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REVIEW

Why do ‘OFF’ periods still occur 
during continuous drug delivery in Parkinson’s 
disease?
Silvia Rota1,2,3*   , Daniele Urso1,4, Daniel J. van Wamelen1,2,3,5, Valentina Leta1,2, Iro Boura1,6,7, Per Odin8, 
Alberto J. Espay9, Peter Jenner10* and K. Ray Chaudhuri1,2 

Abstract 

Continuous drug delivery (CDD) is used in moderately advanced and late-stage Parkinson’s disease (PD) to control 
motor and non-motor fluctuations (‘OFF’ periods). Transdermal rotigotine is indicated for early fluctuations, while 
subcutaneous apomorphine infusion and levodopa-carbidopa intestinal gel are utilised in advanced PD. All three 
strategies are considered examples of continuous dopaminergic stimulation achieved through CDD. A central prem-
ise of the CDD is to achieve stable control of the parkinsonian motor and non-motor states and avoid emergence of 
‘OFF’ periods. However, data suggest that despite their efficacy in reducing the number and duration of ‘OFF’ periods, 
these strategies still do not prevent ‘OFF’ periods in the middle to late stages of PD, thus contradicting the widely held 
concepts of continuous drug delivery and continuous dopaminergic stimulation. Why these emergent ‘OFF’ periods 
still occur is unknown. In this review, we analyse the potential reasons for their persistence. The contribution of drug- 
and device-related involvement, and the problems related to site-specific drug delivery are analysed. We propose that 
changes in dopaminergic and non-dopaminergic mechanisms in the basal ganglia might render these persistent ‘OFF’ 
periods unresponsive to dopaminergic therapy delivered via CDD.

Keywords:  ‘OFF’ periods, Continuous drug delivery, Continuous dopaminergic stimulation, Rotigotine patch, 
Subcutaneous apomorphine infusion, Levodopa-carbidopa intestinal gel
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Introduction
Response fluctuations (motor and non-motor ‘OFF’ peri-
ods) are a common feature of levodopa-treated Parkin-
son’s disease (PD) and major determinants of quality of 
life in PD, serving as a main outcome measure in most 
key clinical trials [1]. They occur in both early and late 
illness, with reported onset as early as 5–6  months fol-
lowing the initiation of levodopa treatment [2–4] and 

are characterised by ‘OFF’ periods that are clinically het-
erogeneous. They manifest as ‘wearing OFF’, early morn-
ing ‘OFF’, delayed ON, no ON or random/unpredictable 
‘ON–OFF’ [5] (Fig. 1). The duration of ‘OFF’ periods, as 
well as their severity and unpredictability are the features 
most associated with a more impaired quality of life [6–
8]. Predictable ‘OFF’ periods can be associated with drug 
dose and the onset of ‘wearing OFF’ with the end of its 
effect [9]. Loss of drug efficacy characterising predictable 
‘OFF’ periods has been associated with a loss of presyn-
aptic storage of levodopa/dopamine in remaining dopa-
minergic terminals in the striatum with increased disease 
severity [5, 10–12]. This is, however, unlikely to be the 
entire explanation, as ‘wearing OFF’ is also reported with 
dopamine agonists and in animal models of PD without 
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presynaptic involvement [12–15]. A post-synaptic com-
ponent affecting basal ganglia output seems likely and 
this may be associated with the loss of the long-duration 
response to levodopa, although this has recently been 
disputed [5, 12, 16–19]. Unpredictable or random ‘OFF’ 
periods are a more complex phenomenon and difficult to 
treat with dopaminergic medications, even when given 
continuously to achieve continuous drug delivery (CDD) 
[9]. Factors affecting the peripheral pharmacokinetic pro-
file of levodopa, such as the interference of high-protein 
meals, gastroparesis, H. Pylori infection or constipation, 
can contribute to the unpredictability [20, 21]. However, 
the central mechanisms underlying unpredictable ‘OFF’ 
periods, such as ‘ON–OFF’, may involve non-dopamin-
ergic pathways, although there has been no preclinical 
investigation examining whether or why these occur.

