficking of organelles, axonal degenera-
tion, and finally death of MNs [119]. Unfortunately, to our 
knowledge, no equivalent study has yet been performed 
in a TDP-43 model. Overall, these studies support a criti-
cal role of defective DNA repair mechanisms by dysfunc-
tional TDP-43 in the pathogenesis of ALS. Further work 
is required to determine the downstream consequences of 
DNA damage and how they may relate to denervation.

Mitochondrial dysfunction
Mitochondria are the main producers of reactive oxygen 
species (ROS), which cause oxidative stress and lead to 
cell death through apoptosis at excessive amounts [120]. 
Mitochondria also play a critical role in energy produc-
tion, which is crucial for MNs due to their high meta-
bolic demand to sustain their large size and long axons. 
Oxidative stress and metabolic imbalance can result 
from mitochondrial dysfunction, which is hypothesized 
to contribute to ALS pathogenesis. In fact, evidence of 
increased oxidative stress was found in the motor cortex 
[121, 122] and spinal cord [123] of sporadic ALS patients. 
Additionally, abnormal mitochondrial morphology was 
observed in ALS spinal cord specimens [121].

Mitochondrial dysfunction has been repeatedly 
described in cellular models expressing human wild-
type TDP-43 or ALS variants (Q331K, M337V, A382T, 
I383T), including increased levels of mitochondrial 
ROS [124], activation of mitophagy [125, 126], reduced 
basal respiration [127] and transmembrane potential 
[128], and deficiency in calcium uptake [129]. While 
TDP-43 is normally detected in mitochondria, this 
localization is increased in ALS patient specimens [130]. 
TDP-43 mitochondrial localization is also enhanced by 
TDP-43 variants [131, 132], perhaps reflecting a gain of 
toxic function. Consistent with this idea, inhibition of 
TDP-43 mitochondrial localization mitigates neurode-
generation and NMJ loss in TDP-43A315T mice [132].
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Mitochondria have also been detected within large 
TDP-43 aggregates in TDP-43 transgenic mice [133, 134], 
leading to the hypothesis that aggregates may sequester 
this organelle. Furthermore, aggregates have been shown 
to dysregulate the expression of nucleus-encoded mito-
chondrial proteins via sequestration of mRNA, micro-
RNAs and other RNA-binding proteins, resulting in 
enhanced oxidative stress [135], fewer and dysfunctional 
mitochondria at NMJ pre-synapses, and denervation 
[136].

Abnormalities in mitochondrial morphology and dis-
tribution are a prominent TDP-43 phenotype [126, 127, 
131, 134, 136–138]. Furthermore, abnormal mitochon-
dria have been shown to accumulate in presynaptic ter-
minals of ALS patients [121], although this has been 
recapitulated inconsistently in TDP-43 transgenic mice. 
Two studies have described depletion of mitochondria 
at nerve terminals of NMJs in mice expressing human 
wild-type TDP-43 [133] or hTDP-43ΔNLS [136]. In con-
cordance with post-mortem studies, Magrané and col-
leagues noted an accumulation of mitochondria in distal 
axons and at NMJs of presymptomatic mice expressing 
TDP-43A315T [138]. Despite these conflicting results, 
both accumulation and depletion of mitochondria may 
have profound consequences at the NMJ, as the localiza-
tion and integrity of mitochondria at nerve terminals is 
directly correlated with NMJ function [136, 139, 140].

In summary, mitochondrial dysfunction is commonly 
linked to TDP-43 dysregulation. In ALS, aggregation and 
enhanced mitochondrial localization of TDP-43 along 
with abnormal distribution of mitochondria may induce 
the loss of MNs and NMJs.

Defective anterograde axonal transport 
and transport‑translation coupling
In the cytoplasm, TDP-43 associates with RNA and other 
effector proteins to form transport ribonucleoproteins 
(RNPs) responsible for RNA transport along microtu-
bules in both anterograde and retrograde trajectories 
[73–76]. This enables control of protein expression in 
specific regions of the cell, a process that is particularly 
important for MNs as they are large cells with multiple 
cellular compartments (cell body, dendrites and axons) 
that have local translational needs. Altered axonal trans-
port has been one of the earliest proposed mechanisms 
to explain NMJ disruption in ALS and constitutes a fre-
quently identified phenotype in TDP-43 models [74, 138, 
141]. Furthermore, genetic defects and abnormalities in 
cytoskeletal components and motor complexes are com-
monly linked to ALS [142–146] (reviewed in [147]).

One hypothesis is that impairment in anterograde 
transport (from the cell body to neuronal processes) 

may prevent adequate maintenance of distal axons 
and presynaptic membranes, leading to denervation 
and neuronal cell death. ALS-associated mutations 
in TARDBP (M337V, A315T and G298S) have been 
shown to decrease anterograde transport and enhance 
accumulation of transport RNPs in the cell body [74]. 
As a result, delivery of transcripts to distal compart-
ments is impaired, as shown by altered mRNA content 
in axonal processes of mutant MNs [74]. Similarly, 
axon sequencing (axon-seq) analyses identified broad 
changes in the subcellular localization of mRNAs and 
microRNAs in the cell soma and axons of primary 
mouse MNs depleted of TDP-43 or expressing the 
TDP-43A315T variant [148, 149]. Thus, it is conceiv-
able that alterations in the spatiotemporal localization 
of RNA species within MNs due to defective axonal 
transport may impact local protein synthesis at the 
presynaptic membrane, compromising the integrity of 
neuromuscular synapses.

