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Abstract

Neurodegeneration of Parkinson’s disease (PD) starts in an insidious manner, 30–50% of dopaminergic neurons
have been lost in the substantia nigra before clinical diagnosis. Prodromal stage of the disease, during which the
disease pathology has started but is insufficient to result in clinical manifestations, offers a valuable window for
disease-modifying therapies. The most focused underlying mechanisms linking the pathological pattern and clinical
characteristics of prodromal PD are the prion hypothesis of alpha-synuclein and the selective vulnerability of neurons.
In this review, we consider the two potential portals, the vagus nerve and the olfactory bulb, through which abnormal
alpha-synuclein can access the brain. We review the clinical, pathological and neuroimaging evidence of the
parasympathetic nervous system and the olfactory system in the neurodegenerative process and using the
two systems as models to discuss the internal homogeneity and heterogeneity of the prodromal stage of PD,
including both the clustering and subtyping of symptoms and signs. Finally, we offer some suggestions on future
directions for imaging studies in prodromal Parkinson’s disease.

Keywords: Parkinson’s disease, Prodromal, Alpha-synuclein, Parasympathetic nervous system, Olfactory system,
Subtype

Background
Parkinson disease (PD), characterized by its motor
symptoms (bradykinesia, resting tremor, and rigidity) [1],
does not start suddenly. By the time the clinical diagnosis
has been made, some 30–50% of dopaminergic neurons
have been lost in the substantia nigra [2]. Symptomatic
treatments are effective in most patients with PD, but cur-
rently no drugs have demonstrated convincing evidence of
disease modification. One possible explanation is that the
pathology of PD may be sufficiently advanced at the point
of diagnosis that none of the interventions can rescue the
remaining dying neurons, thus the prodromal stage of PD,
during which the disease pathology has started but is in-
sufficient to result in clinical manifestations, provides a
valuable window during which disease-modifying therap-
ies can be tested [3].

According to recent Movement Disorder Society
criteria, early PD can be divided into three stages:
preclinical PD (neurodegeneration has started yet
without evident symptoms and signs); prodromal PD
(symptoms and signs are present, but are still insuffi-
cient to define PD) and clinical PD (diagnosis of PD
based on classical symptoms). The criteria are based
upon probability and likelihood since it is not pos-
sible to identify prodromal PD with 100% certainty;
probable prodromal PD is defined as a high likelihood
(greater than 80%) and possible prodromal PD as a
likelihood between 30 and 80% [4, 5]. The cardinal
features of prodromal PD are non-motor and include
constipation, hyposmia/anosmia, depression, REM
sleep behavior disorder, orthostatic hypotension, and
loss of heart rate variability [6]. Notably, many of the
symptoms that emerge earlier in the disease course
can be attributed to dysfunction in the peripheral ner-
vous system or the peripheral part of the central ner-
vous system, such as the vagus nerve (e.g. constipation),
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the sympathetic nervous system (e.g. orthostatic
hypotension), or the olfactory bulb (hyposmia).
Neuronal aggregation of alpha-synuclein (α-syn) in

Lewy bodies and Lewy neurites, the pathological signature
of sporadic PD, can be found in the peripheral nervous
system of PD patients [7]. It is not clear whether these
structures are the original site of α-syn aggregation or
whether they are subject to α-syn pathology transported
from the brain. In support of the former hypothesis, trun-
cal vagotomy has been associated with a reduced risk of
PD after 20 years of follow-up (adjusted hazard ratio [HR]
= 0.53; 95% CI: 0.28–0.99) [8]. Based on evidence from
human studies, cell culture and animal models, the para-
digm of pathological protein propagation in neurodegen-
erative diseases has been extended to include the concept
that pathology arising from neurodegeneration-related
proteins such as α-syn, amyloid-β, tau and TAR DNA-
binding protein 43 (TDP43) may propagate in a prion-like
fashion [9–13]. On the other hand, the prion hypothesis
as selective neuronal vulnerability may be another import-
ant factor contributing to specific patterns of degeneration
in human and animal brains [13]. In PD patients who
underwent human fetal nigral transplantation, Lewy body-
like inclusions that stained positive for α-syn were found
in the grafted nigral neurons 14 years after transplant-
ation, suggestive of cell to cell transmission [14, 15]. It is
hypothesized that the propagation of α-syn in the brain
starts in the dorsal motor nucleus of the glossopharyngeal
and vagus nerves (DMV) and the olfactory bulb; from
these two structures the α-syn pathology spreads in an as-
cending pattern to the pons, the midbrain, the basal fore-
brain and finally to the neocortex through chains of
vulnerable neurons [16–18]. The so-called “Braak hypoth-
esis” provides a mechanistic underpinning for the pro-
dromal stage of PD, as non-motor symptoms could be
explained by pathology in the peripheral nervous system
and caudal brainstem that precede the onset of classic
motor symptoms which do not emerge until Lewy path-
ology affects the substantia nigra. In this review we
consider the two potential portals through which abnor-
mal α-syn can access the brain: the vagus nerve and the
olfactory bulb. We review clinical, pathological and neuro-
imaging evidence, and suggest future directions for studies
in prodromal disease.