Standard therapies for treating ‘OFF’ periods involve 
alterations of the dose, dose frequency and timing of 
oral dopaminergic medications, and the use of adjuncts 
(enzyme inhibitors and agonists) to levodopa to extend 
its duration of effect [5, 22]. While these reduce ‘OFF’ 
periods and ‘OFF’ time in the short term, they are not 
effective in producing a constant restoration of motor or 
non-motor function. Dosing of levodopa using new slow-
release or longer-acting preparations as well as dopamine 
agonists, has largely failed to provide continuous dopa-
minergic stimulation (CDS) or to restore ‘ON’ periods 
without troublesome dyskinesia [23]. Indeed, avoiding 
the standard oral administration of dopaminergic drugs 
has been seen as essential in achieving more predictable 
delivery of dopaminergic medications and more pre-
dictable ‘ON’ time. In this respect, the concept of CDS 
has proven useful [24, 25]. While initially proposed to 

provide a more physiological dopaminergic response that 
avoids the onset of motor fluctuations and motor com-
plications, it has morphed in to providing a means of 
CDD that has proven effective in reducing ‘OFF’ time and 
lessening the intensity of existing dyskinesia [5], even if it 
fails to achieve a complete control of motor fluctuations.

Three current distinct approaches to non-oral CDD 
have been introduced: the transdermal delivery of rotig-
otine, predominantly used in early PD, the continuous 
subcutaneous infusion of apomorphine (CSAI), and the 
intraduodenal delivery of levodopa-carbidopa intestinal 
gel (LCIG), recently available in a new formulation with 
entacapone (levodopa–entacapone–carbidopa intestinal 
gel) [26], indicated for the treatment of advanced PD [25, 
27]. Additionally, novel formulations of subcutaneously-
delivered levodopa are currently under investigation [28]. 
The use of alternative routes to the oral one, is likely to be 
the key factor for improved outcomes, as they avoid the 
gastrointestinal route and thus overcome drug delivery 
bottlenecks [29].

In early PD, rotigotine transdermal patches are 
employed as a mono- or adjunctive therapy to improve 
motor function as well as motor and non-motor fluctua-
tions, in particular ‘wearing OFF’ [30–32]. This strategy 
reduces but does not abolish ‘OFF’ periods [33]. In later 
PD, CSAI and LCIG are used, and controlled data from 
pivotal studies suggest a reduction in ‘OFF’ time and an 
increase in ‘ON’ time without troublesome dyskinesia in 
the short term [34–37]. However, after a variable “hon-
eymoon” period, most patients still experience ‘OFF’ 
episodes despite receiving CDD [38]. Although the tech-
nologies involved, the device-related issues or the com-
plications at the site of infusion may explain the emergent 
and “refractory” ‘OFF’ periods, they are unlikely the sole 
reason. The possibility of involvement of non-dopamin-
ergic pathways needs to be explored.

The problem of drug‑resistant motor fluctuations
There remains a fundamental issue as to why drug-
resistant fluctuations and ‘OFF’ periods occur despite 
CDD. As an example, multiple randomised, double-blind, 
placebo-controlled trials have reported improved motor 
and non-motor symptoms with transdermal rotigotine as 
an early monotherapy [30, 32, 39, 40] and as an adjunc-
tive therapy in advanced PD [33, 41–45]. This strategy is 
based on preclinical studies where sustained delivery of 
rotigotine provided stable extracellular drug levels in the 
striatum, resulting in continuous stimulation of dopa-
mine receptors [46]. When translated into PD patients, 
continuous transdermal drug delivery of rotigotine 
results in stable plasma levels over a 24-h period [47], 
but whether this translates into CDS in the basal ganglia 
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Fig. 1  OFF periods in Parkinson’s disease. EMO: early morning off
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remains unclear, even though preclinical data under-
pin this concept. While there is a sustained improve-
ment in ‘OFF’ time and reduction in absolute ‘OFF’ time 
with rotigotine, motor fluctuations are not abolished 
and more than 50% of motor ‘OFF’ time remains across 
the patient population studied (Table  1). The effects of 
transdermal rotigotine on non-motor fluctuations, with 
the exception of pain [48], are unknown and need to be 
evaluated [49, 50], although it is presumed that the non-
motor fluctuations are likely also to be prevalent during 
these emergent “refractory” ‘OFF’ periods, as non-motor 
fluctuations are often associated with motor fluctuations, 
particularly with the ‘OFF’ state [1, 51]. Specific reasons 
for a failure to eliminate ‘OFF’ periods could be applica-
tion site reactions, which also represent the major rea-
son for discontinuation [52], or reduced patch adhesion 
[53]. Additionally, there could potentially be differences 
in the extent of rotigotine delivery through the skin and 
to the systemic circulation and then to the brain between 
individual PD patients, but these have not been defined. 
It could be argued that the rotigotine dose employed in 
the patches is inadequate to provide plasma/brain levels 
of the drug to abolish ‘OFF’ periods, but these also persist 
in patient populations receiving concomitant oral dopa-
minergic therapy. Finally, it is reasonable to assume that 
the “refractory” ‘OFF’ periods during rotigotine treat-
ment are qualitatively more severe than those present 
with apomorphine or levodopa. In fact, despite the lack 
of specific studies comparing ‘OFF’ quality between the 
different regimes, it is well known that levodopa treat-
ment is associated with better motor function and qual-
ity of life when compared to dopamine agonists [54, 55], 
with the exception of apomorphine which has been con-
firmed to be as effective as levodopa [56, 57].