TDP-43 is detected at presynaptic membranes of 
NMJs [74, 150], suggesting that it may also directly 
contribute to local regulation of translation at this syn-
apse. At least in dendrites, there is accumulating evi-
dence that TDP-43 regulates local translation along 
with Fragile X mental retardation protein (FMRP) [73, 
77, 78, 151, 152]. TDP-43 acts as a translational repres-
sor and stabilizes RNA until a stimulus (such as neu-
ronal activity) signals a need for novel proteins at the 
synapse [78]. Given that TDP-43 interacts with the D1 
domain of FRMP via its C-terminal domain (where the 
vast majority of ALS mutations cluster) [151], it has 
been proposed that this interaction could be perturbed 
in ALS, preventing MNs from adequately modulating 
transport-translation coupling of RNPs [73]. Interest-
ingly, loss-of-function mutations in the FMRP ortholog 
dFXR lead to morphological defects and alterations of 
neurotransmission at the NMJ in fruit flies [153, 154].

Moreover, Nagano and colleagues recently showed 
that TDP-43 binds and transports along axons the 
mRNAs of ribosomal proteins (RPs) that are locally 
translated and assembled into ribosomes which, in 
turn, participate in local protein synthesis themselves 
[155]. Using in situ hybridization, they showed that the 
RP mRNA signal is significantly decreased along axons 
of TDP-43-depleted mouse cortical neurons [155], 
revealing a broader role of TDP-43 in modulation 
of protein synthesis. It is worthy noting that, in addi-
tion to RNPs, the delivery of other vital cargos which 
depends on anterograde transport to reach the pre-syn-
aptic compartment (e.g., synaptic vesicles precursors, 
mitochondria and proteins [139, 140, 156, 157]) may 
also become compromised in TDP-43-ALS.
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Defective retrograde axonal transport
Another proposed mechanism for NMJ disruption in 
ALS is the abnormalities of retrograde transport that may 
prevent the delivery of factors supporting neuron sur-
vival back to the cell body, such as neurotrophin-contain-
ing signaling endosomes [23]. Neurotrophins (such as 
brain-derived neurotrophic factor and nerve growth fac-
tor) are normally internalized through receptor-mediated 
endocytosis and retrogradely transported to cell bodies 
to modulate various aspects of the developing and adult 
neurons including cell survival, neurite outgrowth and 
synaptic function [158]. The TDP-43M337V variant was 
recently found to impair the retrograde axonal transport 
of neurotrophin-containing signaling endosomes in mice, 
preceding NMJ dismantling and motor symptoms [58].

In addition to neurotrophins, other pathways that ini-
tiate at the NMJ are crucial for regulation of the forma-
tion and function of this synapse, including the bone 
morphogenetic protein (BMP) signaling pathway [159, 
160]. Mutations in essential components of this signaling 
cascade (i.e., BMP, BMP receptors and Smad transcrip-
tion factors) induce changes in NMJ morphology and a 
decrease in neurotransmitter release [159, 160]. In fruit 
flies, defects in endocytic traffic of BMP receptors have 
been described with both loss- and gain-of-function of 
TDP-43/TBPH, as demonstrated by a shift from Rab5+ 
early endosomes to Rab11+ recycling endosomes at 
motor terminals [47]. These results were accompanied 
by a decrease in pMAD staining indicative of decreased 
BMP signaling at the NMJ, while rerouting BMP recep-
tors via Rab11 inhibition partially restores BMP signal-
ing, NMJ defects and motor deficits [47]. There is also 
pathological evidence of dysfunctional BMP/TGF-β sign-
aling in sporadic ALS spinal cord specimens, with MNs 
showing accumulation of pSmad in cytosolic TDP-43 
aggregates [161]. Taken together, TDP-43 dysfunction 
could prevent MNs from maintaining the integrity of 
NMJs by disrupting the long-range signal transduction 
required to respond appropriately to external stimuli.