Constipation and the parasympathetic nervous
system
Risks of PD
Constipation is a non-specific yet sensitive prodromal
symptom of PD (sensitivity 79%, specificity 31% from
Honolulu-Asia Aging Study) [19, 20]. At 10 years before
diagnosis of PD, the incidence of constipation was
already higher in those who went on to develop PD than
in controls (relative risk [RR] = 2.01; 95% CI: 1.62–2.49)

while the incidence of other typical prodromal symp-
toms (except tremor) fails to reach significance until
5 years before diagnosis [21]. To date, eight large longi-
tudinal cohorts confirmed the increased risk of PD in
populations with chronic constipation [19, 21–27], pro-
viding sufficient evidence for the Movement Disorder
Society task force to calculate a likelihood ratio (LR) for
constipation in the research criteria for prodromal PD
(constipation LR + = 2.2, LR− = 0.8) [5].

Underlying mechanisms and the role of α-syn
The mechanism of constipation in PD and prodromal PD
is still under debate. A-syn deposition and Lewy type α-
syn pathology affecting the gastrointestinal tract have been
frequently reported from biopsy and postmortem studies;
however, the types of antibodies, the morphological as-
sessment of pathology and the site of biopsy varied con-
siderably, in line with the inconsistent measures of
sensitivity and specify of α-syn pathology detected be-
tween patients and healthy aged controls [28, 29]. Among
the many contradictory results, one of the more consistent
findings is a rostral-caudal gradient of α-syn pathology
throughout the gastrointestinal canal (most dense in the
lower esophagus, stomach, and upper small intestine; low-
est in the colon and rectum) [7, 30], which correspond to
the rostral-caudal gradient of vagal innervation [31]. The
DMV is one of the earliest sites of α-syn aggregation in
the central nervous system according to Braak, and more
than 50% of efferent motor neurons were already lost by
the time that clinical PD became manifest [32]. It is hy-
pothesized that the accumulation of α-syn may originate
in the enteric nervous system and be transported in a
retrograde manner through the vagus nerve. By inducing
normal α-syn to misfold in a prion-like manner, the cycle
may repeat itself and lead to self-propagation and cell loss
in networks of connected neurons [13].
In retrospective pathological studies of PD patients

who underwent colon biopsy years before being diag-
nosed with PD, α-syn pathology in the gastrointestinal
tract could be detected up to 20 years prior to the full
manifestation of PD symptoms [33–35]. In one study of
patients with REM sleep behavior disorder (RBD), which
carries a high risk of future synucleinopathy, immuno-
staining of phosphorylated α-syn was reported in four of
17 subjects, whereas none of the 14 healthy controls was
positive [36]. Even though these findings support the ac-
cumulation of α-syn in the gut as a possible peripheral
mechanism for constipation, caution is required owing
to inconsistency of findings and the absence of direct
evidence of centripetal spread of α-syn in humans.
There is recent evidence for alterations in the gut

microbiome in PD [37–39]. Whether gut microbial con-
tent is altered as a manifestation of impaired colonic
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motility or whether altered GI flora can result in re-
gional neurotoxicity remains to be determined.

