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The dual roles of cytokines in Alzheimer’s
disease: update on interleukins, TNF-α,
TGF-β and IFN-γ
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Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders in the elderly. Although the
mechanisms underlying AD neurodegeneration are not fully understood, it is well recognized that inflammation
plays a crucial role in the initiation and/or deterioration of AD neurodegeneration. Increasing evidence suggests
that different cytokines, including interleukins, TNF-α, TGF-β and IFN-γ, are actively participated in AD pathogenesis
and may serve as diagnostic or therapeutic targets for AD neurodegeneration. Here, we review the progress
in understanding the important role that these cytokines or neuroinflammation has played in AD etiology
and pathogenesis.

Keywords: Alzheimer’s disease, Cytokines, Interleukins, TNF-α, TGF-β, IFN-γ

Background
Dementia has become a global challenge for public
health. Currently, over 40 million people worldwide live
with this condition and this number would double by
2030 and more than triple by 2050 [1]. Alzheimer’s
disease (AD) is the most prevalent cause of dementia,
characterized by progressive cognitive and functional
impairments and as well as memory deterioration.
Although much effort has been made in the past several
decades to uncover the mechanism of AD pathogenesis
and to further translate these findings into the clinic,
there are still no mechanism-based treatments approved
for this devastating disease and the current therapies
only provide transient symptomatic release.
The two most well-known pathological hallmarks of

AD are extracellular amyloid plaques comprised of
aggregated Aβ, and intracellular neurofibrillary tangles
(NFTs) generated by hyperphosphorylated microtubule-
associated protein tau. Increasing evidence indicates that
neuroinflammation can act as an independent factor at

very early stage of AD, where the immune-related genes
and cytokines are the key participants.
Cytokines are a heterogeneous group of proteins with

molecular weights ranging from 8 to 40 kDa. These
multifunctional molecules can be synthesized by nearly
all nucleated cells and generally act locally in a paracrine
or autocrine manner. Many of them are referred to as
interleukins (ILs), indicating that they are secreted by and
act on leukocytes. Other important types of cytokines,
such as tumor necrosis factors (TNFs), interferons (IFNs)
and transforming growth factors (TGFs) that can cause
cell death, activate natural killer cells and macrophages,
and induce phenotypic transformation and act as a
negative autocrine growth factor, respectively. Another
member of the big cytokine family is the chemokines,
which can attract and activate leukocytes. In view of
their relatively exclusive functions, chemokines are
usually discussed separately.
As cytokines are rapidly changed in response to

infections or trauma, they have been classified as
either “pro-inflammatory” or “anti-inflammatory”. The
balance between the two types of cytokines guarantees
immediate elimination of the invading pathogens and
the timely withdraw of excessive reaction, which is the
key to preventing many diseases including the neu-
rodegenerative diseases. The expression of cytokine
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receptors is temporally and spatially regulated in the
central nervous system (CNS) [2], and they are closely
involved in cell proliferation, gliogenesis, neurogen-
esis, cell migration, apoptosis, and synaptic release of
neurotransmitters [3, 4].
Cytokines have attracted much attention towards their

exact roles in different stages of AD and the possibility
for therapeutics. However, cytokines levels detected in
AD patients were inconsistent among different research
groups, while regulating the expression of cytokines in
AD animal models yielded unexpected results as well.
Here, we will focus on the most extensively studied
cytokines, including ILs, TNF-α, TGF-β and IFN-γ, look-
ing for the commonness, reasoning the disagreement
among recent studies and give suggestions about how to
translate these precious findings from the laboratories to
the clinic in AD.

Evidence from AD patients
The postmortem analysis of the AD brains has provided
pioneering evidence for involvement of inflammation in
AD pathology. IL-1β [5], IL-6 [6] and TGF-β [7] and
many other cytokines have been found to accumulate
around the amyloid plaques in the brain of AD patients,
which led to numerous studies investigating the levels of
pro-inflammatory and anti-inflammatory cytokines in
the cerebral spinal fluid (CSF) or serum of patients with
mild cognitive impairment (MCI) or AD. Although
results are inconclusive, there appears a trend that pro-
inflammatory (IL-1β, IL-6, TNF-α) and anti-inflammatory
cytokines (IL-1 receptor antagonist (IL-1ra), IL-10) are
both elevated in the CSF and plasma of AD patients [8].
The alterations of cytokine levels reflect the disturbance of
immune system in AD, however, the evidence from the
body fluid is insufficient to decide whether these changes
are a initiating or secondary event of the disease, thus
more approaches should be adopted to illustrate a more
reliable picture for the role of cytokines.
Although the established genetic causes such as gene

mutations encoding amyloid precursor protein (APP),
presenelin 1 (PSEN1) and PSEN2 are only dominant to a
minority of familial type of AD, these risk genes have
deepened our understanding of AD mechanisms in many
aspects. For instance, the heterozygous rare variants in
gene coding triggering receptor expressed on myeloid cells
2 (TREM2) increases risk of AD with an unfavorable
inflammatory condition for Aβ clearance [9], thus
shedding a light on the possible initiating role of in-
flammation in AD pathogenesis.
To date, at least 23 cytokine polymorphisms involving