Axonal degeneration
Axonal fragmentation is a prominent feature of neurode-
generation. According to the dying-back theory, degener-
ation originates distally at nerve terminals and progresses 
in a retrograde fashion to sequentially affect the axons 
and cell bodies, eventually leading to MN loss [23, 25]. 
This phenomenon is reminiscent of Wallerian degenera-
tion (also known as programmed axon death), a tightly 
regulated process of axonal fragmentation and neuronal 
death, distinct from apoptosis, which occurs following 
a nerve injury [162, 163]. Sterile Alpha and TIR Motif-
Containing 1 (SARM1) has been identified as a key initia-
tor of programmed axon death, as depletion of this gene 

confers long-term resistance to degeneration [164–169]. 
The SARM1 locus has been associated with an increased 
susceptibility to sporadic ALS [170] and constitutively 
active SARM1 variants have been recently identified in 
ALS patients [171, 172]. ALS, as well as other neurode-
generative diseases where axons may be affected before 
neuronal cells bodies (e.g., Parkinson’s disease, Alzhei-
mer’s disease and Huntington’s disease [173–177]), is 
increasingly believed to be Wallerian-like disorders in 
which a similar cell death program is triggered in the 
absence of a physical insult. Metabolic stress and dis-
ruption of axonal transport, two processes which have 
been repeatedly associated with ALS pathophysiology, 
are thought to be responsible for initiating this response 
[146, 178–180]. In particular, studies have consistently 
reported both mitochondrial and axonal dysfunction in 
TDP-43 models [58, 74, 125, 129, 131, 138, 141], raising 
a possible link between TDP-43 and programmed axon 
death. The role of TDP-43 in response to cellular injury 
reinforces this hypothesis, as in  vivo axotomy or axon 
ligation triggers upregulation and transient accumulation 
of TDP-43 at the site of injury [181–183]. Furthermore, 
TDP-43G348C mice exhibit sustained cytoplasmic mislo-
calization of TDP-43 and impaired recovery after nerve 
crush injury, as shown by fewer regenerating axons and 
persistent motility impairments compared with control 
animals [184].

More direct evidence implicating TDP-43 in the Wal-
lerian pathway was demonstrated by genetic ablation of 
SARM1 resulting in improvement of disease phenotypes 
in TARDBP models [66, 185]. In C. elegans expressing 
TDP-43A315T, loss-of-function mutation in the SARM1 
ortholog tir-1 improves motility deficits and MN sur-
vival [185]. Similarly, SARM1 knockout mitigates axonal 
degeneration and MN loss in TDP-43Q331K mice [66]. 
Importantly, these findings were accompanied by a sig-
nificant decrease in NMJ denervation [66]. These results 
imply that the activation of the axonal death program 
is involved in disruption of NMJs, and preserving the 
motor terminal-muscle interaction and axonal integrity 
may be required for the survival of MN cell bodies [66]. 
Recently, patient-associated SARM1 variants were shown 
to promote neurodegeneration in primary neurons and 
mice, due to a constitutive NAD+ hydrolase activity [171, 
172]. In this regard, we speculate that TDP-43 dysregu-
lation in ALS may confer an increased susceptibility to 
activation of the Wallerian pathway via SARM1, caus-
ing NAD+ depletion (and consequently ATP depletion), 
axonal degeneration, NMJ denervation and MN loss. It is 
worthy of note, however, that SARM1 deletion does not 
mitigate neurodegenerative phenotypes in the SOD1G93A 
mouse model, suggesting distinct mechanisms in SOD1-
ALS [186, 187].
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TDP-43 is also associated with other mediators of the 
Wallerian pathway, namely PHR1 (also known as PLE-
KHB1) [188] and stathmin-2 (also known as SCG10) 
[189, 190]. PHR1 promotes Wallerian degeneration, as 
its conditional knockout delays degeneration of sev-
ered axons and NMJ loss similar to SARM1 depletion 
[191]. Paradoxically, it is also involved in axon out-
growth and synaptic formation [192–194]. PHR1 is 
essential for the development of NMJs: its constitutive 
knockout is lethal at birth due to incomplete innerva-
tion of the diaphragm, causing respiratory failure [192, 
194]. PHR1 is significantly downregulated in MNs of 
TDP-43A315T mice in the early symptomatic phase of 
the disease, preceding NMJ morphological defects 
[188]. Further investigation is required to determine 
the possible pathological role of PHR1 in TDP-43-me-
diated ALS.

Two studies have clearly shown that TDP-43 regu-
lates expression of stathmin-2 (STMN2) [189, 190], 
an axon-maintenance factor that is rapidly depleted 
in distal axons upon injury [195, 196]. It is considered 
an early marker of subsequent axonal degeneration, 
potentially acting upstream of SARM1 [195]. Stath-
min-2 was shown to be significantly downregulated in 
spinal cord and cortical specimens from ALS patients 
as well as in iPSC-derived MNs depleted of TDP-43 
[189, 190]. Mechanistically, the decline of stathmin-2 
level is due to altered TDP-43 splicing activity, causing 
the inclusion of a cryptic exon that results in a non-
functional protein [189, 190]. Stathmin-2 downregula-
tion has also been observed in patient-derived neurons 
expressing TDP-43 variants (G298S, A382T, N390S), 
suggesting a loss of normal splicing function (i.e., 
cryptic exon repression) conferred by the mutations 
[190]. Loss of stathmin-2 is associated with impaired 
axonal regeneration following in  vitro axotomy [189, 
190], consistent with its role in maintaining the integ-
rity of axons. Stathmin is also shown to be required for 
maintenance of NMJ stability. In fruit flies, neuron-
specific knockdown of stathmin, or expression of a 
loss-of-function mutant, causes a reduction of bouton 
number and axonal retractions at the NMJ [197, 198]. 
Similarly, Stathmin mutant or knockout mice develop 
a late-onset axonopathy and NMJ denervation, leading 
to muscle atrophy and severe motor impairments [199, 
200].