Evidence from medical interventions
Based on clinical and pathological evidence, further in-
vestigations were conducted into the potential neuropro-
tective effects of gastrointestinal interventions such as
vagotomy and appendectomy. A small cohort with 34
patients who underwent appendectomy before PD onset
showed that past appendectomy may be associated with
more years of life without PD symptoms (P = 0.040) [40],
however, a later population-based study of 265,758 pa-
tients with appendectomy and 1,328,790 comparison
controls indicated no difference in risk of PD between
subjects with or without appendectomy in mid or late
life (HR = 1.00; 95% CI: 0.74–1.36) [41].. On the other
hand, Svensson et al. assembled a population-based
registry-linkage cohort with 14,883 patients who under-
went vagotomy between 1977 and 1995 and analyzed
the incidence rates and HR of PD afterwards, the overall
adjusted HR between patients with truncal vagotomy
was 0.85, 95% CI: 0.63–1.14; for those with follow-up of
more than 20 years, adjusted HR was 0.53, 95% CI:
0.28–0.99 [8]. The study is the first evidence that by pre-
venting vagal transport, the risk of PD decreased, sup-
porting a possibly critical involvement of the vagus
nerve in the pathogenesis of PD.

Evidence from imaging
Positron emission tomography (PET) offers a useful tool
to investigate physiological dysfunction in vivo [42]. In
2014, the PET tracer 5-11C-methoxydonepezil was vali-
dated for the in vivo quantification of acetylcholinester-
ase (AChE) density in humans and thus can serve as a
biomarker for parasympathetic dysfunction. Significantly
decreased 11C-donepezil standard uptake values in the
small intestine and pancreas were detected in twelve PD
patients compared to age-matched controls (small intes-
tine: −35%, P = 0.003; pancreas: −22%, P = 0.001); the re-
sults were similar when distribution volume was
assessed (small intestine: PD 66.4 ± 15.4 control 111.9 ±
40.0, P = 0.001; pancreas: PD 126.2 ± 31.7 control 167 ±
64.2, P = 0.061) [43]. Interestingly, the rostral-caudal pat-
tern of vagal innervation was replicated by the distribu-
tion of 11C-donepezil binding: highest in the upper
gastro-intestinal tract and lower in the ileum and colon.
This study supports suggestions of impaired vagal activ-
ity in PD patients but there was no relationship between
reduced cholinergic activity and severity of PD. However,
reduced 11C-donepezil uptake is not specific for de-
creased vagal innervation, as it might also reflect the loss
of cholinergic enteric neurons.

Hyposmia and the olfactory system
Risk of PD
The other potential portal for aggregated α-syn to enter
the central nervous system are the anterior olfactory
structures. Olfactory loss demonstrated by objective test
is the only non-motor symptom that has more than 80%
specificity for the differential diagnosis of PD from other
parkinsonian conditions in the MDS clinical diagnostic
criteria [1]. Hyposmia is also predictive of the future de-
velopment of clinical PD in both general and high-risk
populations, but with lower specificity (sensitivity 79%,
specificity 53% from Honolulu-Asia Aging Study; sensi-
tivity 60%, specificity 72.6% from Prospective Validation
of Risk factors for the development of Parkinson Syn-
dromes study) [20, 44, 45]. Based on the predictive value
of olfactory dysfunction and dopaminergic deficit in
dopamine transporter (DAT) imaging, the nested
population-based Parkinson Associated Risk Syndrome
study was launched from 2008: 4999 subjects completed
a 40-item University of Pennsylvania Smell Identification
Test (UPSIT) in the first stage; 203 hyposmic subjects
and 100 normosmic subjects underwent 123I-ß-CIT/
SPECT at the baseline of the second stage [22, 46]. The
results demonstrated a significant predictive ability of
hyposmia for dopaminergic dysfunction (odds ratio
[OR] = 12.4, 95% CI: 1.6–96.1) at baseline and a 61%
phenoconversion rate of subjects who had both hypos-
mia and DAT deficit (of whom there were only 23) in
the 4-year follow-up [47]. For high-risk populations,
Postuma et al. reported that the UPSIT scores of RBD
patients who developed PD in 10 years were much lower
at baseline than RBD patients who remained disease-free
(HR = 2.8, 95% CI: 1.3–6.0, P = 0.003) [48]. Similar re-
sults were found in an RBD cohort from Spain and in a
cohort of first degree relatives of PD [49–51]. The
Movement Disorder Society task force determined a LR
+ of 4.0 and a LR− of 0.43 for olfactory dysfunction in
the research criteria for prodromal PD [5].