13 types of cytokines have been identified to be associated
with AD. Based on the following three conditions (1)
having polymorphisms that are significantly associated
with AD, (2) having corresponding genotype/phenotype

data, and (3) having previous records of the changed levels
in AD patients, these cytokines can be divided into five
groups as follows: (i) Cytokines like IL-1β, IL-6, IL-18 and
TNF-α have the above three conditions. (ii) Cytokines like
IL-4, IL-12, IL-23 and IFN-γ have the first two conditions
but have no level change or the related data in AD,
demanding new strategies to measure the cytokine level in
AD patients, especially in those with the polymorphisms.
(iii) Cytokines like IL-10 have conditions 1 and 3, calling
for future studies. (iv) Cytokines like IL-1ra and TGF-β
only meet condition 3 but have numerous evidence from
both in vivo and in vitro studies, indicating that the
genetic factor may not be crucial for their actions in AD
or need further studies. (v) Cytokines like IL-16, IL-15 and
IL-17 that either only have condition 1 or lack all three
conditions still needs more evidence to confirm their
involvement in AD.
Although many studies have discussed the polymorphism-

related cytokine level changes, the data are mostly refer-
enced from other research fields than AD, such as cancer.
The direct evidence for the cytokine levels in different
populations is also not convincing enough to draw a
definite conclusion.
In the subgroup meta-analysis of cytokine polymor-

phisms, many grouping factors could decrease hetero-
geneity and improve significance, such as races [10–14],
apolipoprotein E (ApoE) ε4 allele and time of AD onset.
As for races, it is rare to find significance in Asian and
Caucasian populations, and in more extreme cases, a
polymorphism indicates higher risk of AD in a popula-
tion while shows lower risk in the other [12, 13]. This
may be a result of the different frequencies of the
polymorphism between different races and interplay of
the variant with other unknown race-specific genes, or
even with the environment. Of course, the influence
from limited sample size of certain population cannot be
excluded [15]. ApoE ε4 allele, the widely recognized
late-onset AD triggering factor, is associated with at least
5 cytokine polymorphisms [16–20], indicating a poten-
tial synergistic interaction between them. ApoE ε4 can
modify AD risk in patients with diabetes or cardiovascu-
lar disease, which could be attributable to related hyper-
lipidemia and hypercholesterolemia. ApoE4 could also
independently cause neurovascular dysfunction through
triggering inflammatory cascades [21]. Thus, it would be
necessary to know whether cytokines play the initiating
or secondary role in the interaction with ApoE. In
addition, although few studies clarified the time of AD
onset in their samples, it seems from the present studies
the alteration cytokine levels have more influence on the
late-onset AD (LOAD). As many cytokines have a close
interaction with ApoE, whether this potential synergistic
effect is the sole reason to the onset-time association
deserves further investigation.
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When single polymorphism of a cytokine does not
always guarantee significance, the haplotype of one or
more different types of cytokines may show associations
with AD [20, 22, 23]. There is also a positive and linear
relation between the numbers of the pro-inflammatory
cytokine polymorphisms and AD risk [24], which suggests
that their corresponding proteins might interact with each
other in a cumulative manner [25].
Compared with the widely recognized genetic risk

factors like TREM2 or CD33 [26], the genetic evidence
from cytokines may be insufficient to prove that cytokines
levels imbalance alone is able to trigger AD. However, a
polymorphism of IFN-γ is associated with fast progressing
AD makes it certain that cytokines could play an active
role in exacerbating the AD course [27]. Together, the
cytokine polymorphisms may not markedly assist in pre-
dicting AD risk, but they have irreplaceable value in iden-
tifying pathways involved in the disorder and potential
drug targets. The relationship between cytokines with
races and ApoE and some of the AD-related cytokine
polymorphisms are summarized in Table 1.

Cytokines related to AD-like Aβ abnormalities
As one of the most well-known hallmarks of AD, Aβ is
actively involved in the neuroinflammation. It is believed
that Aβ has a predominant role in launching the detri-
mental self-exaggerated inflammation process that is
responsible for the disease progression. The Aβ peptide
is derived from amyloid precursor protein (APP) by
sequential cleavages of two membrane-bound proteases.
Aβ of different length, especially Aβ1-42 then form
soluble oligomers and fibrils, the latter is the major
component of extracellular amyloid plaques. Soluble Aβ
can be degraded by various extracellular proteases, while
fibrillary Aβ is phagocytosed by microglia, the resident
phagocytes of CNS, then enter the endolysosomal path-
way [28]. Astrocytes are also capable of degrading Aβ,
primarily the cerebrovascular Aβ [29]. The dysregulation
of Aβ clearance process resulted from the skewing of
microglia or astrocytes to pro-inflammatory state, char-
acterized by elevated levels of pro-inflammatory cyto-
kines and compromised ability in Aβ clearance, will lead
to Aβ accumulation and a sustained immune activation.
Several environmental factors, including diabetes,

obesity, aging that are associated with immune dis-
turbance could trigger the phenotype transformation of
glial cells [28] through either direct modulation of the
relevant mediators [30] or epigenetic modification [31].
Then, elicited by a self-propagating circle through the
interaction between Aβ and pro-inflammatory cytokines
[32–34], the chronic inflammation state is ultimately
independent of the primary stimulus, which is a possible
explanation to the failure of anti-amyloid treatment
strategies in late stage of AD [35].

Several anti-TNF-α biologic medications have rescued
Aβ deposition, behavioral impairments and inflamma-
tion in AD animal models [36–39], suggesting that
TNF-α is a detrimental factor in AD course and can
serve as a reliable AD target. However, hippocampal
expression of TNF-α in APP transgenic mice at early
stage induced robust glial activation that attenuate Aβ
plaques without altering the APP levels [40]. Although
there was only a suspicious infiltration of peripheral im-
mune cells, increased major histocompatibility complex
class II (MHC-II) cells were detected in the TNF-α exp-
ressing mice, indicating an enhanced antigen-presenting
efficiency and more frequent communication with infiltrat-
ing T cells, which may facilitate Aβ removal.
Several studies indicate that overexpression of IL-1β in