In summary, TDP-43 is functionally linked to factors 
involved in the Wallerian degeneration pathway, with 
dual roles in axonal outgrowth and NMJ maintenance. 
Disturbances in TDP-43 homeostasis in ALS may affect 
the expression levels of these factors, which in turn may 
contribute to defects at the NMJ, axonal degeneration 
and MN loss that characterize this disease.

Aggregation and RNA sequestration
TDP-43 aggregation is a core feature of ALS [20]. These 
insoluble aggregates, detected in nearly all ALS cases, 
contain ubiquitinated and hyperphosphorylated full-
length TDP-43 as well as truncated C-terminal fragments 
of the protein [20]. When ALS-associated mutations are 
present in TARDBP, TDP-43 has an increased propensity 
to aggregate and is capable of interacting with the wild-
type protein, recruiting it into further aggregates [61, 
201]. The majority of mutations are found in exon 6 of 
TARDBP encoding the protein’s glycine-rich C-terminal 
domain, which has been proposed to mediate solubility 
and oligomerization [202]. This implies that aggregation 
may be an important contributor to disease phenotype.

It has been proposed that aggregates can sequester 
RNA from the translational machinery, thereby depleting 
MNs of critical proteins for NMJ maintenance. Indeed, 
an emerging property of pathologically altered TDP-43 
is sequestration of mRNA into insoluble complexes [136, 
203]. Coyne and colleagues have shown that the TDP-
43G298S variant can sequester transcripts of the chaper-
one Hsc-70-4/HSPA8, resulting in decreased expression 
of the protein at the NMJ in transgenic Drosophila and 
mice [203]. These changes are accompanied by deficits in 
synaptic vesicle endocytosis, defects in NMJs and loco-
motion, and decreased lifespan [203]. HSPA8 protein lev-
els, but not transcript levels, are also reduced in human 
MNs differentiated from iPSCs expressing C9ORF72 or 
TARDBP mutations, confirming a post-transcriptional 
mechanism of expression inhibition [203]. It is plausible 
that this process may take place within aggregates given 
their resemblance to RNA granules, which are known to 
contain mRNA in a translationally silent state (i.e., stalled 
translation initiation complexes) [204]. Under physiologi-
cal conditions, TDP-43 participates in the assembly of 
both transport RNPs [73–76] and stress granules [81–
84], highlighting its role in modulating mRNA availability 
in time and space. In ALS, a gain-of-function of TDP-43 
could result in mRNA trapping within insoluble aggre-
gates rather than being stabilized temporarily within 
granules. In support of this idea, Altman and colleagues 
showed that “aggregate-like” TDP-43 RNP condensates 
drive suppression of local protein synthesis in sciatic 
MN axons and presynaptic terminals of inducible hTDP-
43ΔNLS mice [117, 118, 136]. Specifically, they demon-
strated that mRNAs of nucleus-encoded mitochondrial 
genes Cox4il and ATP5A1 are directly bound by TDP-
43 and sequestrated within axonal condensates, result-
ing in decreased levels of the proteins [136]. Ceasing 
hTDP-43ΔNLS expression induces clearance of axonal 
and synaptic condensates and consequently restores 
local protein synthesis as well as the number of inner-
vated NMJs and contracting muscle fibers. However, the 
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precise mechanisms through which TDP-43 conden-
sates inhibit protein synthesis remain to be investigated. 
In addition to mRNAs, Zuo and colleagues showed that 
H2O2-induced TDP-43 aggregates also sequester specific 
microRNAs in mouse neuroblastoma-derived N2a cells, 
leading to upregulation of their corresponding targets 
[135]. RNA immunoprecipitation experiments showed 
that TDP-43M337V enhances the capture of the microR-
NAs compared with the wild-type protein, supporting a 
gain-of-function mechanism. Furthermore, TDP-43 co-
aggregates with other RNA-binding proteins (i.e., hnRNP 
M, hnRNP H1 and RMB14), raising the possibility that 
RNA sequestration within aggregates may not be limited 
to direct TDP-43 targets. Taken together, these studies 
support the hypothesis that TDP-43 aggregates may neg-
atively impact NMJs by interfering with the expression of 
essential proteins for NMJ maintenance and function.

TDP‑43 dysregulation in non‑neuronal cell types
While MN dysfunction and degeneration has tradition-
ally been the focus of ALS research, a growing body of 
evidence recognizes non-cell autonomous mechanisms 
exerted by cells interacting with MN cell bodies or pre-
synaptic terminals. Here, we describe some of the studies 
focused on TDP-43 dysregulation in non-neuronal cell 
types which have been hypothesized to influence NMJ 
integrity in ALS.