Underlying mechanisms and the role of α-syn
Hyposmia/anosmia in PD could reflect both cortical and
local pathological changes and likely involves a complex
integration of central network deficits and local neural
dysfunction, in which the role of α-syn may be critical.
The olfactory receptor neurons are directly exposed to
the external environment and thus prone to attack from
viruses, toxins or other pathological particles. The axons
of the olfactory neurons pass though the cribriform plate
and reach the mitral or tufted cells in the olfactory bulb,
whose axons project in turn to the anterior olfactory nu-
cleus, the piriform cortex, the periamygdaloid cortex,
the olfactory amygdala and entorhinal cortex [52, 53]. A-
syn pathology in the olfactory mucosa of PD patients
does not appear to be greater than that in healthy age-
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matched controls [54, 55], while in the olfactory bulb
there is evidence for abnormal α-syn deposition that dis-
tinguishes PD subjects from healthy elderly controls
with a sensitivity of 95% and a specificity of 91% [56].
The anterior olfactory nucleus, which receives input
from the mitral and tufted cells, was the most heavily in-
volved structure in the bulb region; the cortical nucleus
of the amygdala, which receives input from the primary
olfactory bulb projections, exhibited considerably more
α-syn pathology and neuronal loss than other amygdal-
oid nuclei [53, 56]. The extent of α-syn pathology in
other brain regions, including substantia nigra, amyg-
dala, cingulate cortex and orbitofrontal cortex, was
strongly correlated with pathological burden in the ol-
factory bulb in the brains of patients with Lewy body
diseases [56, 57]. In a small cohort of PD and incidental
Lewy body disease cases, α-syn pathology was found in
all sub-regions of the primary olfactory cortex. Despite
the fact that all the sub-regions are separated from the
olfactory bulb by only a single synapse, the burden of α-
syn pathology varies: highest in the frontal and temporal
piriform cortex and lowest in part of anterior entorhinal
cortex [58]. Together, these results support the possibil-
ity that the pathology of PD spreads along olfactory
pathways but is additionally influenced by differential
neural vulnerability.
Evidence from animal models showed that after injec-

tion of preformed fibrils of recombinant α-syn into the
olfactory bulb, wild-type mice developed not only olfac-
tory deficits, but also α-syn pathology in brain areas un-
connected to the olfactory system after a time interval of
about half a year [59]. Similar changes were seen follow-
ing intranasal instillation of pro-inflammatory lipopoly-
saccharide [60]. Widespread propagation of α-syn
pathology through connected anatomical pathways was
observed in the animal study: 1 month after intranasal
injection, α-syn phosphorylated on serine 129 (Pser129)
was found in areas directly connected to the olfactory
bulb, including piriform cortex, entorhinal cortex and
cortical amygdaloid nuclei; 3 months after, the pathology
had progressed to those brain areas one synapse re-
moved from the olfactory bulb, including the hippocam-
pus, insular cortex and frontal cortex; by 6 months
Pser129-positive cells were found two synapses removed
from the olfactory bulb and 12 months later Pser129
pathology was widespread in cortical associative and sec-
ondary cortical brain regions, somatosensory cortex and
the anterior cingulate area [59]. The propagation model
was created using preformed fibrillary assemblies of re-
combinant α-syn in mice, thus may provide only an in-
direct simulation of the behavior of α-syn in the human
olfactory system.
In the aged human population, a postmortem study

was performed in 164 participants who underwent

olfactory testing during the longitudinal Honolulu-Asia
Aging Study; incidental Lewy bodies were found in the
substantia nigra or locus coeruleus in only 1.7% of sub-
jects in the highest tertile of olfactory performance, but
in 18.2% of subjects in the lowest tertile, with an age-
adjusted OR of 11.0 (95% CI: 1.3–526) [61]. In another
study with 320 consecutive autopsies from a general
geriatric hospital, α-syn pathology restricted to the olfac-
tory bulb was detected in 16 subjects (2% of all partici-
pants), of whom two had α-syn pathology in the anterior
olfactory nucleus alone, and 14 in the peripheral olfac-
tory bulb [62]. In accordance with the results from pre-
vious studies, the extent of α-syn pathology in the
amygdala was strongly correlated with that in the olfac-
tory bulb (Spearman correlation R [RS] = 0.853) [56, 62].
Similar results were reported from elderly subjects with
incidental Lewy body disease or Alzheimer’s disease with
Lewy bodies [7, 63].