APP/PS1 mice reduces Aβ plaque accompanied by an
activated population of microglia with greater phagocyt-
osis [41, 42]. It is proposed that this group of microglia
might be endogenous Arg-1+ M2a phenotype induced
by Th2 cytokines, such as IL-4, secreted by a group of
cells recruited to the Aβ plaques during the sustained IL-
1β neuroinflammation [42]. The mice deficient in IL-1R
had lower recruitment of microglia to amyloid plaques,
implying that IL-1β can mediate microglial chemotaxis
[43]. Moreover, IL-4 can down-regulate TNF-α and up-
regulate MHC-II, insulin-like growth factor (IGF)-1 and
CD36 in microglia [44], and thus not only decrease the
neurotoxicity but also promote the ability of presenting
antigen to T cells [45]. Similar results were also seen
in IL-6 [46]. These studies indicate that overexpressing pro-
inflmmatory cytokines in CNS may generate Aβ-clearance-
promoting effect with a peripheral responses involved.
However, it is noteworthy that none of these studies have
relevant behavioral results (see Table 2), thus we cannot
assess the overall result of this type of cytokine modulation.
It is reported that chronic neuronal TNF-α expression in
3xTg AD mice led to large amount of neuronal death [47].
Whether the enhanced local inflammation and direct
neurotoxicity or periphery-mediated Aβ reduction has lar-
ger impact on the cognitive performance needs further
studies. Moreover, as the expressions of human APP or tau
in AD animal models are driven by various unnatural trans-
gene promoters, the possibility that some anti-cytokine
molecules may act through interacting with these regula-
tory elements cannot be ruled out [37]. Therefore, a critical
verification with alternative AD models is needed.
On the other hand, the typical anti-inflammatory cyto-

kines such as IL-4 and IL-10 suppress the inflammation
through inhibiting the secretion of IL-1β, IL-6, TNF-α by
microglia [48–50] in vitro. In contrast to IL-4 that triggers
M2a activation state associated with development of an
anti-inflammatory environment and enhanced phagocyt-
osis, IL-10 drives M2c polarization that is associated with
deactivation of microglia. Overexpressing IL-10 in several
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Table 1 Cytokine polymorphisms and levels in serum or CSF

Cytokinesa Levelsb Polymorphisms/
haplotypes

Corresponding
cytokine expressionc

Resultsd Methods Ref.

MCI AD

Plasma/serum CSF Plasma/serum CSF

IL-1 family [144] IL-1α = \ = or ↓ \ -889 C/T (rs1800587) T: ↑ * ↑ in EOAD Meta-analysis [145]

No * in LOAD.

* ↑ in Caucasians Meta-analysis [14]

No * in Asians.

IL-1β ↑ = ↑or = = or ↑ -511 C/T (rs16944) ? no* Meta-analysis [15]

-31 T/C (rs1143627) C: ? *↓ in Italians Case–control [25]

−511C/−31 T/IL1RN2 ? *↓ in elderly group of Brazilians Case–control [23]

−511C/−31C/IL1RN1 ? * ↑ in Brazilians Case–control

+3953 C/T (rs1143634) T: ↑ * ↑ in non-Asians Meta-analysis [15], [14]

Exon 5 E1/E2 \ No* in Taiwan population Case–control [146]

IL-1ra \ \ - ↓ [139] Intron 2 I/II/IV \

IL-18 [71] = \ = or ↑ ↑ -607 A/C (rs1946518) C: ↑ * ↑ in LOAD of Han Chinese. Case–control [20]

*↑↑ in ApoE ε4 carrier.-137 C/G (rs187238) G: ↑

-607 C or -137 G ↑ * ↑ in LOAD of Han Chinese.

IL-33 [147] \ \ \ \ rs11792633 C/T T: ↑ *↓ in non-ApoE ε4 carrier in
both Caucasians and Han Chinese.

Case–control [19],[148]

IL-4 [149] \ \ \ \ -1098 T/G (rs2243248) G: Possibly ↓ *↑ in Han Chinese Case–control [150]

T: Possibly ↓ *↑ in Caucasians [151]

-590 C/T (rs2243250) C: ↓ *↑ in Han Chinese and Caucasians [150], [151]

IL-6 family IL-6 [152, 153] = \ ↑or = = or ↑ -174 G/C (rs1800795) C: ↓ *↓ in Asians, No* in Caucasians. Meta-analysis [10].

*↓ in Italians. Case–control [25]

-572 C/G (rs1800796) C: ? *↑ in ApoE ε4 carriers. Case–control [16]

IL-11 [154] = \ = or ↑ ↑ \ \ \ \ \

IL-10 [155, 156] = ↑ = or ↑ = -1082 A/G (rs1800896) A: ? *↑ in Caucasians, No* in Asians. Meta- analysis [11]

G: ↑ ↓ in Caucasians Meta- analysis [22]

-819 T/C (rs1800871) ? no *

-592 A/C (rs1800872)

-1082G/-819C/-592C ? ↓

IL-12 family [157] IL-12A = \ = = rs2243115 T/G G: ↓ *↓ in LOAD in ApoE ε4 carrier of
Northern Han Chinese

Case–control [17]

rs568408 G/A A: ↓ *↓ in LOAD of Northern Han Chinese
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Table 1 Cytokine polymorphisms and levels in serum or CSF (Continued)

IL-12B = \ = = rs3212227 A/C C: ↓ *↓ in LOAD of Northern Han Chinese

IL-23 \ \ \ \ rs10889677 A/C (L-23R) C: ↓ *↓ risk in Northern Han Chinese. Case–control [18]

rs1884444 T/G (IL-23R) G: ↓ *↑ in ApoE ε4 carrier of Northern
Han Chinese.

Case–control

IL-15 [158] \ \ = =[159] \ \ \ \ \

IL-16 [160] \ \ \ \ rs4072111 C/T T: ? *↓ in LOAD of Iranians. Case–control [161]

IL-17 [162] \ \ \ \ \ \ \ \ \

TNF-α [163] = or ↑ ↓ = or ↑ or ↓ = or ↑ or ↓ -308 G/A (rs1800629) A: ↑ *↑ in East Asian Meta-analysis [12], [13]

*↓ in Northern European population.