Skeletal muscle
The hypothesis that skeletal muscle may play an active 
role in disease initiation and progression emerged from 
studies describing muscle-specific pathogenic changes 
in human ALS specimens, such as mitochondrial mor-
phology defects [205–207] and altered muscle oxidative 
metabolism [208–211]. In addition, studies performed 
with muscle tissue from ALS patients have reported 
abnormalities in factors secreted by skeletal muscle that 
could result in NMJ destabilization, including impaired 
expression of neurotrophic factors [212, 213] and 
increased levels of axon chemorepellent molecules [214–
216]. Evidence of muscle dysfunction in ALS and identifi-
cation of TDP-43 aggregates as the pathological hallmark 
of this disease have prompted further research into the 
physiological and pathological roles of TDP-43 in skeletal 
muscle (Fig. 2). TDP-43 aggregates have been detected in 
the skeletal muscle of patients with various myopathies 
including inclusion bodies myositis (IBM) [217, 218], the 
most common ALS-mimicking disease [219]. In addition, 
TDP-43 aggregates have been described in the muscle 
of patients with sporadic and familial ALS, with pathol-
ogy associated with myogenic degeneration [220–222]. 
Indeed, the aggregates are identified predominantly 

in muscle fibers showing single-fiber atrophy as well as 
moderate to marked vacuolar degeneration [220].

TDP-43 is essential for muscle regeneration [223]. 
Vogler and colleagues showed that TDP-43 assembles 
into myo-granules containing sarcomeric transcripts, 
which may help coordinate sarcomere assembly dur-
ing muscle formation [223]. They hypothesize that these 
myo-granules could be the precursors of pathogenic 
aggregates, forming in conditions of increased assem-
bly or decreased clearance [223]. During muscle forma-
tion, TDP-43 is upregulated and binds to promoters of 
genes encoding important mediators of myogenesis (e.g., 
MyoD, MYOG and Acta1) to regulate their expression 
and initiate the differentiation program [224]. Militello 
and colleagues demonstrated that TDP-43 knockdown 
inhibits myogenic differentiation of C2C12 myoblasts, as 
shown by a decrease in the number of multi-nucleated 
myotubes [224]. In zebrafish, fruit flies and mice, both 
gain and loss of TDP-43 exert deleterious effects on skel-
etal muscle [225–227]. These findings raise the hypoth-
esis that TDP-43 dysregulation in ALS may affect muscle 
regeneration. This idea is consistent with the reported 
impaired regenerative capacity of skeletal muscle in ALS, 
as satellite cells isolated from patients and presymp-
tomatic animals are less proliferative and incapable of 
restoring mature myofibers [228, 229]. It is thus conceiv-
able that muscle dysfunction could in turn negatively 
affect NMJ integrity.

TDP-43 expression in muscle has been shown to 
promote NMJ assembly [104]. In fruit flies, selective 
downregulation of TDP-43/TBPH in skeletal muscle 
is sufficient to induce locomotive and synaptic defects, 
with disorganization of both pre- and post-synaptic 
membranes [104]. Mechanistically, TDP-43/TBPH was 
shown to regulate levels of Discs-large (Dlg) [104], a 
protein expressed in both MNs and skeletal muscle that 
promotes NMJ formation by recruiting adhesion and 
scaffolding molecules [230–232]. Thus, TDP-43 dysregu-
lation in muscle could prevent adequate expression of 
NMJ maintenance proteins such as Dlg, eventually result-
ing in NMJ dismantlement. Another study has implicated 
that altered gene expression within the muscle partici-
pates in disruption of NMJ architecture in ALS [233]. A 
transcriptome analysis identified BET1L as a commonly 
downregulated gene in iPSC-derived myocytes from 
TARDBP, SOD1, C9ORF72 and sporadic ALS patients 
[233]. In the same study, they showed that Bet1L protein 
is localized at the basal lamina of the NMJ and that its 
expression levels decrease with disease progression in 
symptomatic SOD1G93A rats [233].

Other groups have proposed that misregulation of 
non-coding RNAs in skeletal muscle may promote NMJ 
disruption. King and colleagues showed that TDP-43 
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negatively regulates the activity of muscle-enriched 
microRNAs of the miR-1 family (namely miR-1 and miR-
206) [234] with functional roles in both differentiation 
of muscle progenitors and NMJ maintenance [235–238]. 
For instance, in C. elegans, miR-1 regulates the expres-
sion of acetylcholine receptor subunits and modulates 
ACh release from motor terminals via retrograde sign-
aling [237]. MiR-206 is required for regeneration of 
NMJs after acute nerve injury in ALS mice [238]. TDP-
43 inhibits the activity of miR-1/206 by preventing their 
association with the RISC complex, resulting in increased 
protein levels of their targets: insulin-like growth factor 1 
(IGF-1) and histone deacetylase 4 (HDAC4) [234]. While 

high serum levels of IGF-1 are recently linked to a better 
disease prognosis in an ALS cohort [239], HDAC4 was 
reported to be upregulated in ALS muscle samples with 
levels correlating with disease progression and denerva-
tion [240, 241]. In addition, HDAC4 has been shown to 
inhibit muscle reinnervation in mice [238].