Evidence from imaging
Anterior olfactory structures
Morphological analysis by structural magnetic reson-
ance imaging (MRI) can be used to provide quantita-
tive measurements of anatomical changes of brain
structures, including volume, cortical thickness or shape.
A meta-analysis of six case-control studies showed signifi-
cant reduction of olfactory bulb volume in PD patients
compared to heathy controls, the pooled weighted mean
difference was −8.07 mm3 (95% CI: −14.72, −1.42) for the
right olfactory bulb and −10.12 mm3 (95% CI: −16.48,
−3.77) for the left olfactory bulb [64]. However, the results
must be interpreted with caution as the heterogeneity be-
tween studies was quite high (I2 = 76%). Another study
compared the volume of both olfactory bulb and tracts
between patients with PD and with other forms of parkin-
sonism including progressive supranuclear palsy (PSP),
multiple system atrophy (MSA), and corticobasal degener-
ation (CBD) and detected the lowest volume of 198.3 ±
60.1 mm3 in patients with PD, followed by 261.7 ±
75.5 mm3 in PSP, 278.2 ± 77.0 mm3 in MSA, 312.4 ±
30.2 mm3 in CBD, and 314.6 ± 42.6 mm3 in controls [65].
Using diffusion tensor imaging (DTI), two studies re-
ported a significant increase of mean diffusivity, presumed
to reflect axonal and myelin damage, in bilateral olfactory
tracts of the PD patients. The mean diffusivity values of
the olfactory tract and substantia nigra were significantly
correlated with decreased 6-[18F]-fluorolevodopa uptake
in the putamen (R = −0.71, P < 0.01; R = −0.52, P < 0.05 re-
spectively) [66, 67]. The findings implied that microstruc-
tural degradation of the olfactory tract and the substantia
nigra parallels progression of putaminal dopaminergic
dysfunction, but the time sequence of the pathological
changes cannot be determined from these studies. MRI
and DTI measurements of olfactory bulb/tract
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degradation were associated with decreased olfactory per-
formance [68, 69].

Network and neural transmitter systems
The process of odor identification requires short-term
working memory to receive test information and long-
term memory to recognize and name the odor, so a nor-
mal olfactory performance requires the integrity of both
primary olfactory cortex and higher order cognitive net-
work such as the limbic network and is modulated by
varies neural transmitters [70].
Focal voxel-based morphology analysis of the olfactory

sulcus showed smaller depth in the PD patients but this
did not correlate with olfactory identification perform-
ance [68], while the grey matter volume in the piriform
cortex was positively correlated with the olfactory per-
formance in early PD subjects [71].
In both PD and healthy controls, olfactory stimulation

activated vast brain regions in functional magnetic res-
onance imaging, including amygdaloid complex, hippo-
campal formation, lateral orbitofrontal cortex, striatum,
thalamus and midbrain; compared to control subjects,
the activation in amygdala and hippocampal formation
was reduced in PD patients [72]. In a study using olfac-
tory event-related potentials to identify hyposmia, fur-
ther decrease of activation was found in the inferior
frontal gyrus, insula and cingulate cortex as well as in
amygdala and hippocampus in PD without identifiable
olfactory event-related potentials [73]. Other cortical re-
gions with decreased activation in hyposmic PD included
medial frontal gyrus, middle temporal gyrus and occipi-
tal cortex [74]. In resting state, the regional homogeneity
and functional connectivity within primary olfactory cor-
tices and secondary olfactory structures were reduced in
hyposmic PD; along with significantly decreased con-
nectivity within limbic/paralimbic networks between
gyrus rectus and orbital frontal cortex, parahippocampal
gyrus, middle occipital gyrus, insula, temporal pole,
posterior cingulate and amygdala [75]. A longitudinal
18F-fluorodeoxyglucose PET study showed reduced
metabolism in bilateral medial prefrontal cortex and
parieto-occipito-temporal cortex in hyposmic PD at base-
line and a marked metabolic reduction in the posterior re-
gions such as posterior cingulate, precuneus, medial
occipital and parieto-occipito-temporal cortex at 3-year
follow-up; this pattern of reduced metabolism has some
extent of similarity with the PD-related cognitive pattern
reported by the Eidelberg group [76, 77]. The PD group
with hyposmia had significant deteriorations in Mini-
Mental State Examination score compared to normosmic
PD and one standard deviation change in the olfactory
score at baseline resulted in 18.7-fold increase in the risk
of developing PD with dementia in 3 years [76].

