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Abstract

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease characterized by progressive loss of
motor neurons in the brainstem and spinal cord. Currently, there is no cure or effective treatment for ALS and the
cause of disease is unknown in the majority of ALS cases. Neuronal mitochondria dysfunction is one of the earliest
features of ALS. Mitochondria are highly dynamic organelles that undergo continuous fission, fusion, trafficking and
turnover, all of which contribute to the maintenance of mitochondrial function. Abnormal mitochondrial dynamics
have been repeatedly reported in ALS and increasing evidence suggests altered mitochondrial dynamics as possible
pathomechanisms underlying mitochondrial dysfunction in ALS. Here, we provide an overview of mitochondrial
dysfunction and dynamic abnormalities observed in ALS, and discuss the possibility of targeting mitochondrial
dynamics as a novel therapeutic approach for ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS), also referred to as
Lou Gehrig’s disease, typically develops between 50 and
60 years of age and progresses rapidly with the average
survival of less than 30 months after diagnosis or onset
[1]. ALS is the most common motor neuron disease
characterized by progressive and fatal degeneration of
both upper motor neurons in the motor cortex and
lower motor neurons that connect the spinal cord and
brainstem to muscle fibers [2], resulting in progressive
muscle denervation, loss of motor function, muscle atro-
phy and eventual paralysis, speech deficit and finally
death [3, 4]. Less than 10 % of ALS cases are familial
(fALS), of which most are caused by repeat expansions
of the C9ORF72 gene or mutations in genes encoding
copper–zinc superoxide dismutase (SOD1), TAR DNA
binding protein 43 (TDP-43) and fused in sarcoma
(FUS). In contrast, 90–95 % of ALS cases, referred to as
sporadic ALS (sALS), occur without any family history.
The cellular and molecular mechanisms underlying
motor neuron degeneration in both fALS and sALS are
* Correspondence: xinglong.wang@case.edu
1Department of Pathology, Case Western Reserve University, Cleveland, OH,
USA
Full list of author information is available at the end of the article

© 2015 Jiang et al. This is an Open Access art
(http://creativecommons.org/licenses/by/4.0),
provided the original work is properly credited
creativecommons.org/publicdomain/zero/1.0/
unknown, and effective treatments for this devastating
and fatal disease are extremely limited.
Mitochondria are double membrane-bound organelles

that are involved in multiple major cellular processes in-
cluding ATP production, metabolite synthesis, calcium
homeostasis, reactive oxygen species generation and
even cell death [5, 6]. Due to limited glycolytic capacity,
neurons particularly depend on mitochondria to main-
tain ion channel activities, synaptic transmission, and
axonal/dendritic transport. In addition, as polarized cells
with extended axons and dendrites, neurons require
mitochondria to be efficiently transported and localized
to sites with high metabolic and energy requirements
[7]. Not surprisingly, a large number of studies suggest
that mitochondria play a critical role in various major
neurodegenerative diseases including ALS, Alzheimer’s
disease, Parkinson’s disease and Huntington’s disease.
Along this line, it was shown that SOD1 encoded by the
first discovered gene associated with fALS, was localized
to mitochondria [8], and involved in the regulation of
mitochondrial function [9–13], underscoring the import-
ant role of mitochondria in ALS. In this review, we will
focus on mitochondrial dynamic abnormalities in ALS
and discuss mitochondrial dynamics as promising thera-
peutic targets.
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Mitochondrial dysfunction in ALS
Mitochondrial dysfunction has been consistently re-
ported in ALS patients and ALS in vitro and in vivo ex-
perimental models, although the underlying molecular
mechanism is still unclear. For instance, decreased activ-
ities of oxidative phosphorylation (OXPHOS) complexes
I + III, II + III, IV, and citrate synthase were noticed in
mitochondria from spinal cords of ALS patients [14, 15].
Consistently, the widely studied SOD1 G93A mouse
model of ALS also demonstrated impaired activities of
OXPHOS complexes I + III, II + III, IV [9]. Most import-
antly, mitochondrial dysfunction evidenced by reduced
respiration and ATP synthesis precede rather than follow
behavioral deficits, indicating an important role of mito-
chondrial dysfunction in disease progression [9]. More-
over, many ALS associated mutations in SOD1 result in
the loss of antioxidant activity and the overproduction of
reactive oxygen species (ROS) [16–19], and not surpris-
ingly, a large number of studies reported increased oxi-
dative stress or oxidative damage in spinal cords of ALS
patients [20–22]. Elevated Ca2+ level in mitochondria
was also reported in ALS patients [23] and ALS SOD1
transgenic mouse models [24–26], as as an early event
preceding cytosolic Ca2+ increase and mutant SOD1 ag-
gregation [27], further supporting the critical role of
mitochondrial dysfunction in ALS pathogenesis.