Co-culture of ALS myocytes with control MNs has 
provided additional evidence for a potentially toxic role 
of skeletal muscle via dysregulated TDP-43 [242, 243]. 
Wächter and colleagues found that control MNs exhibit 
impaired survival and decreased neurite length when 
co-cultured with mouse embryonic stem cell (mESC)-
derived muscle expressing TDP-43A315T [242]. Similarly, 

Fig. 2  Dysfunction of non-neuronal components of the tripartite synapse may impact NMJ integrity in ALS. In the healthy skeletal muscle 
(left), TDP-43 promotes muscle regeneration and NMJ formation. In ALS (right), TDP-43 dysregulation impairs the expression genes encoding 
NMJ maintenance proteins (e.g., Dlg, Bet1L) as well as key microRNAs (e.g., miR-1, miR-206, miR2826-p), which may lead to denervation via the 
disorganization of presynaptic membranes and the release of destabilizing factors (e.g., SEMA3s). In addition to MN presynaptic terminals and 
muscle endplates, TSCs are the third cellular component of the tripartite synapse. TSC dysfunction (e.g., impairment in synaptic decoding and 
morphological abnormalities) may impact the ability to maintain NMJ integrity and promote reinnervation
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Maimon and colleagues reported a delay in the out-
growth of wild-type axons towards mouse primary myo-
cytes transfected with TDP-43A315T and several other 
ALS-linked mutations [243]. They also showed that mus-
cle toxicity could be partially explained by dysregulation 
of microRNA miR126-5p [243], which was previously 
found to be downregulated in axons of primary MN cul-
tures from both TDP-43A315T and SOD1G93A mouse mod-
els [148]. Depletion of miR126-5p caused an increase 
in levels of axon chemorepellents class 3 semaphorins 
(SEMA3s) in skeletal muscle with concomitant upregula-
tion of its receptor Neuropilin 1 (NRP1) in motor axons 
[243], supporting the idea that diseased muscle is capable 
of causing retraction of motor axons and NMJ disruption 
by over-secreting destabilizing factors. Taken together, 
these findings point to TDP-43 dysregulation in skeletal 
muscle as a potential mechanism involved in dismantle-
ment of NMJs.

Glial cells of the central nervous system (CNS)
Non-cell autonomous mechanisms of disease involv-
ing glial cells have also become important areas of ALS 
research. TDP-43 aggregates have been described in 
astrocytes, microglia and oligodendrocytes of patient 
specimens [19–21, 244], implying that TDP-43 also 
becomes dysregulated in non-neuronal cells in ALS. 
One prominent pathological feature of several neuro-
degenerative disorders including ALS is the activation 
of astrocytes and microglia, termed reactive astroglio-
sis and microgliosis (Fig.  3). This process is thought to 
create a vulnerable environment for MNs by releas-
ing pro-inflammatory cytokines, free radicals and other 
neurotoxic factors that exert deleterious effects on MNs 
[245–247]. Mutations in TARDBP were repeatedly shown 
to increase activation of astrocytes and microglia in mice 
[56, 248–253]. Additionally, there is evidence that TDP-
43-induced glial activation leads to structural defects 
at the NMJ. In the fruit fly, selective overexpression of 
wild-type and ALS-associated TDP-43 variants (D169G, 
G298S, A315T, N345K) in glia triggered NMJ defects, 
motor deficits and a reduced lifespan [45, 254]. Mecha-
nistically, Lee and colleagues showed that pan-glial 
overexpression of wild-type TDP-43 caused the upregu-
lation of Ptp61f, a gene implicated in inflammation and 
ER stress signaling pathways [254]. Ptp61f knockdown in 
TDP-43-overexpressing flies suppressed inflammatory 
cytokines secretion and rescued reduced synaptic button 
number at NMJs, climbing deficits and lifespan.

In contrast, astrocyte-specific TDP-43 depletion in 
mice does not cause NMJ denervation or MN loss, but 
induces an A1-like reactive astrocyte molecular profile, 
upregulation of C1 complement expression in microglia 
(a marker of reactive microglia), and reduces the number 

of mature oligodendrocytes, referred by the authors as 
“triglial dysfunction” [255]. Similarly, selective depletion 
of TDP-43 in oligodendrocytes is insufficient to cause 
NMJ denervation or MN loss, but it is essential for oligo-
dendrocyte survival and myelination [256–258].