No* in Italians Case–control [25]

TGF-β [164] \ ↓ ↑ or ↓ or = ↑ or ↓ or = \ \ \ \ \

IFN-γ [165] \ \ = = -874 T/A (rs62559044) A: ↓ *↑ in fast progressing AD Case–control [27]

Abbreviation: IL-1 ra IL-1 receptor antagonist, EOAD early-onset Alzheimer’s disease, LOAD late-onset Alzheimer’s disease
aEach cytokine or cytokine family was supplemented with a latest review for detailed information of physiological parameters
b↑: up-regulated, ↓: down-regulated, =: no change, \: no data. Unless otherwise noted, all the data of cytokine levels is from Brosseron et al. 2014 [8]
c↑: enhance the cytokine expression, ↓: attenuate the cytokine expression, ?: unknown yet
d*: significant, ↑: higher risk of AD onset, ↓: lower risk of AD onset
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Table 2 Methods and results from in vivo studies of cytokines

Cytokinesa Animals Main AD-like Pathology and
initiating time

Cytokines Expression System Expression
Duration

Resultsb Ref.

Delivery Method Administration
Routes

Immuno-histochemistry Behaviors

IL-1β 3xTg AD mice
(9 months old)

Aβ plaque: 6 mo.
Tau: 12 -15 mo.

anti-IL-1R blocking antibody Peritoneal Injection every 8-9 days
for 6 months

Aβ deposition ↓;
Tau phosphorylation ↓

Cognition ↑ [83]

Rats adult - IL-1β injections Cerebral ventricles 1 d TNF-α, IL-10 ↑ No significance [34]

8 d TNF-α, IL-1β ↑ IL-10 ↓;
APP mRNA ↑

Memory ↓

3xTg AD mice
(8 months old)

Aβ plaque: 6 mo. Tau:12 -15
mo.

IL-1β-XAT cassette Subiculum 1 and 3 mo. Aβ deposition ↓;
Tau phosphorylation ↑

\ [41]

APPswe/PSEN1dE9 mice
(8 months old)

Aβ plaque: 6 mo. rAAV2-IL-1β Hippocampi 1 mo. Aβ deposition ↓ \ [42]

IL-6 TgCRND8 mice (0 -12 h old
(P0)/36 -48 h old (P2))

Early Aβ plaque: 3mo.
Dense-cored plaques: 5 mo.

rAAV2/1-IL-6 Cerebral ventricles 5 mo. Aβ deposition ↓ \ [46]

TgCRND8 mice (4 mo.) rAAV2/1-IL-6 Hippocampi 1-1.5 mo. Aβ deposition ↓ \

Tg2576 mice (P0) Numerous Aβ plaques:11-13
mo.

rAAV2/1-IL-6 Hippocampi 3 mo. Aβ deposition ↓ \

IL-4 Tg2576 + PS1 mice (3 months
old)

Aβ plaques: 6 mo. rAAV2/1-IL-4 Hippocampi 5 mo. Aβ↓; Gliosis ↓;
Neurogenesis ↑

Spatial
learning ↑

[54]

TgCRND8 mice (4 months old) Early Aβ plaque: 3 mo. rAAV2/1-IL-4 Hippocampi 1.5 mo. Aβ↑; Gliosis ↑ \ [55]

APPswe/PSEN1dE9 mice
(3 months old)

Aβ plaque: 6 mo. rAAV2/1-IL-4 Frontal cortex,
Hippocampi

43 d. Aβ↓ with no significance;
Enhanced M2a phenotype
of microglia

\ [56]

IL-10 APPswe/PSEN1dE9 mice
(3 months old)

Aβ plaques: 6 mo. rAAV2/1-IL-10 Hippocampi 5 mo. Aβ =; Gliosis ↓;
Neurogenesis ↑.

Spatial
learning ↑

[52]

TgCRND8 mice (P0/P2) Early Aβ plaque: 3mo. rAAV2/1-IL-10 Cerebral ventricles 6 mo. Aβ deposition ↑ Cognition ↓ [51]

Tg2576 mice (8 months old) Numerous Aβ plaques:
11-13 mo.

rAAV2/1-IL-10 Hippocampi 5 mo. Aβ deposition ↑ Cognition ↓

APPswe/PSEN1dE9 mice Aβ plaque: 6 mo. Bred with IL-10 KO mice The whole body 12-13 mo. Aβ deposition ↓ Cognition ↑ [53]

IL-12/IL-23 APPswe/PSEN1dE9 mice Aβ plaque: 6 mo. Bred with p40 (IL-12 and
IL-23 shared) KO, p35 (IL-12)
KO or p19 (IL-23) KO mice

The whole body 4 mo. Aβ deposition ↓
(especially with p40 KO)

Cognition ↑ [65]

Senescence accelerated mouse
(SAMP8) mice (6 months old)

Accelerated aging. siRNA KO of p40 Dorsal third
ventricle

1 mo. Aβ deposition ↓ Cognition ↑ [66]

TNF-α TgCRND8 mice (4 months old) Early Aβ plaque: 3 mo. rAAV2/1-TNF-α Hippocampi 1.5 mo. Aβ deposition ↓ \ [40]

3xTg AD mice (10, 17
months old)

Aβ plaque: 6 mo.
Tau: 12 -15 mo.