The connection between olfactory impairment and
cognitive decline was further revealed by PET studies:
positive correlations between UPSIT scores and acetyl-
cholinesterase (AChE) activities were found in the hippo-
campal formation, amygdala and neocortex (R = 0.56,
P < 0.0001; R = 0.50, P < 0.0001; R = 0.46, P = 0.0003;
respectively); while limbic AChE activity also corre-
lated positively with executive cognitive ability (r = 0.36,
P = 0.006) and verbal memory (r = 0.29, P = 0.03) [70]. In
the same study, higher UPSIT scores were associated with
better scores on cognitive measures, revealing the same
underlying cholinergic mechanism behind olfactory defi-
cits and cognitive decline. To date, the linkage between
hyposmia and cognitive disorder were reported from
symptomatic level, structure level, resting-state and event-
related functional level, metabolic level and neurotrans-
mitter level [45, 70, 75, 76].
Olfactory function has been reported to correlate with

the integrity of other neurotransmitter systems in PD,
such as binding potential of vesicular monoamine trans-
porter type 2 in the striatum (R = 0.30, P < 0.05) and
binding potential of DAT in the hippocampus, amygdala
and striatum (RS = 0.54, P = 0.003; RS = 0.43, P = 0.02;
RS = 0.48, P = 0.008; respectively) [70, 78]. There is
lack of significant correlation between binding potential of
serotonin transporter in the raphe nucleus, amygdala,
hippocampus, striatum or neocortex [79], which is contra-
dictory to the results from animals [80, 81]. A summary of
important imaging evidence regarding parasympathetic
nervous system and olfactory system was provided in
Table 1. Association with decrease of odor identification
capability and striatum DAT binding were also reported in
general aged populations, patients with “idiopathic” olfac-
tory loss and high-risk populations such as leucine-rich
repeat kinase 2 (LRRK2) G2019S carriers [22, 44, 49,
82, 83]. However, it is difficult to know whether this
reflects a true relationship between the dopaminergic
loss and olfactory dysfunction or whether both find-
ings might simply reflect underlying prodromal PD.

The internal homogeneity and heterogeneity of
prodromal mechanisms
In fact, the linkage between different prodromal symp-
toms and imaging signs of prodromal PD are universal.
Hyposmia has been associated with constipation, depres-
sion, anxiety and mild motor symptoms [45], a combin-
ation of symptoms is more predictive of decreased DAT
binding [22]. Other studies showed linkage between
hyposmia, symptoms of autonomic failure and imaging
evidence of sympathetic system denervation, such as lower
cardiac septal: hepatic ratios of 6-18F-fluorodopamine-de-
rived radioactivity and lower cardiac 123I-metaiodobenzyl-
guanidine uptake [84–86]. In both manifest PD with RBD
and idiopathic RBD patients, RBD has been linked with
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hyposmia, constipation, orthostatic symptoms, hallucina-
tions, depression and worse parkinsonian sign [87, 88]. In
population-based studies, substantia nigra hyperechogeni-
city has been associated with constipation, hyposmia, de-
pression and mild parkinsonian signs [89].
The cause of this clustering of motor and non-motor

symptoms is unknown, although different classifications
of empirical subtypes based on the clusters are proposed
[90], the phenomena may simply follow the severity of
pathological development of PD. Hyposmia, RBD and
constipation constantly appear in different clusters,
while the corresponding pathological structures are ei-
ther the potential portals for α-syn aggregation (DMV
and olfactory system) or are close to them (locus coeru-
leus/subcoeruleus complex and pedunculopotine nu-
cleus), so it is natural that the symptoms should cluster
together if α-syn propagates though the relevant struc-
tures. In support of this view, some evidence showed
possible higher α-syn burden in subjects with hyposmia,
RBD and reduced 123I-metaiodobenzylguanidine uptake
[91–93], in agreement with the Braak stage and the pro-
gression of PD. From this perspective, the homogeneity
in the development of parkinsonian pathology is empha-
sized, and the recently described research criteria for
prodromal PD assign each symptom and sign in those
clusters into a combined score to predict future PD
manifestation [5].
On the other hand, such a scheme may neglect im-