Aside from neuroinflammation, impaired glutamate 
clearing is another proposed mechanism implicating 
astrocytic dysfunction in ALS. In physiological con-
ditions, astrocytes take up glutamate from excitatory 
synapses via excitatory amino acid transporter 1 and 
2 (EAAT1/2). When uptake is impaired, accumulation 
of glutamate in the synaptic cleft causes excessive neu-
ronal stimulation, calcium overload and intracellular 
damage leading to neurodegeneration. This process, 
termed excitotoxicity, has been proposed to play a role in 
ALS pathogenesis as per the dying-forward hypothesis. 
Motor cortex and spinal cord specimens of patients dis-
play a significant decrease in EAAT2 [259]. Intriguingly, 
TDP-43 has been reported to bind to the 3’-UTR of the 
EAAT2 transcript in the human brain [96]. Moreover, 
glial-specific overexpression and depletion of TDP-43/
TBPH induces a downregulation of EAAT1 and EAAT2 
transcript levels in the fruit fly [227]. In transgenic rats, 
selective overexpression of TDP-43M337V in astrocytes 
results in a progressive decrease in EAAT1 and EAAT2 
immunoreactivity in the spinal cord, and causes denerva-
tion atrophy of muscles and MN death [260]. Although 
ACh is the main neurotransmitter at the NMJ, there is 
evidence for the involvement of glutamate at this synapse 
(reviewed in [261]), notably by modulating ACh release 
via the activation of presynaptic ionotropic receptors 
[262]. In this regard, one might posit that dysregulation 
of glutamate handling at spinal excitatory synapses and 
at the NMJ itself may impact cholinergic transmission or 
cause cytotoxicity that leads to the retraction of motor 
terminals.

Peripheral glial cells
Although the involvement of glia from the CNS has been 
investigated more extensively, there is also evidence for 
a contribution of glial cells from the peripheral nervous 
system in ALS, namely the myelin-forming and terminal 
Schwann cells (TSCs). Myelin-forming Schwann cells 
produce the myelin sheath that wraps the axons of MNs 
to enable rapid saltatory conduction of action potentials. 
Peripheral nerves of ALS patients often show signs of 
demyelination [263, 264]. In mice, TARDBP knockout 
in myelin-forming Schwann cells causes severe motor 
deficits due to impaired formation of paranodal junc-
tions, which maximize nerve conduction velocity in MNs 
[265]. Two recent studies described the accumulation of 
abnormally phosphorylated TDP-43 in the cytoplasm of 
myelin-forming Schwann cells in motor nerve biopsies 
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of ALS patients [263, 266]. It remains unknown if the 
pathological TDP-43 aggregation in Schwann cells cor-
relates to a decrease in nerve conduction velocity since 
such clinical studies were not described. However, slow 
nerve conduction velocity is a clinical hallmark of ALS 
[267]. Currently, the question remains whether the dys-
regulation of TDP-43 in myelin-forming Schwann cells 
can trigger functional deficits at the NMJ leading to its 
dismantlement.

TSCs, also known as perisynaptic Schwann cells, are 
considered the third cellular component of the tripartite 
synapse as they cap motor terminals and provide trophic 
support to the NMJ [268] (Fig. 2). The TSC is acknowl-
edged as a key player in NMJ maintenance, synaptic 
transmission and synaptic plasticity [269–271]. TSCs 

are involved in nerve-muscle reinnervation by guiding 
the regenerating nerve terminals through extending long 
processes during synaptic repair [272–274]. For these 
reasons, their possible contribution to ALS disease mech-
anisms (where the denervation rate surpasses the rein-
nervation rate) should not be neglected. TSC dysfunction 
has been linked to neuromuscular pathology in ALS 
mice; however, the studies published to date have been 
performed exclusively in SOD1 mice models [275–277]. 
Notably, a decrease in TSC number and morphologi-
cal abnormalities have been described in mutant SOD1 
mice prior to onset of denervation [276]. Other studies 
have shown impairment of the synaptic decoding abilities 
of TSCs that could potentially be affecting NMJ repair 
[275, 277]. TSCs are tuned to their associated presynaptic 

Fig. 3  Non-cell autonomous mechanisms exerted by cells interacting with MN cell bodies. TDP-43 aggregates are detected in astrocytes, microglia, 
oligodendrocytes and myelinating Schwann cells in specimens from individuals with ALS, indicating that TDP-43 also becomes dysregulated in 
non-neuronal cell types. TDP-43 dysregulation has been associated with demyelination, glial activation (i.e., astrogliosis, microgliosis), and glutamate 
mishandling by astrocytes, which may trigger functional deficits at the NMJ or cause cytotoxicity leading to the retraction of motor terminals
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terminal: they express surface muscarinic receptors that 
detect ACh upon its release from motor terminals, elicit-
ing a Ca2+ response that allows for modulation of synap-
tic transmission [278]. TSC switching from maintenance 
to repair mode depends on this ability to detect synap-
tic transmission, which was shown to be dysregulated 
in SOD1G37R mice [275, 277]. Consequently, TSCs were 
unable to adopt a phagocytic phenotype and extended 
abnormal processes at denervated NMJs in symptomatic 
animals [277]. Since reinnervation mechanisms appear 
to be deficient in ALS models, including several TDP-43 
models (Table 1), the question arises as to whether such 
deficits could be linked to the failure of TSCs to properly 
decode the innervation state of the NMJ. Future stud-
ies in non-SOD1 genetic models are needed to deter-
mine the broader implication of this mechanism in ALS. 
In particular, the role of TDP-43 in TSCs is still largely 
unknown and, to our knowledge, TSC phenotypes have 
not yet been investigated in TDP-43 models.