CSAI is indicated for patients with unpredictable or 
prolonged ‘OFF’ time, motor fluctuations and dyski-
nesia [58]. The efficacy of CSAI, in monotherapy or as 
add-on to levodopa, in reducing the ‘OFF’ time has been 
demonstrated in several uncontrolled open-label series 
(Table  2). The average ‘OFF’ time reduction was 60%, 
while the average reduction in dyskinesia severity was 
30% [59]. This was confirmed in the TOLEDO study, the 
first-ever randomised, parallel-group, double-blind, pla-
cebo-controlled, multi-centre trial examining CSAI over 
12  weeks in advanced PD [36]. The study showed that 
apomorphine significantly reduced ‘OFF’ time compared 
to placebo (− 2.47 vs − 0.58  h/day), without increasing 
troublesome dyskinesias, and allowed a dose reduction 
of concomitant oral antiparkinsonian medications. These 
effects were maintained in the open-label extension of the 
TOLEDO study over 52 weeks [60]. The effects of CSAI 
were comparable to LCIG in terms of efficacy in treating 
motor fluctuations in advanced PD [61], but once again 
without the abolition of ‘OFF’ time, despite optimisation 
of both apomoprphine delivery and concommitant oral 
or transdermal therapy. Although apomorphine is also 
beneficial in treating some non-motor symptoms of PD, 
such as mood or cognition [62, 63], there is no evidence 
on the treatment of non-motor fluctuations occurring 
during the ‘OFF’ state. The persistence of ‘OFF’ periods 
despite the clear efficacy of CSAI in advanced PD, can 
be due, as with rotigotine, to the under-dosing, although 
‘OFF’ periods are emergent even with high-dose infusion 
of apomorphine, either in monotherapy or as an add-on 
to oral levodopa, as in most of the studies which have 
evaluated apomorphine efficacy [64]. It is feasible that 
occasional technical issues related to the device, such as 
pump failure, line blockage or inaccurate needle inser-
tion, can cause a reduction of CSAI efficacy [61, 65]. The 
extent of apomorphine delivery from the subcutaneous 
site to the systemic circulation may be determined by the 
site of injection (the abdomen seems to be the best site), 
the state of the skin (warm skin increases the absorp-
tion compared to cold skin), and volume and depth of 
the injection (a greater volume is associated with a bet-
ter absorption) [61, 66]. But these are unlikely to explain 
the persistence of ‘OFF’ periods across the patient popu-
lations studied. Finally, the occurrence of subcutaneous 
nodules due to an inflammatory reaction [61, 67] can 
mechanically affect local absorption directly or by alter-
ing the blood flow [61]. But again, this seems unlikely a 
cause of the persistence of significant ‘OFF’ time.

In patients with advanced PD and severe motor fluc-
tuations, continuous delivery of LCIG directly to its site 
of absorption in the duodenum avoids the typical fluctua-
tions in plasma profile associated with conventional oral 
levodopa formulations, which lead to a non-physiological 

Table 1  Reduction of daily ‘OFF’ time with rotigotine patch 
treatment

Data from controlled studies assessing the efficacy of rotigotine transdermal 
patch in reducing ‘OFF’ time in the treatment of patients with advanced disease. 
*Weighted for participant number per study

Study Number of 
participants

Average 
follow-up 
duration 
(months)

Reduction of 
daily ‘OFF’ time 
(%)

LeWitt et al. [41] 168 6 37

Poewe et al. [44] 204 6 25

Nicholas et al. [33] 397 4 34

Mizuno et al. [42] 110 5 31

Nomoto et al. [43] 54 3 32

Zhang et al. [45] 170 3 34

Weighted average improvement in OFF time* 32.4
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pulsatile stimulation of striatal dopamine receptors and 
are associated with levodopa-induced motor fluctuations 
and complications [24]. Pharmacokinetic studies have 
shown a significantly reduced intra-subject variability 
in plasma levels over the period of infusion compared 
to that during oral treatment [95, 96]. The continuous 
delivery of levodopa is expected to markedly reduce 
‘OFF’ periods in advanced PD compared to oral therapy, 
and this has been confirmed in a systematic review and 
meta-analysis [97], and in an exhaustive qualitative analy-
sis of 27 studies with mixed designs in which ‘OFF’ time 
outcome measures were reported ≥ 12  months after the 

