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Abstract 

Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of 
prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of 
growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of 
Alzheimer’s disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of 
neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant 
expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, 
we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation 
of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications 
and current approaches that target furin for therapeutic interventions. This review may expedite future studies to 
clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative 
and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.

Keywords: Furin, Proteolytic cleavage, Neurodegenerative disease, Neuropsychiatric disease, Brain‑derived 
neurotrophic factor

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Furin is the first proprotein convertase (PC) found in 
mammals in 1990 [1]. It catalyzes the proteolytic matu-
ration of large numbers of prohormones and propro-
teins in the secretory pathway compartments [1–3]. The 
substrates of furin include hormones, cytokines, growth 
factors and enzymes, which play important roles in cell 
proliferation, anti-apoptosis, immunity and inflamma-
tion [1]. Furin also participates in the proteolytic pro-
cessing of proteins in viruses and bacteria [4], such as the 

maturation of SARS-CoV-2 spike protein [5–7]. Thus, 
aberrant activity of furin has been found to be associated 
with a strikingly diverse range of pathological events, 
including cancer, cardiovascular disorders, infectious dis-
eases and neurological diseases [4, 8–10]. Among these 
disorders, the role of furin in neurological diseases is the 
most poorly understood.

In the brain, the proprotein substrates cleaved by 
furin in  vivo include precursors of growth factors such 
as brain-derived neurotrophic factor (BDNF) and nerve 
growth factor (NGF) [11, 12], α- and β-secretases [13, 
14], multiple matrix metalloproteases (MMPs) [15, 16], 
and other enzymes and receptors [1, 17, 18]. Since these 
substrates play vital roles in neuronal survival, axon 
growth, dendritic development, synaptogenesis, neuro-
degeneration and inflammation [19–22], a stable activity 
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of furin is crucial for maintaining the homeostasis of the 
central nervous system.

A growing body of evidence has suggested that altera-
tions of furin expression and abnormal cleavage of its 
substrates contribute to the pathophysiological mecha-
nisms of neurodegenerative and neuropsychiatric dis-
eases. Reduced expression of FURIN mRNA has been 
found in the brains of Alzheimer’s disease (AD) patients 
[13], and decreased protein levels of furin are found in the 
cortex of AD mice [23]. The FURIN mRNA expression is 
decreased in the prefrontal cortex of schizophrenia (SCZ) 
patients [24], whereas increased protein levels of furin 
are found in the temporal cortex of epilepsy patients [25]. 
Moreover, studies have also shown that increasing furin 
expression in the mouse brain enhances BDNF matura-
tion and promotes dendritic spine density and memory 
in transgenic mice [26], and that inhibiting furin expres-
sion reduces the spontaneous rhythmic electrical activ-
ity of cerebral neurons and suppresses epileptic seizure 
activity in epileptic mice [25]. These findings indicate the 
involvement of furin dysregulation in these neurologi-
cal disorders, leading to increased interest in furin as a 
potential biomarker for diagnosis of or as a therapeutic 
target for treatment of neurological disorders.

In this review, we present an overview on the physi-
ological roles of furin in the brain and deregulations of 
furin expression and its substrates in neurodegenera-
tive and neuropsychiatric disorders, such as AD, Parkin-
son’s disease (PD), epilepsy, cerebral ischemia, SCZ and 
depression. We further discuss the implications of these 
findings and current approaches that target furin for 
therapeutic interventions.

Overview of furin
Gene structure and transcription of FURIN
Furin was identified in 1990 as the first mammalian PC 
that catalyzes the proteolytic maturation of prohormones 
and proproteins of neurotrophic factors, receptors and 
enzymes, serum proteins and pathogen molecules [1–
3]. The human FURIN gene is located at chromosome 
15q26.1, an open reading frame upstream of the fes/
fps proto-oncogene [27]. It has attracted more attention 
after  being discovered as the first mammalian homo-
logue of yeast Kex2 [4, 28, 29]. As shown in Fig. 1a, the 
human FURIN gene consists of 16 exons and encodes 
eight different transcript variants driven by three known 
promoters, P1, P1A and P1B [30, 31]. The respective 
transcripts differ only in the first untranslated exon and 
therefore generate identical furin precursor proteins [30, 
32]. While the P1A and P1B promoters resemble those of 
constitutively expressed housekeeping genes, the P1 pro-
moter is predicted to bind to many different transcription 
factors, including hypoxia-inducible factor-1 (HIF-1), C/
EBPβ, and CREB (cAMP-responsive element binding 
protein) [33–36].

Several intracellular and extracellular factors have been 
reported to regulate FURIN expression at the transcrip-
tional level. Hypoxia remarkably increases the expression 
of FURIN mRNA via stabilizing HIF-1 and enhancing its 
binding to hypoxia-responsive element site at the P1 pro-
moter [37]. Iron deficiency also upregulates FURIN tran-
scription   through stabilization of HIF-1α [35], whereas 
iron overload inhibits furin expression in a non-HIF-
1α-dependent manner [35]. Transforming growth factor 
beta1 (TGFβ1) can induce transactivation of the FURIN 

Fig. 1 Human FURIN gene and furin protein structures. a The human FURIN gene consists of 16 exons and encodes eight different transcript 
variants driven by three known promoters, P1, P1A and P1B. Exons are shown as green boxes and introns are shown as lines. The red boxes indicate 
the three promoter regions. The blue arrows indicate the positions where different transcripts start. The red arrow indicates the translational start, 
and the start codon (ATG) and stop codon (TGA) are marked with dotted lines. b Furin protein contains an N‑terminal signal peptide, a prodomain, a 
subtilisin‑like catalytic domain, a middle P‑domain, a cysteine‑rich region, a transmembrane helix domain and a C‑terminal cytoplasmic domain
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P1 promoter through binding to Sma- and Mad-related 
protein 2 (SMAD2) and SMAD4 in complex with other 
DNA-binding partners, creating a constitutive activation/
regulation positive feedback loop between TGFβ1 and 
furin [38]. Furthermore, extracellular regulated protein 
kinase 1 has been found to mediate the TGFβ–furin feed-
back loop in glioma-initiating cells [39]. In addition, bone 
morphogenetic protein 2 increases the transcription and 
translation of furin in human granulosa lutein cells by 
the  activin receptor-like kinase (ALK)2/ALK3-SMAD4 
signaling pathway [40].

Protein structure and expression of furin
Furin is a type I transmembrane protein and belongs to 
the subtilisin-like convertase family [1]. It is a calcium-
dependent endoserine protease [8]. Furin protein is com-
posed of a signal peptide, a prodomain, a subtilisin-like 
catalytic domain, a middle P-domain, a cysteine-rich 
region, a transmembrane helix domain and a cytoplas-
mic domain (Fig. 1b) [41]. The large extracellular region 
of furin has an overall homology with the same region of 
other members of the PC family [1]. The signal peptide 
directs translocation of the ~ 104-kDa pro-enzyme into 
the endoplasmic reticulum (ER), where the first cleav-
age in the inhibitory prodomain takes place via auto-
catalytic cleavage by the catalytic domain [42–44]. The 
second cut in the prodomain is made during trafficking 
of the propeptide-furin complex within the mildly acidic 
trans-Golgi network/endosomal system, which yields the 
active ~ 81-kDa mature enzyme. Furin circulates between 
the trans-Golgi network, cell surface and endosomes, in a 
tightly regulated manner, to catalyze various proproteins 
in different cellular components [43, 45, 46].