TNF-α-lowering agent
(3,6'-dithiothalidomide)

Peritoneal Injection 1.5 mo. APP, Aβ peptide and Aβ
deposition ↓; Tau
phosphorylation ↓

Cognition ↑ [37]

3xTg AD mice
(6 months old)

TNF-α-lowering agent (IDT) Oral administration 10 mo. Fibrillar Aβ↓; PHF-tau ↓ Cognition ↑ [39]
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Table 2 Methods and results from in vivo studies of cytokines (Continued)

TGF-β hAPP J9 line mice Aβ plaques :5-7 mo. Bred with transgenic
expressing astrocytes-
induced TGF-β1 mice

Brain 12-15 mo. Aβ deposition ↓;
Perivascular Aβ deposition ↑

\ [57]

Transgenic mice with inducible
neuron-specific expression of
TGF-β1 (3 months old)

- The heterologous tTA
system

Neocortex,
hippocampi,
striatum

54 d Perivascular Aβ deposition ↑ \ [62]

24 d Death of neurons induced
by 3-nitropropionic acid ↓

\

SD rats with Aβ1-42 injection
in bilateral hippocampus

Aβ TGF-β1 injection 7 d
after Aβ injection

Left cerebral
ventricles

3d APP ↓ Cognition ↑ [166]

SD rats with Aβ1-42 injection
in bilateral hippocampus

Aβ TGF-β1 administration1h
prior to Aβ injection

Cerebral ventricles 7 d APP ↓; PP2A ↑; TNF-α,
IL-1β, iNOS, IFN-γ, IL-2,
IL-17 and IL-22 ↓.

Cognition ↑ [58]

TGF-β1 administration7 d
after Aβ injection

Nares 7 d PP2A ↑; IL-1β, iNOS,
IFN-γ, IL-2 and IL-17 ↓.

Cognition ↑

IFN-γ APP Tg J20 mice Aβ plaques : 5-7 mo. Bred with Tg SJL mice
expressing IFN-γ

The whole body 9 mo. Oligodendrogenesis ↓ \ [167]

3xTg AD mice (2 months old) Aβ plaque: 6 mo. Tau:12 -15
mo.

rAAV2/1- IFN-γ Hippocampi 10 mo. Aβ deposition ↑;
Tau phosphorylation ↓

\ [168]

TgCRND8 mice P2 Early Aβ plaque: 3mo. Dense-
cored plaques: 5 mo.

rAAV2/1- IFN-γ Cerebral ventricles 5 mo. Aβ deposition ↓; Gliosis ↑;
Complement expression ↑;
Peripheral monocytes
infiltration ↑

\ [63]

TgCRND8 mice (4 months old) Hippocampi 1.5 mo.

JNPL3 mice (P2), rTg4510 mice
(P2)

Tau:4 mo. rAAV2/1- IFN-γ Cerebral ventricles 3 mo. Soluble tau phosphorylation
↑

\ [87]

Abbreviation: PHF-tau Paired helical filament tau, KO knockout
aCytokines with controversial results are in bold.
b↑: increase or improve, ↓: decrease or exacerbate, =: no change, \: no data
For more detailed information for the model animals mentioned above, please refer to http://www.alzforum.org/research-models [169]
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AD animal models weakened the phagocytosis of soluble
Aβ by microglia and exacerbeted Aβ deposits with cogni-
tive impairment [51–53]. Although inconsistent outcomes
do exist, a recent study using IL-10 knockout mice
supports the benefit of IL-10 removal. Considering that
the IL-10 level increased in AD patients [53], it appears
that the imbalance of pro- and anti- inflammatory activity
co-exist in AD. Whether there is a corresponding,
sequential transfer of microglia from M1 to M2c or
mixed phenotype is unclear. It is also interesting to
know whether this kind of transformation indicate
exacerbation of the disease and “a point of no return”
of the disease. As the previous in vivo studies of IL-10
all gave intervention before the formation of typical
AD pathology (see Table 2), more data of the IL-10
impact on the late stage of AD is required.
The in vivo IL-4 studies generated more controversial

results: One shows that overexpression of IL-4 in pre-
deposition phase of AD animal models resulted in
attenuation of Aβ pathology and improved behavior
[54], while another one with short-term IL-4 expression
in mice exacerbated amyloid deposition [55]. The acute
suppression of glial clearance activity due to the relative
short duration of IL-4 exposure is a possible explanation
to the inconsistency. IL-4 expression initiating time is
another major difference of the two studies that worth
further investigation. It worth mentioning that a IL-4
study has to be terminated prematurely due to the
increased animal death after the intervention [56]. One
possible interpretation for the death was the multiple
cortex injection sites and resultant higher virus and
cytokine load.
TGF-β, an immunosuppressive cytokine which pro-

tects neurons against damages, has a complex role in
modulating Aβ pathology. Long-term overexpressing
TGF-β by astrocytes in transgenic mice led to increased
clearance of Aβ plaque by activated microglia [57] and
improvement of Aβ-induced behavior impairment [58].
However, TGF-β can also promote astrocytes aggregat-
ing around brain microvessels and Aβ deposits on the
vascular basement membranes [59–62]. Therefore, TGF-β
can reduce Aβ pathology of brain parenchyma while at
the same time cause the blood perfusion impairment in
the associated regions.
IFN-γ is a pleiotropic cytokine which has a similar but

weaker function to IL-4 in upregulating glial MHC class
II [44], implying an immunosuppressive feature of the
cytokine. The level change of IFN-γ in AD patients has
not been reported, however, overexpressing IFN-γ results
in a significant decrease of Aβ deposits and infiltration of
peripheral monocytes [63], which is consistent to the
observations that IFN-γ increases Aβ uptake by microglia
and activates microglia to facilitate T cell motility and
synapse formation in vitro [64].