initiation of LCIG [98] (Table 3). The ‘OFF’ time showed 
a mean relative reduction of 47%–82% at 3–6 months of 
follow-up and up to 83% at 3–5 years of follow-up [98]. 
However, as with other continuous delivery systems, 
‘OFF’ time was not abolished and similarly, the effects on 
non-motor fluctuations have not been studied, despite 
the proven efficacy on specific non-motor symptoms 
such as sleep, fatigue, and gastrointestinal symptoms [62, 
63]. Despite the reductions of ‘OFF’ time, the persistence 
of ‘OFF’ periods during LCIG therapy can be due to sev-
eral factors, mostly overlapping with those described 
for CSAI. The LCIG device-related issues such as tube 

Table 2  Reduction of daily ‘OFF’ time with continuous subcutaneous apomorphine infusion treatment

Data from open-label studies assessing the efficacy of continuous subcutaneous apomorphine infusion (CSAI) in reducing ‘OFF’ time in the treatment of patients with 
advanced Parkinson’s disease. Only studies with reported reduction of daily ‘OFF’ time were included

±Studies in which CSAI monotherapy was achieved in the whole cohort or in a sub-group of patients

*Only the cohort before deep brain stimulation has been included

**Weighted for participant number per study

Study Number of participants Average follow-up duration (months) Reduction of 
daily ‘OFF’ time 
(%)

Stibe et al. [68] 11 8 62

Chaudhuri et al. [69] 7 11 85

Frankel et al. [70] 25 22 55

Pollak et al. [71] 9 10 67

Hughes et al. [72] ±  22 36 59

Stocchi et al. [73] 10 12 58

Poewe et al. [74] 18 20 58

Kreczy-Kleedorfer et al. [75] 14 26 77

Gancher et al. [76] 6 3 58

Colzi et al. [77] ±  19 35 72

Pietz et al. [78] ±  25 44 50

Wenning et al. [79] ±  16 57 55

Kanovsky et al. [80] 12 24 80

Manson et al. [81] ±  64 34 49

Di Rosa et al. [82] 12 12 40

Morgante et al. [83] 12 24 60

Katzenschlager et al. [84] 12 6 38

De Gaspari et al. [85] 13 12 51

Garcia-Ruiz et al. [86] 82 20 80

Martinez-Martin et al. [87] 17 6 65

Antonini et al. [88] 12 60 49

Drapier et al. [89] 23 12 36

Borgemeester et al. [90] 45 26 45

Sesar et al. [91] 230 26 78

Sesar et al. [92]* 18 16 74

Papuc et al. [93] ±  9 24 86

Isaacson et al. [94] 99 3 47

Katzenschlager et al. [60] 84 52 53

Weighted average improvement in OFF time** 62.4



Page 5 of 14Rota et al. Translational Neurodegeneration           (2022) 11:43 	

dislocation and pump malfunctioning, or peristomal 
complications such as the presence of granulation tissue, 
skin problems or local infection, might further contribute 
to ‘OFF’ persistence [99, 100]. In addition, comorbid H. 
Pylori infection as well as alterations of gut microbiota, 
including small intestinal bacteria overgrowth (SIBO) 
and high prevalence of tyrosine decarboxylase-producing 
bacteria, can interfere with LCIG absorption, ultimately 
leading to motor complications and persistence of ‘OFF’ 

periods [29, 101–103]. Constipation might contribute 
to LCIG erratic gut absorption [104], and protein-rich 
meals (containing large neutral amino acid) can worsen 
the parkinsonian symptoms, because of levodopa fluc-
tuations in the brain [103, 105]. On the other side, fasting 
can also contribute to the worsening of motor fluctua-
tions. A recent study has demonstrated that the mainte-
nance dose of LCIG is strongly correlated with the mean 
plasma concentration of levodopa in the absence or 

Table 3  Reduction of daily ‘OFF’ time with continuous levodopa-carbidopa intestinal gel

Data from open-label studies assessing the efficacy of continuous levodopa-carbidopa intestinal gel in reducing ‘OFF’ time in the treatment of patients with advanced 
Parkinson’s disease. Only studies which reported reduction of daily ‘OFF’ time were included

*Weighted for participant number per study

Study Number of participants Average follow-up duration (months) Reduction of 
daily ‘OFF’ time 
(%)