Furin is ubiquitously expressed in vertebrates and 
many invertebrates [9, 47, 48]. However, its mRNA and 
protein levels vary depending on the tissue and cell type 
[49–53]. FURIN has been found at high mRNA levels in 
the salivary gland, placenta, liver and bone marrow, and 
high protein levels in the brain, salivary gland, pancreas, 
kidney and placenta [49–53]. However, almost no expres-
sion is detected in skin, muscle and adipose tissues [49, 
50], although substrates of furin have been identified in 
human adipose tissues [54]. In normal single cells, high 
expression of FURIN mRNA is identified in hepatocytes, 
exocrine glandular cells, pancreatic endocrine cells and 
syncytiotrophoblasts [50, 53]. This tissue- and cell-spe-
cific expression pattern of furin infers the different func-
tions of furin in different tissues and organ systems.

Function of furin
Furin cleaves proproteins at the consensus site of 
Arg–X–Lys/Arg–Arg or Arg–X–X–Arg (X refers to 
any amino acid) [55, 56], and the cut is positioned after 

the carboxyl-terminal Arg residue [56]. The substrates 
cleaved by furin include a variety of precursor proteins 
within the secretory pathway, including hormones, 
growth factors and their receptors, neuropeptides, 
enzymes, adhesion molecules, metalloproteinases, bac-
terial toxins and viral glycoproteins [8, 29, 33]. As these 
molecules participate in many important cellular events, 
mouse embryos lacking Furin will die between days 10.5 
and 11.5, with notable defects in ventral closure and axial 
rotation [57]. Deregulations of furin expression are found 
in diverse pathological conditions, including cancer, dia-
betes, cardiovascular disorders, inflammation and neuro-
logical diseases [10, 58–62].

Furin and its substrates in the brain
Furin expression in the brain
Brain is one of the organs that show the highest level 
of furin protein [50], particularly in the cerebral cortex, 
hippocampus and cerebellum, where the furin level is as 
high as that in the salivary gland [50]. Moreover, it has 
been reported that in the brains of epilepsy patients and 
epileptic mice, furin is predominantly expressed in neu-
rons in the cortex and hippocampus, but barely in glial 
cells [25]. Double immunofluorescence staining showed 
a neuron-specific pattern of furin expression in the hip-
pocampal CA3 and dentate gyrus (DG) regions in wild-
type mice [63]. The neuron-specific expression may be 
related to the essential functions of furin in neurons. In 
addition, it has been reported that furin expression in 
glial cells may be increased in some pathological con-
ditions as shown by the increase of furin expression in 
cultured rat astrocytes exposed to oxygen–glucose dep-
rivation [64].

Substrates cleaved by furin in the brain
In the brain, the substrates proteolytically cleaved by 
furin include growth factors such as BDNF and NGF, 
proteases such as multiple MMPs, a disintegrin and 
metalloproteases (ADAMs) and beta-site APP cleaving 
enzyme 1 (BACE1), and receptors such as Notch recep-
tor, low-density lipoprotein receptor-related protein 1 
(LRP1), G protein-coupled receptor (GPR37) sortilin, 
integral membrane protein 2B (BRI2) and Ac45. Furin 
and its substrates potentially play important roles in 
diverse biological processes in the brain, including neu-
ronal survival, differentiation, axonal outgrowth, den-
dritic development, synaptogenesis, inflammation and 
neurodegeneration (Fig. 2).

BDNF
BDNF is a member of the neurotrophin family, which 
is widely distributed and extensively expressed in the 
brain [65–67]. BDNF is synthesized as pre-proBDNF and 
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folded in the ER [68]. The pre-proBDNF harbors a signal 
peptide, a pro-domain and a mature domain [69], and is 
transported to the Golgi apparatus where it is converted 
into a full-length proBDNF (~ 32  kDa) after removal of 
the signal peptide [59]. The proBDNF is then cleaved by 
the protease furin to release the pro-domain and generate 
the biologically active ~ 14-kDa mature BDNF (mBDNF) 
[70]. The proBDNF can also be secreted into the extra-
cellular space and then catalyzed by the extracellular 
proteases, such as MMPs [71, 72]. Furin is found to have 
higher efficiency than other PCs in cleavage of proBDNF 
in cultured rat astrocytes, and its aberrant activity leads 
to a significant change in mBDNF expression [64]. In 
terms of function, mBDNF binds to the tropomyosin-
related receptor kinase B (TrkB) [73] and triggers down-
stream intracellular signaling pathways, including the 
phosphatidylinositol 3-kinase/protein kinase B (PI3K/
Akt), the phospholipase C-γ/calcium-dependent protein 
kinase (PLCγ/CaMK), and the mitogen-activated protein 
kinase (MAPK)/ERK pathways [22, 74–76]. These sign-
aling pathways mediate transcription of genes essential 
for neuronal survival, differentiation, axonal outgrowth, 
dendritic spine development, hippocampal long-term 
potentiation (LTP) and synaptic plasticity [22, 49, 74–76]. 
In contrast, proBDNF binds to p75 neurotrophic recep-
tor (p75NTR) and induces apoptosis, spine shrinkage 

and long-term depression facilitation [77, 78]. Therefore, 
imbalances between proBDNF and mBDNF are involved 
in pathophysiological mechanisms of neurodegenerative 
diseases, as well as neuropsychiatric diseases [22, 73, 76, 
79–81].

NGF
NGF is the first identified member of the neurotrophin 
family [82]. Like other proneurotrophins, the ~ 30-kDa 
proNGF is synthesized in the ER [83]. Its pro-domain is 
cleaved mainly intracellularly in the trans-Golgi network 
by furin, rather than in secretory granules by other PCs 
[84, 85], releasing the mature NGF (mNGF, ~ 17  kDa) 
[86, 87]. Similar to BDNF, proNGF and mNGF also dif-
fer significantly in receptor interaction properties and 
bioactivity. The mNGF binds to tropomyosin-related 
receptor kinase A (TrkA) and promotes cell survival, dif-
ferentiation, growth and maintenance of specific types of 
neurons [88–90], whereas the proNGF binds to p75NTR 
with a high affinity and mediates neuronal cell death [91–
93]. The balance between proNGF and mNGF levels is a 
key determinant of homeostasis in the brain, and disrup-
tion of the balance is associated with diseases such as epi-
lepsy, AD, and ischemic stroke [94–96].

Other neurotrophins
The third type of growth factors of the neurotrophin 
family includes neurotrophin-3 (NT-3) and neurotro-
phin-4/5 (NT-4/5) [97, 98]. They are also synthesized 
as ~ 31–35-kDa precursors, and in turn proteolytically 
cleaved to release biologically active mature neurotro-
phins (~ 13–21 kDa) [84]. Similarly, intracellular cleavage 
of proneurotrophins is accomplished by furin [99]. The 
mature neurotrophins then bind to their corresponding 
receptors, the Trk family of receptor tyrosine kinases, 
and regulate neuronal survival and synaptic plasticity 
[100, 101]. Aberrant expressions of NT-3 and NT-4/5 
participate in pathophysiological conditions including 
motor dysfunction, cognitive decline, stroke, and SCZ 
[102–107].