The microglia-derived IL-12 and IL-23 is up-regulated
in APP/PS1 transgenic mice and blocking these cyto-
kines reverses the Aβ burden and the cognitive impair-
ment [65]. Another study using accelerated senescence
mice (SAMP8) reproduced the results [66]. In addition,
a linear correlation of cognitive performance and CSF
levels of p40, the common unit of IL-12 and IL-23, in
AD subjects further supports the role of IL-12 and IL-23
in AD pathogenesis. IL-18, a member of IL-1 family, was
elevated in LPS-stimulated blood mononuclear cells and
brains of AD patients, and a significant correlation
between IL-18 production and cognitive decline was
observed [67, 68]. IL-18 promotes APP processing [69],
tau phosphorylation [70] and can modulate the produc-
tion of other cytokines [71]. Similarly, another IL-1
family member, IL-33 and its receptor ST2, showed
strong expression in the AD brains, and incubation
with Aβ increased astrocytic IL-33 expression [72]. The
in vivo evidence of IL-18 and IL-33 in AD pathogenesis
is currently missing and further studies may also
explore whether these cytokines are detectable in CSF
or serum of AD.

Cytokines related to AD-like tau abnormalities
Abnormal post-translational modification of tau proteins
plays a crucial role in AD neurodegeneration, and hyper-
phosphorylation is one of them that has been most ex-
tensively studied [73, 74]. Accumulating studies suggest
that targeting the down-regulated protein phosphatase-
2A (PP2A) [75, 76] or up-regulated glycogen synthase
kinase-3β (GSK-3β) [77–80] or modulating the upstream
membranous receptors may attenuate tau hyperpho-
sphorylation [81, 82]. Currently, the role of tau in the
neuroinflammation process of AD remains poorly under-
stood and is far less studied compared to Aβ. However,
the interplay between tau and cytokines has shed a light
on the relevant mechanisms.
Pro-inflammatory cytokines have shown a consistent

impact on tau pathology. Overexpression of IL-1β in
3xTg AD mice exacerbated tau hyperphosphorylation
within one month [41], while blocking IL-1β signaling
via IL-1 receptor antagonist (IL-1ra) or anti-IL-1β anti-
body reversed the cognitive impairment with a dimin-
ished tau pathology [83, 84]. The decreased activity of
IL-1β-dependent tau kinases, such as cyclin-dependent
kinase-5 (CDK5)/p25, GSK-3β and p38-mitogen activated
protein kinase (MAPK) contributed to the reduction of
phosphorylated tau [41, 83]. Additionally, a recent study
showed that microglia can drive tau pathology, pathological
tau spreading and memory impairment in the human tau40
mice through a IL-1β-dependent pathway since the inclu-
sion of IL-1ra significantly reduced microglia-induced tau
pathology [85]. 3, 6'-dithiothalidomide, a TNF-α-lowering
agent, had no effect on total tau levels, but reduced
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phosphorylated tau in 3xTg AD mice [37]. Another study
used a different TNF-α modulator, IDT in the same animal
models also reduced paired helical filament tau (PHF-tau)
and improved the cognition [39]. Treating hippocampal
neurons with physiologic dose of IL-6 exhibited an increase
in the amount of hyperphosphorylated tau of AD type,
which may be attributed to an increased activity of
CDK5/p35 complex [86].
In primary glial cultures, recombinant adeno-associated

virus (rAAV)-mediated expression of IFN-γ did not alter
endogenous tau production or phosphorylation. How-
ever, IFN-γ increased hyperphosphorylation and con-
formational changes of soluble tau in two animal
models with tauopathy [87]. In turn, overexpressing
tau40 increased secretion of TNF-α, IL-1β, IL-6, IL-10
and NO in rat microglia, which show greater phagocyt-
osis of microspheres [88]. However, the phenotype of
the microglia and how this phenotype would influence
the Aβ pathology need further studies. Moreover, up-
regulating PP2A in astrocytes stimulates astrocytes
migration via inhibiting p38-MAPK in Tg2576 mice
[89], indicating that the tau-associated pathology may
be involved in the impaired Aβ clearance.
It seems that tau pathology can be consequence of the

deregulated inflammation, or serve as an inflammation
promoter like Aβ to exacerbate inflammation. Neverthe-
less, to what extent tau may influence the inflammation,
and what will be the sum effects of tau, Aβ and inflam-
mation are mostly unknown. Besides, no related studies
so far have examined the influence of anti-inflammatory
cytokines on tau pathology. Cytokines also have import-
ant influence on neuron survival [90–93], blood brain
barrier (BBB) integrity [94] and other normal physio-
logical events in the CNS [3, 4], which cannot be
reflected in animal models of single type of pathology.
Thus, a more careful examination of the current animal
models [95] and developing novel models more close to
the real pathology of AD are needed [28].

The adaptive immune system in AD
The most recent evidence has shown presence of a
classical lymphatic system in the CNS [96], suggesting a
frequent communication of the immune activities be-
tween periphery and the CNS on a regular basis. Over
80 % of the T cells in the CSF are CD4+ that can be
classified into four subsets, including type 1 helper-
inducer T (Th1) cells and Th17 cells defined as pro-
inflammatory; and Th2 cells and regulatory T (Treg)
cells defined as anti-inflammatory. The activating state
and subtype of T cells in the circulation, CSF and
parenchyma are modified in AD patients [97, 98]. In an
immune-deficient AD mouse model, lack of T, B, and
natural killer cells exhibits an increased Aβ with de-
creased phagocytic efficiency of microglia and significant

elevation of several key pro-inflammatory cytokines
including IL-1β, IL-6 and TNF-α [99]. These findings
strongly suggest the active involvement of the adaptive
immune system in AD pathogenesis.
Previous studies have highlighted the importance of