Nilsson et al. [111] 28 37 18

Eggert et al. [112] 13 12 70

Antonini et al. [113] 22 24 46

Antonini et al.[108] 19 14 68

Santos-Garcia et al. [114] 9 170 91

Merola et al. [115] 20 15 68

Fasano et al. [116] 14 25 49

Fernandez et al. [117] 192 21 58

Foltynie et al. [118] 12 12 43

Zibetti et al. [119] 25 36 50

Antonini et al. [120] 98 24 38

Zibetti et al. [121] 59 26 49

Caceres-Redondo et al. [122] 29 24 58

Sensi et al. [123] 28 24 57

Lundqvist et al. [124] 10 12 71

Fernandez et al. [125] 272 12 66

Calandrella et al. [126] 35 32 54

Buongiorno et al. [127] 72 22 56

Slevin et al. [128] 62 13 46

Lopiano et al. [129] 145 14 57

Vallderiola et al. [130] 177 35 66

Merola et al. [131] 20 62 55

Chang et al. [132] 15 12 71

De Fabregues et al. [133] 23 44 82

Antonini et al. [134] 375 24 65

Standaert et al. [135] 38 14 74

Juhasz et al. [136] 34 12 84

Zibetti et al. [137] 32 31 62

Fernandez et al. [138] 86 49 67

Lopiano et al. [139] 145 36 50

Fabbri et al. [140] 44 52 60

Popa et al. [141] 24 12 29

Standaert et al. [142] 195 12 65

Weighted average improvement in OFF time* 59.8
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presence of lunch, and comparison of the pharmacoki-
netic parameters showed that the coefficient of variation 
is significantly greater in fasting patients than in those 
that did eat [106]. Finally, it has been demonstrated that 
LCIG treatment is associated with high plasma levels 
of 3-O-methyldopa (3-OMD), a metabolite of levodopa 
(converted by catechol-O-methyltransferase [COMT]) 
which competes with levodopa itself for brain penetra-
tion, a phenomenon that can be counteracted by the con-
comitant administration of a COMT inhibitor [107, 108]. 
However, even when all these factors are taken into con-
sideration for optimization of LCIG administration, the 
persistence of ‘OFF’ periods is still commonly observed 
in everyday clinical practice. It should be noted that sub-
cutaneous levodopa infusion, which is currently under 
investigation, might be a valuable alternative option to 
LCIG, as it does not require intrajejunal tube insertion 
nor is influenced by some of the aforementioned issues, 
such as H. Pylori infection or SIBO. Preliminary data 
have indeed shown its efficacy in reducing daily OFF 
time by at least 2 h [28, 109, 110].

Determinants of persistent ‘OFF’ periods in CDD therapies
In this review, we have summarised the evidence for the 
effectiveness of the three most commonly used therapies 
employed to provide CDD in treating ‘OFF’ periods—
transdermal delivery of rotigotine, CSAI and LCIG. The 
conclusion reached is that even with CDD, significant 
amounts of ‘OFF’ time remain, appearing unresponsive 
to dopaminergic therapy. We have examined in detail the 
potential reasons why each CDD-based non-oral therapy 
might fail to abolish ‘OFF’ periods, in relation to the tech-
nologies underlying drug delivery. In individual patients, 
these are perfectly viable reasons for the persistence of 
motor fluctuations and should be addressed to optimise 
therapy.

However, a number of caveats need to set out before 
discussing the findings in greater detail:

(1)	 For each therapy, the major clinical parameter used 
to assess efficacy has relied on ‘OFF’ time, but the 
definition of ‘OFF’ can be vague and inconsistent 
and surprisingly, remains poorly defined. The ‘OFF’ 
time is often based on patients’ Hauser diaries, 
which might lack accuracy, as for other ‘ON/OFF’ 
diaries [143]. An alternative option for objective 
measurement of ‘OFF’ periods is the use of home-
monitoring devices, such as Parkinson’s Kineti-
Graph™ (PKG) or KinesiaU (Great Lakes Neuro-
technology), whose full potential in the clinical 
practice is still under investigation [144–146]. Addi-
tionally, the quality and the severity of the ‘OFF’ 

periods, together with the involvement of motor 
and non-motor components, need more clarity.

(2)	 It is unclear as to whether these therapies improve 
both predictable and unpredictable ‘OFF’ peri-
ods, or whether it is predictable ‘OFF’ periods that 
respond and unpredictable that persist.

(3)	 The response is highly variable among individual 
patients and a complete abolition of ‘OFF’ periods 
can be achieved in some, while others still exhibit 
marked ‘OFF’ time.