MMPs
MMPs are a family of zinc-dependent metallopro-
teases [108], with many members being reported to be 
expressed in the brain, such as MMP-1, MMP-2, MMP-3, 
MMP-7, MMP-9, MMP-14, and MMP-24 [108]. MMP-1 
is expressed in both glia and neurons in the cortex, hip-
pocampus and cerebellum [108, 109]; MMP-2 is mainly 
expressed in astrocytes [110]; MMP-3 is expressed in 
glia and neurons in the cerebellum, striatum and hip-
pocampus [111]; and MMP-9 is mainly expressed 
in neurons in the cerebral cortex, hippocampus and 
cerebellum [112, 113]. Typically, MMPs consist of a 

Fig. 2 Activities mediated by furin and its substrates in the brain. 
The substrates of furin include growth factors such as BDNF and NGF, 
proteases such as MMPs, ADAMs and BACE1, and receptors such 
as Notch, LRP1, GPR37, sortilin, BRI2 and Ac45. They participate in 
diverse biological processes in the brain, including neuronal survival 
and death, proliferation and differentiation, dendritic development, 
synaptic plasticity, inflammation and neurodegeneration
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signal peptide, a propeptide sequence, a catalytic met-
alloproteinase domain with zinc, a hinge region, and a 
hemopexin domain [114]. The signal peptide is removed 
in ER [115], and the propeptide is cut off by furin or 
other PCs at a furin-like recognition motif [116–118]. 
The MMPs are thus activated inside the cell before secre-
tion or exposure to cell surface [119]. MMP-1 is shown to 
enhance the proliferation and neuronal differentiation of 
adult hippocampal neural progenitor cells via activating 
protease activated receptor 1 and subsequently increas-
ing the cytoplasmic  Ca2+ concentration [120, 121]. 
MMP-2 regulates astrocyte motility in connection with 
the actin cytoskeleton and integrins [122]. MMP-3 has 
a very broad range of substrates in the brain [123], and 
is upregulated in many pathological conditions, induc-
ing neuroinflammation and apoptosis [124]. MMP-9 
is specifically shown to regulate synaptic plasticity in 
the hippocampus by gain- and loss-of-function stud-
ies in vitro [125, 126]. Altered concentrations of MMP-3 
and MMP-9 have been found in AD patients, indicating 
their involvement in AD pathophysiology [127]. MMP-
1, MMP-2, MMP-9 and MMP-14 can cleave recombi-
nant α-synuclein [128, 129]. Elevated levels of MMP-2 
and MMP-3 have been identified in dopaminergic (DA) 
neurons in the substantia nigra in PD patients and animal 
models [129–131].

ADAM10
ADAMs are another major family of zinc-depend-
ent metalloproteases involved in limited proteolysis 
and shedding [132]. In the brain, ADAM10 is mainly 
expressed in neurons [133], and is involved in the pro-
teolytic processing of a variety of cell surface receptors 
and signaling molecules [134]. ADAM10 is synthesized 
in the ER as an inactive zymogen with a structure com-
prising a prodomain, a zinc-binding metalloprotease 
domain, a disintegrin domain, a cysteine-rich domain, a 
transmembrane domain and a C-terminal domain [133]. 
Furin cleaves the ~ 90 kDa pro-ADAM10, yielding a full-
length active ADAM10 (∼65 kDa) [135], and after C-ter-
minal shedding, a soluble ∼55-kDa ADAM10 is released 
[136]. ADAM10 has α-secretase activity [137]. It cleaves 
amyloid-β precursor protein (APP) to generate the solu-
ble αAPP fragment (sAPPα) rather than the neurotoxic 
amyloid-β (Aβ), playing a protective role in AD [138].

BACE1
BACE1 is the major β-secretase that cleaves APP to 
generate Aβ [139]. BACE1 is a transmembrane aspar-
tic protease, structurally similar to the pepsin family 
[140], containing two active catalytic site motifs in the 
luminal domain [141]. Like other aspartic proteases, 
BACE1 is synthesized as a precursor protein containing 

a N-terminal propeptide domain that is removed dur-
ing maturation of the enzyme [142]. Furin or a furin-like 
PC is responsible for cleaving the BACE1 proprotein to 
yield the mature enzyme with the highest β-secretase 
activity [143]. Like APP, BACE1 is highly expressed in the 
brain [144]. Significant increases of BACE1 enzymatic 
activity and protein concentration have been detected 
in brain tissues, cerebrospinal fluid (CSF) and serum of 
AD patients and subjects with mild cognitive impairment 
[145–147]. BACE1 inhibitors have demonstrated thera-
peutic effects in preventing the initial cleaving events of 
APP in AD animal models [148–153].

Notch receptor
The Notch gene family encodes transmembrane recep-
tors of ~ 300  kDa that are involved in cell-fate determi-
nation in vertebrates and invertebrates [154, 155]. The 
proteolytic processing of Notch receptor precursor is 
an essential step in the formation of biologically active 
Notch receptors. The constitutive processing of murine 
Notch1 requires a furin-like convertase, and mutations 
in the furin-cleavage site completely abolishes the pro-
teolysis of the Notch1 receptor [155]. In the developing 
brain, activation of Notch receptors upon ligand binding 
is involved in the preservation of neural progenitors and 
inhibition of neurogenesis [156, 157]. In the adult brain, 
Notch signaling influences neuronal apoptosis, microglial 
activation and synaptic plasticity [158–161]. Deregula-
tions of Notch signaling are involved in AD, depression, 
epilepsy, and stroke [159–163].

LRP1
LRP1 is a multifunctional receptor that belongs to the 
low-density lipoprotein receptor family [164]. It is syn-
thesized as a ~ 600-kDa precursor, which is cleaved by 
furin in the trans-Golgi network and transported to 
the cell surface as a mature form consisting of α-chain 
and β-chain [8]. The mature LRP1 is further processed 
by other enzymes, such as MMPs and γ-secretase, to 
release the intracellular domain (ICD) [8]. LRP1 is highly 
expressed in neurons and glia of the brain, and func-
tions to regulate proteinase activity, cytokine activity 
and cholesterol metabolism [165, 166]. The ligands for 
LRP1 include Aβ, ApoE and activated α2-macroglobulin 
[167]. In addition to controlling ligand metabolism, 
LRP1 can also regulate signaling pathways by coupling 
with other cell surface receptors or proteins, such as the 
N-methyl-D-aspartate (NMDA) receptors [168, 169]. 
The ICD of LRP1 can be transported into the nucleus, 
where it contributes to transcriptional regulation of tar-
get genes, including interferon-γ [170]. Accumulating 
evidence from preclinical and animal studies indicates 
that LRP1 is involved in AD pathogenesis not only by 
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regulating the metabolisms of Aβ and ApoE, but also by 
influencing synaptic plasticity and inflammation through 
Aβ-independent pathways [171]. LRP1 is detected at an 
abundant level in post-synaptic sites of neurons, and it 
interacts with several synaptic proteins, including post-
synaptic density protein 95, NMDA receptor and GluA1 
[169, 171–173]. Deletion of LRP1 in neurons has been 
shown to affect lipid metabolism, leptin signaling, glu-
cose metabolism, insulin signaling and anti-apoptotic 
signaling, resulting in neuroinflammation, motor dys-
function, and cognitive decline in mice [171, 172, 174, 
175]. In addition, LRP1 is also found to modulate stem 
cell proliferation and survival, astroglial differentiation 
[176, 177], and oligodendrocyte progenitor cell differen-
tiation [178].