cytokines in mediating the activity of peripheral immune
cells in AD. Cytokines can facilitate the peripheral im-
mune cells infiltration into the brain, resulting in direct
Aβ phagocytosis by recruiting immune cells or inducing
phagocytic activity of other cell types, such as microglia.
The choroid plexus (CP) stroma is enriched with
CD4+ T cells that are able to produce IL-4 and IFN-γ
[98], and the IFN-γ plays an essential role in assisting
leukocyte trafficking [100]. Decreased IFN-γ level in
both 5XFAD and APP/PS1 mice were reversed by
transient depletion of Treg cells at intermediate stage
of AD, which at the same time led to increased leukocyte
infiltration and recruitment to Aβ plaques, and attenu-
ation of the AD pathology [101]. However, amplification
of Treg cells at early disease stages through peripheral
low-dose IL-2 treatment increased numbers of plaque-
associated microglia, and restored cognitive functions in
APP/PS1 mice [102]. Therefore, a more careful examin-
ation of Treg cells in different stages of the disease may
help determining the proper therapeutic strategies.
Furthermore, when co-cultured with Aβ-treated micro-

glia, the secretion of Th1 and Th17 cells increases, which
then up-regulates MHC II, co-stimulatory molecules and
pro-inflammatory cytokines in microglia [103, 104], thus
improving the efficiency of presenting antigens to the T
cells of microglia and enhancing Aβ clearance by both.
However, IL-17 and IL-22, which are exclusively produced
by Th17 cells, can also cause BBB disruption and infiltra-
tion of Th17 cells, but led to a direct injury to the neurons
by Th17 cells via Fas/FasL pathway in Aβ-induced AD
model rats [105]. In addition, respiratory infection of
APP/PS1 mice increased infiltration of IFN-γ + and IL-17
+ T cells into the brains of older mice and this was corre-
lated with an increased Aβ level [106]. Together, these
studies indicate that future studies should consider the
complex interplay among many participants as seen in the
real situation of AD.
The basal level of anti-inflammatory cytokines in CSF

may help skewing the infiltrating T cells to the Th2 or
Treg phenotype in physiological condition [98]. In AD
patients, the pro-inflammatory cytokines in CSF in-
creases, which induces more Th1 or Th17 cells that can
be detrimental. Several in vivo studies via cerebral ven-
tricles or systemic administration to examine the impact
of cytokines or the relevant antibodies on AD pathology
(see Table 2), the concomitant influence on the transform-
ation of T cells phenotypes and following effects should be
taken into consideration for a more reasonable interpret-
ation of the outcomes.
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Cytokines as potential biomarkers for AD
diagnosis
So far, a CSF signature of low Aβ1-42 and high tau
concentrations and significant retention in PET imaging
with amyloid tracers are suggested as the standard diag-
nostic criteria, with the highest specificity and accuracy
[107]. However, lumbar puncture required for CSF has
limited its application. Thus, novel biomarkers based on
more accessible materials, such as plasma, are attractive
in improving AD diagnosis. Several cytokines have shown
disease progression-dependent manner, which suggests
that cytokines may serve as potential disease predictors.
For instance, data collected from a 20-years cohort study
demonstrate greater possibility of cognitive impairment in
individuals with increased IL-6 [108]. After reviewing 118
research articles and comparing 66 cytokines in plasma or
CSF obtained from MCI and AD, it was found that the
cytokines increased steadily or had peak level upon the
transformation from MCI to AD. This may help predict-
ing the risk of suffering from AD and recognizing AD
subgroups, such as IL-1β, IL-6, TNF-α, IL-18, monocyte
chemotactic protein (MCP)-1 and IL-10 [8]. However, in
the latest meta-analysis, no significant differences in
cytokines such as IL-1β, IL-6, IL-8, IL-10 or TNF-α were
found between subjects with MCI and healthy controls,
while significant heterogeneity was observed in some
comparisons [109].
Considering the unstable outcome of single cytokine

level, combinational use of multiple proteins is a more
reasonable approach. However, since the first AD pre-
dicting model made up of 18 plasma biomarkers
containing multiple cytokines has been proposed [110],
few biomarker sets have shown stable performance and
good reproducibility [111, 112]. Nevertheless, by using
multiplex assays, two research groups have independ-
ently set up a panel of plasma proteins recently. These
two panels are of high reproducibility and diagnostic
accuracy, which were strongly associated with severity
and progression of AD [113, 114]. Although no cyto-
kines were involved in neither of the panels, one of the
studies found positive correlations between the bio-
markers and some cytokines altered in AD [114]. In
addition, after screening 120 inflammatory molecules in
CSF and serum of AD, MCI and healthy controls through
protein-array analysis, a combination of soluble IL-6
receptor (sIL-6R), tissue inhibitor of metalloproteinases-1
(TIMP-1) and soluble TNF-α receptor I (sTNFR-I) in CSF
was found to provide the best prediction to AD among
other molecules [115].
Certainly, these results still need further verification by

other research groups, while the heterogeneity in BBB in-
tegrity, physical state and disease stage of patients should
be taken into consideration at the same time [8, 116].
Besides, the lack of standardization of sample collections

or detections remains the dominant cause of failure of
developing serum-based AD biomarkers. To address
this problem, many organizations raise guidelines for
standardization of blood-based biomarker studies in
AD, covering the pre-blood draw, blood collecting,
processing and storage [117]. Furthermore, longitudinal
sampling over years [8] is a better approach to eliminate
heterogeneity but needs optimization of its feasibility.
Although no evidence supports a direct association of

systemic infections with AD [118–120], some specific
pathogens have been identified as potential risks for AD,
such as Herpes simplex virus type 1, Chlamydophila
pneumoniae, Helicobacter pylori and periodontal bac-
teria [121]. A recent study shows that the infection
burden (IB) consisting of common pathogens is associ-
ated with AD after adjusted for ApoE genotype and
various comorbidities. AD patients or healthy controls
with more seropositivities have significantly higher
serum levels of IFN-γ, TNF-α and IL-6 [122]. As IB is a
relatively stable indicator of systemic inflammation bur-
den, the practical value of combinational use of IB with
other biomarkers worth further investigations. Overall,
single type of biomarker is far from enough to classify
all phenotypes and stages of AD, the combination of
plasma cytokines and other factor is the most realistic
and promising approach to develop convenient and
practical plasma biomarkers for AD.