portant heterogeneity of mechanisms in the develop-
ment of PD. Braak and colleagues have proposed a dual-

hit hypothesis in which a neurotropic pathogen might
enter the brain through either the gastrointestinal or the
nasal route [94], either of which can result in disease
progression, but potentially with different manifestations
[95, 96]. Empirical nonmotor subtypes are recently pro-
posed, which categorize patients into brainstem pheno-
type (brainstem route, characterized with late onset
hyposmia, RBD and dysautonomia), limbic phenotype
(olfactory route, characterized by anosmia, depression,
fatigue and central pain) and cognitive phenotype
(diffused, characterized by cognitive decline) [97, 98].
So far, no pathological evidence is available to support
such subtyping and the internal axonal linkage between
the olfactory bulb, olfactory cortex and basal forebrain,
hypothalamus, and brainstem may introduce ambiguity in
the separation of the two hypothetical routes [99, 100].
However, functional and structural network analysis based
on neuroimaging may help to investigate the real propaga-
tion patterns of α-syn pathology in the brain.
Another illustration of heterogeneity in PD is based on

genetic subtypes, as there is evidence of pathophysio-
logical differences related to certain gene mutations,
such as increased inflammation in LRRK2 mutation car-
riers [101, 102]. The lack or lesser extent of α-syn depos-
ition in some genetic forms of PD further emphasizes
these differences [103]. Compared to RBD patients,
LRRK2 carriers have significantly lower prevalence of ol-
factory loss, cognitive decline or sleep disturbance in the
prodromal stage [104–108]. Neuroimaging studies are
needed to consider the functional and structural

Table 1 Summary of pathological and imaging evidence of parasympathetic nervous system and olfactory system involvement in PD

Structure α-syn pathology Structural imaging Functional imaging Molecular imaging

Vagus nerve Positive NA NA NA

Gastrointestinal tract Controversy NA NA Decreased 11C-donepezil standard
uptake values in the small intestine
and pancreas following a rostral-
caudal gradient [43]

Olfactory bulb Positive Bilateral reduction of olfactory
bulb volume [64, 65, 68]

NA NA

Olfactory tract Positive Bilateral increase of mean
diffusivity [66, 67]

NA NA

Olfactory cortex Positive Decrease of olfactory sulcus
depth; decrease of piriform
cortex volume [68, 71]

Reduced activation in amygdala
and hippocampal formation after
olfactory stimulation [72–74];
decreased regional homogeneity
and functional connectivity within
olfactory cortex and decreased
connectivity within limbic/
paralimbic networks [75]

Reduced glucose metabolism in
bilateral medial prefrontal cortex
and parieto-occipito-temporal
cortex [76]; positive correlations
between UPSIT scores and acetyl
cholinesterase activities in hippo
campal formation, amygdala and
neocortex [70]; positive correlations
between UPSIT scores and vesicular
monoamine transporter type 2
binding potential in striatum [70];
positive correlations between UPSIT
scores and dopamine transporter
binding potential in hippocampus,
amygdala and striatum [78]
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network changes in the genetic subtypes and to evaluate
the differences between the sporadic subtypes and gen-
etic subtypes in both non-manifest and manifest stages.
Even though not emphasized in this review, the sym-

pathetic nervous system may deserve more attention in
attempting to understand mechanisms of prodromal PD,
as there is evidences for pre-motor involvement of per-
ipheral noradrenergic depletion [109], while the norad-
renergic nucleus locus coeruleus may be affected prior
to the substantia nigra in the prodromal stage. Related
biomarker such as 123I-metaiodobenzylguanidine uptake
and 3-methoxy-4-hydroxyphenylglycol can be potential
early indicators for central neurodegeneration [110].

Conclusions
The underlying mechanism of prodromal PD includes
both homogeneous and heterogeneous aspects. A-syn
may proliferate in a prion-like manner and selectively
cause neurodegeneration, which possibly represents as
the Braak stage in pathology and lead to clusters of pro-
dromal symptoms and signs in clinic; while the gastro-
intestinal tract/vagus nerve and olfactory system can be
two separate routes and models of pathological progres-
sion. Further efforts are needed using neuroimaging as a
tool to investigate the network changes.
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