GPR37
GPR37 is an orphan G-protein-coupled receptor that is 
widespread in several brain regions, including cerebral 
cortex, hippocampus, hypothalamus, midbrain and  cer-
ebellum [51]. It has a long extracellular N-terminal ecto-
domain which is recently demonstrated to be processed 
by both ADAM10 and furin [179]. The unfolded form of 
GPR37 is a substrate of parkin, and its intracellular reten-
tion leads to ER stress and DA neuronal death, linking to 
PD [180–182]. GPR37 is also involved in the DA signaling 
pathway by interacting with the dopamine transporter in 
mouse striatal presynaptic membranes, thereby modu-
lating dopamine uptake [183]. In addition, GPR37 inter-
acts with adenosine A2A receptors in the hippocampus, 
localized at the extrasynaptic plasma membrane of den-
dritic spines, dendritic shafts and axon terminals, regu-
lating adenosinergic signaling [184]. GPR37 is also found 
in astrocytes and oligodendrocytes, and is demonstrated 
as a negative regulator of oligodendrocyte differentiation 
and myelination [185, 186]. Overexpression of GPR37 
leads to profound neurodegeneration in animal models, 
selectively for DA neurons [187], while GPR37-knockout 
mice also show decreased dopamine levels in the stria-
tum and specific motor deficits [188, 189]. GPR37 knock-
out also triggers non-motor behavioral phenotypes, such 
as anxiety and depression-like behaviors, in an age- and 
gender-dependent manner [190, 191].

Sortilin
Sortilin is a type I transmembrane protein that functions 
as an endocytosis receptor and plays a role in protein 
sorting and cell signaling [192]. Sortilin is synthesized as 
an inactive precursor protein, which is cleaved by furin 
to remove the N-terminal propeptide [193]. The result-
ing mature protein can be further processed by other 
proteases to shed its extracellular domain from the cell 
surface [193]. Sortilin is generally trafficked via the 

trans-Golgi network, endosomes and plasma membrane, 
binding to different proteins and directing them to the 
secretory pathway or for degradation [193]. Sortilin has 
been reported to function as a neuronal receptor for APP 
and its cleavage products sAPPα and Aβ [194, 195]. The 
ICD of sortilin interacts with APP and regulates its lyso-
somal and lipid raft trafficking [194]. Sortilin also binds 
to oligomerized Aβ, inducing endocytosis of Aβ and trig-
gering apoptosis [195]. In addition, sortilin is found to 
be an essential component for transmitting pro-neuro-
trophin-dependent death signals from p75NTR, thereby 
playing roles in neuronal apoptosis, aging and brain 
injury [93, 196, 197]. On the other hand, sortilin has 
also been found to associate with TrkB receptors, which 
promotes cell survival [198]. Therefore, sortilin acts as a 
molecular switch from apoptotic response by interacting 
with p75NTR to neurotrophic effects via binding to TrkB 
receptors in neurons. Aberrant activity of sortilin has 
been found to be associated with the pathogenesis of AD 
and depression [193, 199, 200].

BRI2
BRI2 is a type II transmembrane protein of 266 amino 
acids, containing an extracellular region, a transmem-
brane region and a cytoplasmic region [201, 202]. Dur-
ing maturation, the ~ 4-kDa C-terminal propeptide of 
BRI2 is cleaved by furin at the trans-Golgi compartment, 
generating the membrane-bound form of mature BRI2 
(mBRI2) [203, 204]. The mBRI2 contains an evolutionar-
ily conserved BRICHOS domain that is found to act as 
a chaperone, facilitating proper folding of BRI2 and pre-
venting Aβ formation [205, 206]. In the human brain, 
BRI2 is intensively expressed in cortical and hippocampal 
pyramidal neurons [207]. The BRICHOS domain of BRI2 
interacts with APP and inhibits its processing, delaying 
fibrillation of Aβ [206–209]. Mutations in BRI2 and aber-
rant BRI2 expression have been reported to be associated 
with familial British dementia and involved in AD patho-
genesis [210–212].

Ac45
Ac45, an accessory subunit of the vacuolar-type ATPase 
(V-ATPase) proton pump, is a type I transmembrane 
protein that is encoded by ATP6AP1 in humans [213–
215]. Furin catalyzes the processing of Ac45 precursor 
protein to generate mature Ac45 [216, 217]. Furin-knock-
out β-cells show impaired cleavage of Ac45 [217]. Ac45 
is ubiquitously expressed with the highest levels in neu-
ronal and neuroendocrine cells and osteoclasts [218–
220], and may be required for proper synaptic vesicle 
acidification and neurotransmitter release [221]. Ac45-
deficient patients not only have immunodeficiency, but 
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also display a spectrum of neurocognitive abnormalities 
[222]. These indicate that dysfunction of Ac45 can be 
potentially involved in neurological disorders such as AD 
and epilepsy.

Furin in neurodegenerative and neuropsychiatric 
diseases
So far, many studies have demonstrated associations of 
deregulation of furin expression with the pathophysiol-
ogy of several neurodegenerative and neuropsychiatric 
diseases, as well as with alterations of substrates of furin 
in these diseases (Table 1).

Furin in AD
AD overview
AD is a progressive neurodegenerative disease and the 
main cause of dementia in the elderly, affecting around 
6% of the population over the age of 65 [223]. Currently, 
there is no effective prevention or treatment strategy for 
AD [20, 224, 225]. The major pathological hallmarks of 
AD are the accumulation of two aggregated proteins in 
the brain, Aβ and tau, leading to the formation of extra-
cellular senile plaques and intracellular neurofibrillary 
tangles (NFTs), respectively [226, 227]. Aβ is produced 
from proteolytic cleavage of APP by β- and γ-secretases 
[139]. In contrast, APP cleaved by α-secretase produces 
sAPPα which shows neurotrophic and neuroprotec-
tive functions [226]. Both Aβ senile plaques and NFTs 
induce neuroinflammation and neuronal apoptosis, con-
tributing to AD pathogenesis [226, 227]. Following Aβ 
and tau pathology, AD patients further exhibit synaptic 
damage and neuronal loss, particularly in the cortex and 
hippocampus, and show cognitive impairments as the 
disease progresses [228]. In addition to the Aβ cascade 
hypothesis, many other hypotheses have also been pro-
posed to explain the pathologic process of AD, including 
the tau hypothesis [229], the blood–brain barrier (BBB) 
dysfunction hypothesis [230], the metal ion dysregulation 
hypothesis [231, 232], the inflammation hypothesis [233], 
the oxidative stress and mitochondrial cascade hypothe-
sis [234, 235], and the insulin resistance hypothesis [236]. 
However, these hypotheses only explain certain aspects 
of the disease, and the mechanism of AD pathogenesis 
remains elusive.

Aberrant furin expression in AD
FURIN mRNA expression has been detected at a sig-
nificantly lower level in the brains of AD patients and 
Tg2576 AD mouse model than in controls [13]. Nota-
bly, decreased mRNA expression of Furin is observed in 
cortices of both 4- and 24-month-old Tg2576 mice com-
pared with their littermates, suggesting that furin reduc-
tion occurs in a relatively early age (prior to Aβ plaque 

formation) and may be involved in the pathogenesis of 
AD [13]. Moreover, this study also showed that injection 
of Furin-adenovirus into Tg2576 mouse brains markedly 
reduced Aβ production in the infected brain regions, 
which may be attributed to the enhancement of the 
α-secretase activity by furin cleavage of ADAM10 and 
tumor necrosis factor-α converting enzyme (TACE) [13]. 
Another study also showed decreased expression of furin 
and ADAM10 in the cortex of APP-C105 mouse model 
of AD compared to that of non-transgenic controls [23]. 
Moreover, treadmill exercise could elevate furin expres-
sion and suppress Aβ production in the APP-C105 mice 
[23]. While excess iron in AD brain induces disruption 
of furin activity, treadmill exercise alleviates cognitive 
decline and Aβ-induced neuronal cell death by promot-
ing α-secretase-dependent processing of APP through 
low iron-induced enhancement of furin activity [23].