Dying‑back, dying‑forward or both?
ALS is a complex disease, most likely caused by a com-
bination of genetic and environmental factors as well as 
age-related changes. As summarized in this review, dis-
turbances of several cellular pathways have been sug-
gested to play a role, making it difficult to reconcile the 
many fundamental features of ALS into one disease 
model. This challenge is further complicated by the het-
erogeneity of the clinical manifestations of ALS (includ-
ing its close association with FTD) and the presence of 
multisystem impairments.

In the sections above, we provided an overview of the 
potential mechanisms underlying NMJ disruption in ALS 
mediated by dysregulated TDP-43 in different cell types. 
Some of these studies argued that defects may originate 
distally, such as the evidence for a toxic role of skeletal 
muscle [220–222], the involvement of programmed axon 
death [66, 171, 172], and alterations in factors impli-
cated in NMJ formation and maintenance (e.g., agrin, 
MAP1B, AChE) [102, 103, 110]. In contrast, findings 
of dysregulated expression of synaptic genes [90, 98] or 
glutamate transporters by astrocytes [259, 260] are con-
sistent with the excitotoxic mechanisms proposed by 
the dying-forward hypothesis. Although several studies 
summarized here established a mechanistic link between 
TDP-43 and NMJ defects, few examined the chronologi-
cal relationship between these events and, as such, they 
do not directly support one or the other hypothesis. Fur-
ther, some proposed mechanisms (e.g., impaired RNA 
processing, DNA damage, mitochondrial dysfunction) 
could occur in both upper and lower MNs, with poten-
tially broad pathological consequences beyond NMJ 
disruption. More detailed investigations are needed to 

determine the spatiotemporal progression of pathology 
in this disease. For instance, in  vivo studies comparing 
the timing of brain, spinal cord, nerve and NMJ pathol-
ogy and the onset of symptoms would provide further 
insights into the series of events leading to the manifesta-
tion of an ALS-like phenotype.

At present, beyond the old dichotomy of “dying-back” 
versus “dying-forward”, we can speculate that several 
pathologies may occur simultaneously early in the dis-
ease course. For instance, excitotoxic effects exerted by 
upper MNs may be potentiated by lower MNs’ inability to 
cope with additional stressors (e.g., due to deficient DNA 
repair) and accelerate the dismantling of already-vulnera-
ble NMJs (e.g., due to dysfunctional TSCs). An additional 
consideration is how the primary site of onset is defined, 
which can lead to different interpretations with regards 
to the direction of disease progression. For instance, let 
us consider the suggestion that dysregulation of key path-
ways in MN cell bodies triggers the dismantling of dis-
tal structures. In this scenario, the primary dysfunction 
originates from cell bodies and propagates anterogradely 
to affect the NMJs (dying-forward), but denervation 
and axonal fragmentation may occur before the MN 
cell bodies degenerate and symptoms become apparent 
(dying-back). This example highlights the importance 
of considering the multiple scales at which pathogenic 
changes can take place (spanning from molecular to mac-
roscopic scales). Finally, we can hypothesize that different 
genetic or clinical subtypes of ALS patients may present 
distinct predominant dying-back or dying-forward pat-
terns of neurodegeneration, with pathology being more 
pronounced in the motor cortex or in distal structures 
at early stages of disease. This integrated view could par-
tially explain the heterogeneity of clinical presentations 
of ALS patients, including the variability in the site of 
symptom onset (i.e., spinal vs. bulbar ALS) and the pres-
ence of extra-motor manifestations [279].

Conclusion
ALS is a complex and heterogeneous disease, most likely 
caused by a combination of factors. It is becoming clear 
that pathological dysregulation of TDP-43, not only 
in MNs but also in non-neuronal cells such as skeletal 
muscle and glial cells, plays an important role in disease 
pathogenesis. Abnormalities in RNA processing, DNA 
repair, mitochondrial function, axonal transport and 
protein aggregation are TDP-43-mediated changes that 
may be important contributors to NMJ disruption and 
MN loss. The detection of aggregates in several types of 
cells showing pathogenic changes in ALS (MNs, astro-
cytes, microglia, oligodendrocytes, myelinating Schwann 
cells, and skeletal muscle) may indicate that the impact 
of TDP-43 dysregulation in ALS is underestimated. 
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While TDP-43 is expressed ubiquitously, little is known 
about the consequences ALS-linked TDP-43 variants in 
non-neuronal cells, particularly those forming the NMJ. 
A better understanding of when and how NMJ defects 
arise in ALS will be critical for the development of 
therapies that can meaningfully delay or halt functional 
decline. In particular, therapeutics targeting NMJs would 
avoid the need for molecules that cross the blood-brain 
barrier or having patients undergo invasive drug deliv-
ery procedures. Combination therapies targeting several 
pathways, rather than individual targets, may also be a 
promising avenue given the multifactorial nature of this 
disease.
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