Cytokines as potential targets for AD therapy
The anti-inflammatory therapies using non-steroidal
anti-inflammatory drugs (NSAIDs) were once consid-
ered promising. However, after the positive reports from
the pioneering randomized trial of indomethacin [123,
124], the followed trials have not reached a definitive
conclusion [28]. Lately, two meta-analyses have been
conducted to reevaluate the role of NSAIDs in AD.
Although it supported the use of NSAIDs for prevention
of AD, there were no positive results from the random-
ized control trials (RCTs) [125, 126]. Moreover, in a
follow-up evaluation study of the randomized AD anti-
inflammatory prevention trial (ADAPT) and its follow-
up study (ADAPT-FS) that treatment for 1 to 3 years
with naproxen, a nonselective cyclooxygenase (COX) in-
hibitor, or celecoxib (a selective COX-2 inhibitor), the
results show no prevention for the onset of dementia or
no attenuation for the cognitive functions in older adults
with a family history of AD [127]. Many reasons to the
failure have been proposed, including duration of treat-
ment [127], ApoE ε4 allele [128, 129], ages [127], disease
stages [130] and disease progressing speeds [131]. There-
fore, long-term and large-scale RCTs based on more
tolerable novel NSAIDs are needed for understanding
the positive findings from molecular and epidemiologic
studies. In the absence of such RCTs, indirect treatment
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comparisons or mixed treatment comparisons may also
help to reach more robust conclusions [125].
As the broad anti-inflammatory medications are not

promising, more specific immune pathways or molecules
that are not affected by NSAIDs may be targeted.
Etanercept is a TNF-α inhibitor originally used in the
treatment of rheumatoid arthritis (RA). A noticeable
clinical improvement was observed in AD patients mi-
nutes after perispinal administration of etanercept [132].
To explain the rapid effect of etanercept, the authors
propose that the vertebral venous system may be an
anatomical route to bypass the BBB and to deliver high
molecular drugs to the CNS [133]. However, a recent
study has challenged this claim, as three radio iodinated
drugs including etanercept, were perispinally injected
but the drug was not visualized in all but one of the rats
using PET [134]. Recent studies indicate that intravenously-
administered etanercept has no apparent clinical benefit to
AD patients, although good tolerability of subcutaneous
etanercept over a 24-week period was observed [133, 135],
suggesting better effects by perispinal administrating
compared to peripheral route. Together, these studies
confirm the pathogenic role of TNF-α in AD and
show great potential of anti-TNF-α therapies through
various administration routes.
Although targeting cytokines is a relatively new ap-

proach compared to other anti-inflammatory therapies
in AD, it is noteworthy that a great number of cytokine
inhibitors have already been successfully used in the
treatments of autoimmune diseases and cancers [136,
137], and more biologics are under development [138].
Repurposing these drugs in AD treatments could be a
reasonable approach. For instance, IL-1ra is decreased in
CSF of AD patients [139] and its protecting effect
towards AD has been confirmed in animal models
[84, 85]. Although there is still no clinical evidence
supporting the use of IL-1ra in AD patients, the success in
treating RA and cortical infarcts [140] makes it a
very promising target in AD treatments. Similarly,
p40-neutralizing antibodies, which block the IL-12/
IL-23 signaling pathway, have been approved by Food and
Drug Administration (FDA) for the treatment of psoriasis,
thus may be ideal for the initiation of clinical trials [65].
Besides, indirect approaches such as targeting up-

stream regulators of the cytokine expression seem also
attractive. For instance, the Aβ-dependent induction of
IL-1β requires two sequential signals. The first signal is
triggered by Aβ binding to the toll-like receptors (TLRs)
and leads to the production of IL-1β precursor. The
second signal occurs via NLRP3 (NACHT, LRR and
PYD domains-containing protein 3) inflammasome acti-
vation, which requires cathepsin B leakage from phago-
lysosomes or mitochondrial damage, and the subsequent
reactive oxygen species (ROS) production. Then the

NLRP3 inflammasome can activate caspase-1, which
processes the pro-IL-1β into its bioactive form [141].
Although there are no FDA-approved drugs that exclu-
sively and specifically target NLRP3, a small molecule
inhibitor of NLRP3 has been identified [142]. Therefore,
more initiative attempts of repurposing anti-cytokine
drugs in AD treatments and more careful assessments of
the results may lead to unexpected cheerful outcomes.

Conclusions
The cytokines are involved in various physiological and
pathological pathways, therefore, inconsistent results
have been observed in AD pathologies and treatment.
The present evidence strongly indicates that dysregula-
tion of the cytokines drives pathogenic process primarily
through influencing the phenotype of microglia, and co-
existence of both pro-inflammatory cytokines and the
suppressing state of microglia may represent an irrevers-
ible point of the disease. Future studies on AD should
extend to more pathogens than Aβ, and investigate the
interplay between cytokine and other participators. The
genome-wide association studies and the online database
analysis will provide continuously updated polymorph-
ism information associated with AD, while development
of brain banks is critical for identification of new genes
and proteins [143]. Given that increasing studies have
proven the role of adaptive immune system in AD, the
impact of peripheral T cells and relevant cytokines
cannot be ignored in future studies. As the immune
events may change during the disease course and the
heterogeneity in AD, it is not necessarily that all individ-
uals with AD exhibit neuroinflammation, or at all-time
points in the course of the disease. To learn from the
existing therapy strategies of other related inflammatory
diseases or to develop novel cytokine inhibitors could
be reasonable approaches to making progress in AD
anti-inflammatory therapies.
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