In addition to furin expression in the brain, the 
plasma furin also decreases significantly while serum Aβ 
increases in AD patients [237]. The decrease of plasma 
furin strongly correlates with the increase of plasma 
iron, thereby iron overload in plasma was proposed to 
be a possible contributor to the low level of furin, and 
the downstream reduction of α-secretase activity might 
account for the increase of Aβ [237]. Besides, stud-
ies have also reported that the bilateral injection of Aβ 
into the intracerebral ventricle of mice can induce furin 
expression compensatorily, which subsequently increases 
NGF via modulation of its maturation [238, 239].

Expression of substrates of furin in AD
Many proteins that are proteolytically processed by furin 
also show altered expression in AD. Numerous studies 
have indicated that the relative levels of BDNF mRNA 
and proteins are decreased in the hippocampus and cor-
tex in AD patients [240–246]. Particularly, decreased 
mBDNF/proBDNF ratio has been found in the parietal 
cortex of subjects with mild cognitive impairment [246], 
suggesting that reduction of mBDNF occurs in early 
stages of AD and contributes to the impairment of syn-
aptic plasticity and memory. In addition to AD patients, 
transgenic AD mouse models also show reduced mBDNF 
expression and decreased mBDNF/proBDNF levels in 
the hippocampus [247–249], indicating the involvement 
of altered cleavage of BDNF in AD pathology.

Similar to BDNF, NGF, Notch1, ADAM10, BACE1, 
MMPs, LRP1, BRI2 and sortilin also show altered expres-
sion or activity in AD. ProNGF increases markedly in 
the cortex and hippocampus of AD brains [94, 250, 251]. 
Notably, the increase of proNGF also appears in sub-
jects with mild cognitive impairment [250]. These find-
ings reflect that the decreased processing of proNGF 
to mNGF is involved in AD pathogenesis. Notch1 
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expression is increased in the hippocampus of AD 
patients, which may be linked to tau aggregation [252]. 
BACE1 expression has been found to be elevated in the 
cortex and CSF of AD patients as compared to the age-
matched normal subjects [146], which is correlated with 
increased Aβ [253, 254]. MMP-1 levels are significantly 
elevated in AD patients in all cortical areas, which may 
contribute to the BBB dysfunction seen in AD [255]. 
MMP-2, MMP-9 and MMP-14 expression is up-regulated 
age-dependently in astrocytes and amyloid plaques in the 
hippocampus of  5× FAD mice [256]. Sortilin protein and 
the cytoplasmic domain of sortilin are found to be sig-
nificantly increased in brains of AD patients, which con-
tribute to the pathogenesis of AD by increasing cell death 
and impairing neuronal differentiation [199, 257].  LRP1 
mRNA and protein are reported to be increased in neu-
rons and GFAP-positive activated astrocytes associ-
ated with neuroinflammation in AD patients [258, 259]. 
Meanwhile, a decrease of LRP1 has also been reported 
in the midfrontal cortex of AD patients, playing a role in 
modulating Aβ deposition and AD susceptibility [260]. In 
addition, in the APP23 mouse model, LRP1 is increased 
in the cortex but decreased in the vascular endothelial 
cells, which may account for the imbalance between Aβ 
efflux and influx across the BBB [261]. The level of BRI2 
containing the BRICHOS domain is increased in the hip-
pocampus of early-stage AD patients, whereas the level 

of the BRI2-APP complex is decreased, accompanied by a 
decrease of furin, indicating that the aberrant processing 
of BRI2 may promote its deposition and affect its func-
tion in halting Aβ production and aggregation [212]

Potential role of furin in AD pathology
The above findings suggest an important role of furin 
in AD pathology. The downregulation of furin in AD 
patients or animal models likely leads to lower cleavage of 
ADAM10, TACE, proBDNF and proNGF. The decreased 
ADAM10 and TACE lead to reduced α-secretase activity, 
which in turn promotes Aβ generation and deposition; 
on the other hand, the low levels of mBDNF and high lev-
els of proNGF cause neuronal death and synaptic dam-
age (Fig. 3a). These alterations can account in part for the 
pathological symptoms of AD. In addition, the relation-
ships between furin deregulation and changes in MMPs 
and LRP1 in AD pathology have yet to be investigated, 
and the causes of furin downregulation in AD need to be 
clarified.

Furin in PD
PD overview
PD is the second most common neurodegenerative dis-
order, pathologically characterized by abnormal deposi-
tion of α-synuclein aggregates in Lewy bodies and loss of 
nigrostriatal DA neurons [262, 263]. The striking clinical 

Fig. 3 Proposed working models of how aberrant furin expression participates in the pathogenesis of Alzheimer’s disease (a), epilepsy (b), cerebral 
ischemia (c) and schizophrenia (d)
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symptoms of PD are motor symptoms such as tremor, 
rigidity, bradykinesia and postural instability. Patients 
with severe motor symptoms often have difficulties 
moving their hands, or standing and walking due to the 
tremor and stiff muscles, which severely affects the qual-
ity of their lives [263]. PD patients also display non-motor 
signs and symptoms, such as olfactory loss, autonomic 
dysfunction and rapid eye movement sleep behavior dis-
order, which usually precede the motor symptoms but 
are often overlooked [264]. The mechanism of neurode-
generation in PD remains unclear, and currently there is 
no cure for PD.

Aberrant furin expression in PD
Currently, there is no report on the changes of furin 
expression in PD patients or murine models. However, 
in Parkinson’s-related Drosophila  model, furin 1 has 
been found to be highly concentrated in TH-positive DA 
neurons [265], and furin 1 is translationally regulated 
by leucine-rich repeat kinase 2 (LRRK2) and involved in 
the impairment of synaptic plasticity and neurodegen-
eration [266]. In addition, in the paraquat-induced Dros-
ophila model of PD, furin 1 expression is also enhanced 
by paraquat exposure in DA neurons [265]. These results 
highlight a potential role of furin in PD pathogenesis.

Expression of substrates of furin in PD
Aberrant BDNF expression has been found during the 
pathological processes of PD. The amount of 27-kDa 
BDNF is increased in the CSF samples of PD patients 
compared with normal controls [267], whereas serum 
BDNF levels are significantly lower in PD patients than 
in healthy controls, which are correlated with motor 
impairment and cognitive deficits in PD [268, 269]. 
MMP-2 levels are reduced in PD patients in the sub-
stantia nigra, but not in the cortex and the hippocampus 
[131]. MMP-3 levels are increased in a rat model of PD 
induced by injection of 6-hydroxydopamine into the sub-
stantia nigra [129], and MMP-3 may play a pivotal role 
in the progression of PD through digestion of α-synuclein 
in DA neurons and modulation of α-synuclein aggrega-
tion and Lewy body formation [129, 130]. Serum MMP-1 
is significantly lower in PD patients than in controls, and 
the difference is more prominent in females [270]. Both 
mRNA and protein of GPR37 accumulate in Lewy bod-
ies in the midbrain of PD patients [181, 182], and the 
increased Ecto-GPR37 in CSF is proposed as a potential 
biomarker for PD [182]. However, no studies currently 
exist regarding the specific relationship between furin 
expression and changes in these substrates in PD patients 
or animal models. Thus, deeper exploration of the 

underlying mechanisms remains essential in future stud-
ies, which may uncover new therapeutic targets for PD.