(4)	 It seems unclear whether additional standard oral 
dopaminergic therapy or a further increase in the 
dose for CDD, further reduces ‘OFF’ periods, as this 
may be masked by the severity of dyskinesia.

(5)	 The changes in the temporal pattern of ‘OFF’ peri-
ods over the day and over time after introduction of 
CDD remain to be fully mapped.

Having defined the caveats that complicate the data 
presented for each of the continuous therapies, there are 
potentially important conclusions that can be reached by 
a comparison of their individual profiles. The fact that 
the continuous therapies involve different drugs with dif-
fering modes of action and different routes of adminis-
tration using different technologies allows for exclusion 
of the drug delivery parameters set out in Table 4 to be 
responsible for the persistence of ‘OFF’ time.

The major arguments are set out below:

(1)	 Despite the use of differing technologies to provide 
CDD, the overall finding of persistent ‘OFF’ time 
is common to all. This suggests that a technology-
based explanation is not viable, with the exception 
of dose/time. A dose-based reason for remaining 
‘OFF’ time is feasible, but persistent ‘OFF’ time is 
seen with differing periods of daily drug delivery for 
levodopa and apomorphine, and rotigotine is deliv-
ered 24 h per day but still fails to remove ‘OFF’ peri-
ods.

(2)	 Site-specific reasons for persistent ‘OFF’ periods 
also appear unlikely based on the differing modes 
of drug delivery. Only levodopa is administered 
through the gastro-intestinal tract, and none of the 
multiple potential reasons underlying remaining 
‘OFF’ periods would apply to rotigotine or apomor-
phine delivery.

(3)	 In contrast to few studies on oral levodopa [147–
149], there is no evidence that plasma drug levels 
change during the day to coincide with remaining 
‘OFF’ periods or for other changes in the periph-
eral pharmacokinetics of levodopa, apomorphine 
or rotigotine. This leads to the conclusion that the 
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remaining ‘OFF’ periods are uncontrolled because 
of events occurring within the brain.

(4)	 There is no evidence for altered penetration of 
drugs into the brain that would coincide with ‘OFF’ 
periods. Only levodopa shows potential change of 
active uptake linked to competition from dietary 
large neutral amino acids [103, 105]. Rotigotine and 
apomorphine penetrate by simple diffusion [150, 
151].

(5)	 Involvement of conversion and storage of dopamine 
is only relevant to levodopa [152, 153] and does not 
apply to the dopamine agonists. Similarly, presyn-
aptic storage and the involvement of a long duration 
response only relate to levodopa [11] and would not 
explain ‘OFF’ periods resistant to apomorphine or 
rotigotine.

(6)	 Alterations in dopamine receptor stimulation 
would provide a common link for the drugs admin-
istered by continuous delivery. All are ‘broad-spec-
trum’ dopamine agonists or levodopa-based and 
have effects on the major post-synaptic dopamine 
receptor subtypes—at least in vitro [154]. Changes 
in dopamine receptor density may occur in PD 
although the direction of change is disputed. CDD 
may ‘desensitise’ dopamine receptors, leading to 
reduced efficacy. Indeed, Quinn and colleagues 
reported that 24-h intravenous infusion of levo-
dopa leads to a ‘tolerance’ after some days [155]. 
This has to be balanced against a lack of evidence 
for development of a similar tolerance after con-
tinuous 24-h delivery of rotigotine. However, altera-
tions in receptor sensitivity occur relatively slowly 
rather than being transient and rapidly reversible, 
and as such would not explain the resistant short-
duration ‘OFF’ periods. An exception to this could 
be the more rapid changes that are thought to occur 
in D-1 dopamine receptors linked to alterations in 
receptor trafficking [156].

(7)	 In LCIG-treated patients, worsening of parkinso-
nian symptoms and ‘OFF’ periods occur mainly in 
the afternoon/evening despite no change in levo-
dopa plasma level [107]. A similar change in the 
duration of response also occurs in response to 
apomorphine bolus injections [157], although it is 
unknown whether this is also seen with subcuta-
neous infusions of apomorphine. A role for physi-
ological diurnal patterns might explain this phe-
nomenon since motor function in patients with PD 
fluctuates throughout the day, often being worse in 
the afternoon [158–161] even in de novo PD [162], 
suggesting that this motor fluctuation is independ-
ent of dopaminergic medication. But this does not 
reflect the clinical reality of continuing unpredict-
able ‘OFF’ periods seen when using CDD.