Potential role of furin in PD pathology
Although there is no report on the change of furin 
expression in vertebrate models of PD, the highly 
increased furin 1 expression in DA neurons of Parkin-
son’s-related Drosophila model indicates a potential role 
of furin in PD pathology. Furthermore, changes in the 
expression of some substrates of furin have been detected 
in PD models, such as increased GPR37 and MMP-3, 
highlighting the possible associations between furin and 
PD symptoms. Thus, the expression of furin in PD patho-
genesis and associations with the change of its substrates 
in PD need to be clarified urgently.

Furin in epilepsy
Epilepsy overview
Epilepsy is a common chronic neurological disorder 
associated with abnormal synaptic transmission [271], 
inappropriate neuronal firing, and imbalance of excita-
tion and inhibition of neuronal networks [272]. The etiol-
ogy of epilepsy is mostly unclear, which possibly includes 
genetic risks, brain diseases, and systemic diseases. The 
abnormal neuronal firing is found to be closely related to 
mitochondrial dysfunction and abnormalities in neuro-
transmitters and ion channels [273, 274]. Due to the dif-
ferent starting sites and transmission modes of abnormal 
neuronal discharges, clinical manifestations of epilepsy 
are complex and diverse, including disorders in motor, 
sensory, and autonomic nervous systems and conscious-
ness [275].

Aberrant furin expression in epilepsy
It has been reported that furin protein levels are increased 
in the temporal neocortex of patients with temporal 
lobe epilepsy (TLE) and in the cortex and hippocam-
pus of kainic acid (KA)-induced and pentylenetetrazol 
(PTZ)-kindled epileptic mice [25]. Moreover, transgenic 
overexpression of furin in mice increases the susceptibil-
ity to epilepsy and increases the epileptic activity [25]. 
Furin has been identified to play a role in influencing the 
inhibitory synaptic transmission in epileptic mice [25]. In 
addition, an increase in Furin mRNA has been found in 
the hippocampus of KA-exposed  mice [12], and the co-
localizations of the increased Furin mRNA with Ngf and 
Bdnf mRNAs suggest a potentially important role of furin 
in the pathophysiology of epilepsy [12].

Expression of substrates of furin in epilepsy
Studies on animal models of epilepsy have pro-
posed potential involvement of dysregulations of 
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neurotrophins, such as BDNF, NGF and NT-3, in human 
epilepsy [276–282]. TLE patients with hippocampal scle-
rosis show increased mRNA levels of BDNF, NGF and 
NT-3 in granule cells of hippocampus, which are corre-
lated with either hippocampal neuron loss or aberrant 
supragranular mossy fiber sprouting [276]. Patients with 
intractable TLE show a marked increase in protein lev-
els of BDNF in the temporal neocortex [277]. Moreover, a 
rapid increase in the proBDNF level is found in principal 
neurons and astrocytes of all hippocampal subfields in 
pilocarpine-induced status epileptic mice, which is pro-
posed to be associated with the reduced proBDNF cleav-
age machinery [278]. Similar to the changes in BDNF, 
Ngf mRNA increases in the hippocampus and neocortex 
of rats with limbic seizures [279]. The secreted proNGF 
is considered as a pathophysiological death-inducing 
ligand [280], while blocking proNGF can inhibit neuronal 
loss after seizures [281]. Notch signaling is activated in 
KA-induced epileptic mice and in human epileptogenic 
tissues, while activation of Notch signaling further pro-
motes neuronal excitation of CA1 pyramidal neurons 
[163]. In addition, a large number of studies have shown 
that the expression levels of MMP-2, MMP-3, MMP-9 
and MMP-14 in the brains of epilepsy patients or animal 
models are increased and dynamically regulated at differ-
ent stages of epileptogenesis [283–289]. MMP inhibitors 
are considered as potential therapeutic drugs because 
of their anti-seizure and anti-epileptogenic effects [285, 
290].

Potential role of furin in the pathology of epilepsy
The above findings suggest a crucial role of furin in the 
pathology of epilepsy. The upregulation of furin in epi-
lepsy patients or animal models may promote the cleav-
age of proBDNF, proNGF, Notch receptor and MMPs. 
As a result, the inhibitory and excitatory synaptic trans-
missions are affected, leading to abnormal neuronal dis-
charge, which contributes in part to the symptoms of 
epilepsy (Fig. 3b). However, the underlying mechanisms 
for furin upregulation and furin-mediated activities in 
epileptogenesis need to be determined.

Furin in cerebral ischemia
Overview of cerebral ischemia
Cerebral ischemia is a neurodegenerative disease caused 
by reduced blood supply to the brain tissue [291], and 
is currently a major cause of death and disability glob-
ally [292]. Cerebral ischemia causes reduced delivery of 
oxygen and glucose to the brain, and as a result, a loss of 
consciousness can occur [291]. The occurrence of meta-
bolic disorders during ischemia or tissue hypoxia is rela-
tively well established, but the subsequent reperfusion is 
the major events leading to cell and tissue dysfunctions 

[293]. Ischemia–reperfusion injury is the inexplicable 
aggravation of cellular dysfunction during the restora-
tion of blood flow after a period of ischemia [294]. The 
reperfusion can lead to potentially very harmful effects, 
such as necrosis of irreversibly damaged cells, cell swell-
ing, vascular and endothelial injury and mitochondrial 
dysfunction [295].

Aberrant furin expression in cerebral ischemia
It has been found that the Furin mRNA level in rat hip-
pocampus at 24 h after transient global cerebral ischemia 
is two-fold of that in sham-operated controls, indicating 
a possible role furin may play [296]. In a focal ischemic 
rat model established by middle cerebral artery occlu-
sion, increases in Furin mRNA and protein levels are 
found in the piriform cortex of the ischemic hemisphere 
2 h after reperfusion compared with sham-operated ani-
mals, and it is predicted that the elevation of furin may 
contribute to the disruption of BBB during ischemia 
[297]. Another recent study found that the level of Furin 
mRNA in the ipsilateral cortex of hypoxic-ischemic rats 
had an insignificant increase at 6  h after ischemia, but 
then decreased significantly at 15  h and was sustained 
at a low level for 7 days [298], while Furin mRNA in the 
ipsilateral hippocampus was elevated at 6  h and 3  days 
but decreased at 15 and 24 h after injury compared with 
that of the control rats [298]. The change in furin expres-
sion is considered to account for the decrease of BDNF in 
the ipsilateral cortex and hippocampus of the rats [298]. 
An in  vitro study also showed that the protein levels of 
furin and BDNF are upregulated in cultured rat astro-
cytes exposed to oxygen–glucose deprivation [64]. These 
findings indicate that furin may play important roles in 
the pathogenesis of cerebral ischemia and in the recovery 
from ischemia brain damage.

Expression of substrates of furin in cerebral ischemia
In addition to the changes in furin expression, the lev-
els of Bdnf  mRNA and protein in the ipsilateral cor-
tex and hippocampus of hypoxic-ischemic rats are 
altered at different degrees at different time points after 
hypoxic-ischemic injury [298]. Many other studies have 
also reported changes of MMP levels, including levels 
of MMP-2, MMP-9 and MMP-14, in the model of focal 
ischemic rats [297, 299–302]. In particular, increased 
expression and activity of MMP-2 and MMP-9 are found 
in different models of focal cerebral ischemia, implying 
their potential roles in early matrix degradation, loss of 
vascular integrity, and neuronal injury in the ischemic 
lesion [300, 301]. In addition, a significant increase in the 
cleavage of LRP1 by furin has been found in rats after 
cerebral ischemia, which is predicted to aggravate neu-
roinflammation, and administration of a furin inhibitor 
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inhibits the cleavage of LRP1 and decreases co-localiza-
tion of ICD of LRP1 with furin in ischemic areas [303]. 
These findings imply that the furin-mediated cleavage of 
MMPs and LRP1 may be involved in the pathophysiology 
of ischemic brain injury.

Potential role of furin in the pathology of ischemia
The above observations imply the involvement of furin 
in the pathology of cerebral ischemia. Changes in furin 
expression may exist in varied temporal and spatial pat-
terns after ischemic injury in the brain. The upregulation 
of furin in ischemic patients or animal models may pro-
mote the cleavage of MMPs, particularly MMP-2, MMP-
9, and MMP-14. The activation of these MMPs leads to 
early matrix degradation and loss of vascular integrity, 
and finally contributes to BBB breakdown and neuronal 
injury in ischemic lesions (Fig. 3c). Moreover, the ICD of 
LRP1 is increased, which aggravates neuroinflammation. 
The relationship between changes of furin level and other 
molecules such as BDNF in ischemic brain injury needs 
to be elucidated in the future.

Furin in SCZ
SCZ overview
As one of the severe mental diseases, schizophrenia is 
characterized by cognitive distortions including impair-
ments in concentration, thinking, speed of cognitive 
information processing, and verbal working memory 
[304]. These impairments in cognitive functions persist 
throughout the disease and determine the functional 
status of patients [305]. The etiology of schizophrenia is 
complex, commonly associated with genetic variants and 
changes in development-related factors and regulatory 
molecules [306].

Aberrant furin expression in SCZ
A study by Fromer et al. in 2016 using RNA sequencing 
data from the dorsolateral prefrontal cortex of post-mor-
tem SCZ patients identified down-regulation of FURIN 
transcripts by risk allele [24]. They also found that deple-
tion of furin in zebrafish model has the largest impact 
on head size, which can be attributed to the furin deple-
tion-induced changes in neural cell proliferation and 
migration [24]. Furthermore, downregulation of furin 
expression specifically at the rs4702 G (in the 3’ UTR of 
FURIN) allele by miR-338-3p reduces the production 
of mBDNF [307]. In addition, the association between 
pleiotropic effects of FURIN genetic loci and SCZ traits 
has been reported recently by several different studies 
[308–310]. A study using datasets from the Psychiatric 
Genomics Consortium related to SCZ, major depressive 
disorder (MDD) and bipolar disorder (BIP) patients iden-
tified rs8039305 in the FURIN gene as a novel pleiotropic 

locus across the three disorders [309]. Similarly, another 
study identified rs17514846, a variant within an intron of 
FURIN gene, as a common trait between SCZ and cardi-
ometabolic disorder [310]. In addition, in C. elegans, the 
3’UTR of kpc-1 (furin) promotes dendritic transport and 
local translation of mRNAs to regulate dendrite branch-
ing and self-avoidance [311]. These findings indicate the 
important role of furin in brain development and in the 
pathophysiology of SCZ.

Expression of substrates of furin in SCZ
The deregulation of BDNF expression has been exten-
sively studied in SCZ patients and animal models [312–
319]. Significant reductions of BDNF mRNA and protein 
have been observed in the dorsolateral prefrontal cortex 
of patients with SCZ compared to normal individuals 
[312]. The reduced BDNF/TrkB signaling in the prefron-
tal cortex appears to underlie the dysfunctions of inhibi-
tory neurons in subjects with SCZ [313]. Studies have 
also shown significant reductions of BDNF in the hip-
pocampus as well as NT-3 concentrations in the fron-
tal and parietal cortical areas, in SCZ patients [314]. On 
the contrary, some studies have shown that the BDNF 
concentration is significantly increased in cortical areas 
of post-mortem SCZ patients [314, 315]. In addition, 
the plasma BDNF levels in schizophrenic patients are 
remarkably lower than those in the controls, which is 
predicted to be associated with the decreased hippocam-
pal volume and cognitive impairments in first-episode 
and chronic SCZ [316, 317]. These findings suggest that 
the downregulation of neurotrophic factors could be 
responsible for neural maldevelopment and disturbed 
neural plasticity in the etiopathogenesis of schizophrenic 
psychoses. In schizophrenic animal models, reductions 
of Bdnf mRNA and protein levels have been observed in 
the cortex and the hippocampus [318, 319]. Decreased 
serum levels of NGF and NT-3 have been observed in 
SCZ as well [320–322]. In addition to the alterations of 
neurotrophins, plasma MMP-9 levels are also increased 
significantly in SCZ patients compared to controls [323], 
and MMP-9 gene polymorphisms in the brain are found 
to be associated with SCZ [324, 325]. Besides, increased 
MMP-2 levels in the CSF of SCZ patients are also 
reported [326].

Potential role of furin in SCZ pathology
The above findings uncover the involvement of furin in 
the pathology of SCZ. Furin expression in SCZ patients 
is downregulated, which in turn affects the matura-
tion of neurotrophins, such as BDNF, NGF and NT3. 
The chronic low trophic support for neurons leads to 
neural maldevelopment, dysfunction of inhibitory neu-
rons, disturbed neural plasticity and neurodegeneration, 
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contributing to the impaired cognitive performance/
function in SCZ (Fig.  3d). This hypothesis may in part 
explain the pathogenesis of SCZ. However, the relation-
ships between furin deregulation and changes in MMPs 
and other furin substrates in SCZ pathology have yet to 
be investigated.

Furin in depression and anxiety
Currently, there is no report on the changes of furin 
expression in patients with depression and anxiety. How-
ever, the SNP rs8039305 in the FURIN gene has been 
indicated as a novel pleiotropic locus across the disorders 
of MDD, BIP and SCZ [309], indicating a potential role 
of furin in pathological mechanisms of the psychiatric 
disorders.

Aberrant expression of several substrates of furin has 
been reported in patients with depression. The serum 
BDNF level is significantly lower in MMD patients than 
in healthy controls [327–329]. The mBDNF/proBDNF 
ratio is also decreased [329], suggesting that the reduced 
BDNF maturation plays a pivotal role in the pathophysi-
ology of MDD. Serum MMP-9 is found to be increased 
in MDD patients, while MMP-2 is decreased in MDD 
patients [323, 330], indicating the involvement of MMP-2 
and MMP-9 in mood disorders. In addition, MMP-2 lev-
els in the CSF are increased in MDD patients [326], and 
the state-dependent alterations of MMP-2 and activa-
tion of cascades involving MMP-2, MMP-7, and MMP-
10 appear to play a role in the pathophysiology of MDD 
[326]. LRP1 has been reported to be up-regulated in the 
hippocampus of depressive-like rat model [331].

In anxiety-like disorders, aberrant BDNF expression 
has also been reported. In the social deprivation stress-
triggered anxiety- and depressive-like mice, BDNF levels 
are reduced in the brain [332]. In serotonin transporter 
knockout rats with depressive- and anxiety-like behav-
ior, a decrease in mBDNF in the prefrontal cortex has 
been reported as well [333]. The alterations of proBDNF 
and mBDNF expression have been indicated in many 
other diseases with anxiety- and depressive-like behavior 
[334–337], highlighting the association between aberrant 
BDNF expression and anxiety and depression disorders.

Furin‑targeting strategies for neurological diseases
Currently, the use of furin-targeting strategies to diag-
nose or treat neurological disorders has not been 
reported in clinical studies. However, as described above, 
furin expression levels are altered in several neurodegen-
erative and neuropsychiatric diseases; for instance, serum 
furin level is decreased in AD mice. These highlight the 
great potential of furin to be a predictive diagnostic 
marker for neurological disorders in the future.