Possible explanations behind the persistence of ‘OFF’ 
periods during CDD therapies
All of the above increasingly seems to lead to the conclu-
sion that the causes of persistent ‘OFF’ periods are not 
the drugs or the delivery technology, but rather the dis-
ease itself. It appears that despite the best efforts being 
made to deliver drugs in compliance with the concepts of 
CDD and CDS [163], dopaminergic therapy is not able to 
control the persistent ‘OFF’ periods that remain. An obvi-
ous explanation for this, is that the persistent ‘OFF’ peri-
ods are non-dopaminergic in origin. At first glance, this 
would seem to challenge the accepted view of ‘wearing 

Table 4  Possible reasons for persistence of ‘OFF’ periods in 
continuous drug delivery therapies

LCGI levodopa-carbidopa intestinal gel, CSAI continuous subcutaneous 
apomorphine infusion

Reasons for ‘OFF’ periods Rotigotine LCIG CSAI

Drug- or Device-related

Dose/Time ✓ ✓ ✓
Pump Failure × ✓ ✓
Line Blockage × ✓ ✓
Patch adhesion ✓ × ×
Tube/needle displacement/migration × ✓ ✓
Fibrosis/adhesion × ✓ ✓
Site-specific

Local Peritonitis × ✓ ×
Sub-absorption × ✓ ×
H. Pylori infection × ✓ ×
Gastritis × ✓ ×
Duodenitis × ✓ ×
Small intestinal bacterial overgrowth × ✓ ×
Protein-rich meals or fasting × ✓ ×
Constipation × ✓ ×
Skin conditions/skin nodules ✓ × ✓
Central or Disease-related

Brain penetration ? ? ?

Conversion to dopamine × ✓ ×
DA receptors stimulation ✓ ✓ ✓
Non-DA binding ? ? ?

Presynaptic storage × ✓ ×
Loss of long-duration response ✓ ✓ ×
Involvement of non-dopaminergic pathways ? ? ?

Others

Infection (e.g., urinary tract infection) ✓ ✓ ✓
Emotional stressor ✓ ✓ ✓
Diurnal (circadian) pattern ? ✓ ?
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OFF’ as a common manifestation of motor fluctuations 
being due to the loss of presynaptic dopaminergic ter-
minal storage, related post-synaptic dopamine receptor 
changes and responsiveness to improved dopaminergic 
drug delivery. However, another view would be that there 
are predictable ‘OFF’ periods, such as ‘wearing OFF’ 
which are dopaminergic in nature and respond to con-
tinuous delivery therapies, but that in addition, there are 
unpredictable ‘OFF’ periods that are non-dopaminergic 
in origin and do not respond to CDD. The non-dopamin-
ergic basis for some ‘OFF’ periods would not be out of 
line with similar views on the underlying cause of motor 
complications in PD, notably dyskinesia being due to 
changes in basal ganglia circuitry beyond the dopaminer-
gic inputs [164, 165].

If persistent ‘OFF’ periods are non-dopaminergic in 
origin, then a non-dopaminergic approach to treating 
them should be explored, in the same way that non-dopa-
minergic treatments have been evaluated for dyskinesia, 
with a role for glutamatergic, noradrenergic, and sero-
tonergic pathways among others [165, 166]. For example, 
amantadine, zonisamide, istradefylline and safinamide, 
which have a mixture of pharmacological actions that are 
non-dopaminergic in nature, all reduce ‘OFF’ time when 
used as an adjunct to dopaminergic therapies [68–70, 
167–175]. This illustrates that the occurrence of motor 
fluctuations and ‘OFF’ periods is largely beyond than can 
be explained simply by inadequate stimulation of dopa-
minergic function.

The conclusion of the evaluation of the use of CDD in 
early and late PD in relation to ‘OFF’ periods that appear 
resistant to further alterations in dopaminergic therapy, 
is that to explain their presence we need to look beyond 
dopamine and dopaminergic therapies. As a final caveat, 
it should be noted that the proposed explanation for per-
sistent ‘OFF’ periods has at least one substantial flaw, that 
is related to the fact that they can be explained with a 
single mechanism across everyone affected. An alterna-
tive view might be that they have multiple causes, differ-
entially applicable across the biological universe of PD. 
Future studies should also investigate whether introduc-
ing CDD at an early point in PD—before motor fluctua-
tions and motor complications occur—would prevent 
their development and as a result, the drug-resistant 
‘OFF’ periods would not become the problem that they 
currently pose.