The potentials of furin-targeting strategies to treat 
neurological diseases have been suggested in several 
animal models (Table  2). In AD animal models, injec-
tion of Furin-adenovirus into the cortex of Tg2576 mice 
markedly increases the α-secretase activity of ADAM10 
and TACE, which in turn reduces Aβ production [13]. 
Furin-transgenic mice with brain-specific overexpres-
sion of furin exhibit increased dendritic spine density and 
enhanced learning and memory, which are attributed to 
the increased mBDNF level caused by furin [26]. In aged 
APP-C105 mice, treadmill exercise attenuates AD-related 
symptoms, possibly by ameliorating iron dyshomeosta-
sis and enhancing furin expression, thereby promoting 
α-secretase-directed processing of APP [23]. Gallic acid 
treatment in APP/PS1 mice has been shown to increase 
furin expression, which in turn promotes α-secretase 
activity and decreases Aβ production, partly reversing 
the learning and memory impairment in APP/PS1 mice 
[338]. In addition, cerebrolysin, a peptidergic mixture 
with neurotrophic-like properties, can improve the sur-
vival of neural stem cell grafts and alleviate Aβ deposi-
tion in the hippocampus of APP transgenic mice, and this 
protective effect also involves the activation of furin and 
increased BDNF expression [339]. On the other hand, 
knockdown of astrocytic Grin2a in rats reduces furin 
expression and in turn decreases the maturation and 
secretion of NGF, aggravating the Aβ-induced memory 
and cognitive deficits [238]. These findings suggest the 
potential of increasing furin expression as an effective 
approach for AD treatment, and open avenues for future 
targets and strategies for AD prevention and therapeutic 
interventions.

In paraquat-induced Drosophila model of PD, trans-
genic knockdown of Fur1 in DA neurons provides sig-
nificant protection against the loss of DA neurons [265]. 
In Drosophila models with LRRK2 overexpression, dis-
ruption of one allele of Fur1 or postsynaptic knockdown 
of Fur1 using transgenic RNA interference approach 
can attenuate the LRRK2-induced retrograde synap-
tic enhancement [266]. These findings suggest potential 
involvement of furin in PD pathophysiology and treat-
ment. However, great efforts are urgently needed to 
explore the role and pharmaceutical potential of furin in 
PD patients or murine models.

In both KA-induced and PTZ-kindled epileptic mouse 
models, lentivirus-mediated knockdown of furin in the 
hippocampus decreases the spontaneous rhythmic elec-
trical activity of cerebral neurons, and suppresses epilep-
tic seizure activity and severity [25]. This protective role 
is proposed to be associated with the regulation of syn-
aptic transmission by altering the transcription level of 
postsynaptic gamma-amino butyric acid A receptor [25].
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In a global ischemia/reperfusion rat model, mono-
sialoganglioside or flavanol epicatechin treatment both 
can improve spatial memory retention and acquisition in 
experimental ischemic rats [340], and these neurothera-
peutic effects are found to be related to the increases in 
furin and NGF levels [340]. In addition, application of 
furin inhibitor can protect primary cortical neurons from 

cell death induced by activated NMDA receptors [341], 
which is possibly attributed to the decrease of furin-
mediated cleavage of LRP1 [303]. These findings suggest 
that manipulating furin expression is potentially a good 
strategy for the treatment of ischemic brain injury.

In addition, some furin activators and inhibitors have 
been identified with drug potentials. The small molecules 

Table 2 Treatment effects of modulation of furin expression on neurological diseases

Disease Model Treatment Targeted region Furin expression Effects References

AD Tg2576 mice Furin adenovirus Cortex Cortex ↑ Reduces Aβ produc‑
tion by increasing 
α‑secretase activity of 
ADAM10 and TACE

[13]

Furin‑Tg mice Brain‑specific trans‑
genic overexpression 
of furin

Brain Brain ↑ Elevates production 
of mBDNF, enhances 
dendritic spine 
density and promotes 
learning and memory

[26]

AD APP‑C105 mice Treadmill exercise Whole body Cortex ↑ Increases furin 
expression, promoted 
APP cleavage by 
α‑secretase, and 
attenuates AD‑related 
symptoms

[23]

AD APP/PS1 mice Gallic acid Whole body Brain ↑ Increases furin 
expression, activates 
ADAM10, and 
reverses the loss of 
learning and memory

[338]

AD APP transgenic mice Cerebrolysin Hippocampus Hippocampus ↑ Increases furin and 
BDNF expression, 
improves survival of 
neural stem cell grafts 
and alleviates Aβ 
deposition

[339]

PD Paraquat‑treated 
Drosophila

Transgenic knock‑
down of Fur1

DA neurons DA neurons ↓ Protects DA neurons 
against the toxic 
effect of paraquat

[265]

PD Drosophila with 
LRRK2 overexpression

Disruption one allele 
of Fur1

Whole body Whole body ↓ Reduces the 
retrograde synap‑
tic enhancement 
induced by postsyn‑
aptic overexpression 
of LRRK2

[266]

PD Drosophila with 
LRRK2 overexpression

Postsynaptic knock‑
down of Fur1

Postsynaptic muscles Neuromuscular junc‑
tion ↓

Reduces the 
retrograde synap‑
tic enhancement 
induced by postsyn‑
aptic overexpression 
of LRRK2

[266]

Epilepsy KA‑induced epileptic 
mice; PTZ‑kindled 
epileptic mice

Lentivirus containing 
sh‑Furin

Hippocampus Hippocampus ↓ Reduces the spon‑
taneous rhythmic 
electrical activity of 
cerebral neurons and 
suppresses epileptic 
seizure activity and 
severity

[25]

Cerebral ischemia Global ischemia rats Monosialogan‑
glioside; Flavanol 
epicatechin

Whole body Hippocampus ↑ Increases the levels of 
furin and NGF

[340]
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phorbol esters dPPA (12-deoxyphorbol 13-phenylac-
etate 20-acetate) and dPA (12-deoxyphorbol 13-acetate) 
exhibit great effects in promoting furin expression via 
activation of the transcription factor CEBPβ in neuronal 
cells [34]. On the other hand, polyarginines, such as hexa-
D-arginine, significantly inhibit furin activity in vivo [342, 
343]. The therapeutic effects of these furin activators and 
inhibitors in prevention and treatment of neurological 
disorders need to be investigated further in the future.

Conclusions
A growing body of evidence has suggested the cru-
cial role of furin in the pathophysiological conditions 
of neurodegenerative and neuropsychiatric diseases. 
Notably, reduced furin expression is closely associ-
ated with the pathogenesis of AD. Pharmaceutical 
targeting of furin expression has shown great prom-
ise for AD treatment. In addition to AD, alterations of 
furin expression also exist in patients or animal mod-
els of epilepsy, cerebral ischemia, or SCZ. Further-
more, changes in the expression of neurotrophins, 
such as BDNF and NGF, are common to these neuro-
degenerative and neuropsychiatric diseases, and many 
are related to the abnormal cleavage of proneurotro-
phins. In addition to neurotrophins, other substrates 
of furin such as MMPs and LRP1 also exhibit expres-
sion changes in these neurodegenerative and neuropsy-
chiatric diseases. These lines of evidence highlight the 
important roles of furin and furin-mediated activities 
in the progression of these diseases, and render furin as 
a valuable therapeutic target. However, currently very 
little is known about the cellular and molecular mecha-
nisms of furin regulation in these diseases. Future stud-
ies are needed to clarify the molecular mechanisms of 
furin deregulation and its involvement in the pathogen-
esis of these diseases, and to develop new diagnostic 
and treatment strategies.
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