A speculative view of future investigation of ‘OFF’ periods
While it is always good to challenge existing concepts 
of the complexity of PD, it is also necessary to provide 
directions for future investigation. This review has ques-
tioned the current view that ‘OFF’ periods are purely 
dopaminergic in nature, but does not rule out some 

manifestations of ‘OFF’ such as ‘wearing OFF’ being 
due to altered pharmacokinetic or pharmacodynamic 
responses to levodopa—although whether this would 
apply to dopamine agonists as well is unknown. But 
what it does raise is the question of the pathophysiology 
of ‘OFF’ periods in general, which is an area that needs 
more basic research. While much emphasis has been 
placed on understanding dyskinesia at the cellular and 
molecular level [171, 172], the same degree of investi-
gation has not been given to ‘OFF’ periods even though 
they are at least an equally common clinical problem 
and an area of unmet pharmacological need. It is plausi-
ble to argue that abnormal signalling within the striato-
thalamo-cortical loop contributes to ‘OFF’ periods in the 
same way as postulated for dyskinesia [171], but this has 
not been examined. A significant problem is that there 
are not sufficiently adequate experimental models of 
‘OFF’ periods in the manner available for dyskinesia [173, 
174]. This may tell us that using ‘simple’ dopaminergic 
denervation to model PD is not sufficient to induce those 
changes that lead to ‘OFF’ periods. But there has been so 
far, relatively little interest in exploring more widespread 
pathological changes in animal models as a way of under-
standing ‘OFF’ periods. It is quite possible that an imbal-
ance between monoaminergic transmitters (dopamine, 
noradrenaline and serotonin) could be at the heart of 
neural network disruption leading to ‘OFF’ periods as all 
are known to be involved in the control of motor func-
tion and probably dyskinesia [164, 165, 175]. What is 
clear from the use of a range of non-dopaminergic drugs, 
including some that alter serotoninergic, noradrenergic, 
glutamatergic, cholinergic and adenosine transmission 
(as detailed earlier), is that while these can decrease ‘OFF’ 
time, no single pharmacological manipulation has yet 
been shown to eliminate ‘OFF’ periods. Perhaps we need 
to revert to the use of ‘dirty’ drugs that would influence 
multiple neurotransmitters affected by PD if ‘OFF’ peri-
ods are to be controlled.

A final but highly relevant question that requires 
investigation is the meaning of ‘OFF’ periods, whether a 
redefinition is in order. First, ‘OFF’ periods are a catch-
all term that is routinely employed to cover unexplained 
immobility. We have highlighted the difference between 
‘predictable’ and ‘unpredictable’ ‘OFF’ but there seems to 
be virtually no detailed clinical investigation of the char-
acteristics and temporal components of ‘OFF’ periods in 
recent times. For example, we have highlighted the effects 
of CDD on ‘OFF’ periods, but despite the increasingly 
common use of advanced therapies, there seems no study 
investigating the changes of pattern, intensity, and tem-
poral occurrence of ‘OFF’ periods in individual patients 
before versus during CDD. This investigation is rela-
tively easy to undertake and would produce meaningful 
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outcomes to advance our understanding of those ‘OFF’ 
periods unresponsive to dopaminergic medication; how-
ever, the requirement of a levodopa pharmacokinetic 
profile creates logistical and funding difficulties. Sec-
ond and perhaps most provocatively, is what we regard 
as ‘OFF’: is it a pure manifestation of a failure of volun-
tary movement due to altered basal ganglia function or 
is it something else? Is it some other dysregulation of 
movement, a loss of cortical command, a manifestation 
of ‘freezing’? It could be that the ‘OFF’ periods relate to 
the occurrence of specific non-motor symptoms of PD—
apathy, lethargy, depression, impaired cognition—and we 
may miss important clues to the cause or causes of one of 
the most troublesome deficits in current treatment of PD. 
Lastly, it is important to acknowledge that ‘OFF’ and ‘ON’ 
are arbitrarily dichotomized aspects of the experience 
of PD patients who rarely endorse switch-like changes 
between these theoretical states. Instead, they experience 
“shades” of ‘OFF’ and ‘ON’ along a continuum whose arti-
ficial borders were created as endpoints in clinical trials. 
Future integration of technologies to measure motor and 
non-motor fluctuations in the patients’ own environment 
may well replace the rigid construct of ‘OFF’ and ‘ON’ 
and prompt the revisitation of the issues noted here from 
a patient-centric perspective.

Conclusions
‘OFF’ periods during CDD remain one of the biggest 
challenges in the care and treatment of patients with 
PD. More studies are needed to better characterize and 
understand this phenomenon, whose pathogenesis seems 
complex and beyond the simple dopaminergic dysfunc-
tion hypothesis [176].
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