Mitochondrial morphology and fission/fusion dynamics in
ALS
Although there is only one study showing abnormal
mitochondrial outer membrane protrusions within axons
of anterior root in ALS patients using biopsied tissues
[28], abnormal mitochondrial morphology has been well
documented in ALS experimental models. For example,
previous studies from multiple groups showed that mito-
chondria became fragmented in cell and animal models
expressing ALS-associated mutant SOD1 [29–33]. In
addtion, we and other groups recently found that ALS-
associated mutant TDP-43 overexpression also caused
mitochondrial fragmentation in motor neurons in vitro
and in mice [34–36, 33]. Studies in past decades reveal
that mitochondria are highly dynamic organelles, and
mitochondrial morphology results from the delicate bal-
ance of fission and fusion process [37, 38]. The mito-
chondrial fragmentation observed in ALS experimental
models suggested a tipped balance of mitochondrial
fission and fusion towards excessive fission due to in-
creased fission, reduced fusion or both.
Mitochondrial fission and fusion processes are tightly

regulated by several large dynamin-related GTPases that
exert opposing effects [39]. Mitochondrial fission in
mammals involves at least dynamin-like protein 1
(DLP1, also referred to as Drp1) and its recruiting fac-
tors on mitochondria such as Fis1, Mff, MiD49 and
MiD51 [40]. On the other hand, mitochondrial fusion is
governed by three large GTPase proteins: Mitofusin 1
(Mfn1), Mitofusin 2 (Mfn2) and optic atrophy protein
1(OPA1) [41]. Consistent with mitochondrial morpho-
logical changes, according to one recent study using
SOD1 G93A transgenic mice, the protein levels of fis-
sion and fusion regulators including DLP1, Fis1, Mfn1
and OPA1 all increased before disease onset [42]. In
contrast, during disease progression, the expression of
Mfn1 and OPA1 but not DLP1 and Fis1 were found re-
duced. Altered expression of mitochondrial fission and
fusion regulators such as DLP1 and Mfn1 were also re-
ported in spinal cords of transgenic mice overexpressing
wild type TDP-43 [34]. It still remains unknown how the
changes in fission and fusion regulators correlate with
and contribute to mitochondrial morphological alter-
ations in SOD1 G93A and TDP-43 transgenic mice.
Aside from controlling mitochondrial morphology,

mitochondrial fission and fusion dynamics are important
for the maintenance of mitochondrial function [43].
Generally, when cells experience metabolic or environ-
mental stresses, fusion enables the exchange of mito-
chondrial components within the mitochondrial network
to compensate for damaged mitochondria, whereas fis-
sion helps to create new mitochondria to maintain a
healthy mitochondria population [44]. On top of this, a
recent study even reported that mitochondrial fission
and fusion proteins regulate the assembly of respiratory
complexes, indicating the direct involvement of mito-
chondrial fission and fusion dynamics in mitochondrial
bioenergetics [45, 46]. Therefore, it is conceivable that
the altered mitochondrial fission and fusion dynamics is
likely a mechanism leading to mitochondrial dysfunction
in ALS.

Mitochondrial distribution and trafficking in ALS
In neurons, mitochondria are distributed strategically
throughout the soma and axons to meet variant energy
and metabolism requirements of different compartments.
For example, mitochondria are usually found concentrated
near synaptic terminals, where synaptic transmission and
ion channel activity are highly energy demanding com-
pared with other subcellular regions. However, remarkable
mitochondrial accumulation was observed in the soma of
motor neurons and proximal axon hillock region in the
lumbar spinal cord of ALS patients [47]. Consistently,
cultured motor neurons from SOD1 G93A transgenic mice
demonstrated abnormal mitochondrial clusters in proximal
axons [48]. SOD1 G93A transgenic rats also demonstrated
accumulation of mitochondria clustered in axons of motor
neurons [49]. Moreover, we and other groups reported al-
tered mitochondrial distribution or mitochondrial aggrega-
tion around peri-nuclear area in motor neurons expressing
ALS-associated TDP-43 mutant [36, 33, 50, 51].
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Since mitochondrial distribution is closely regulated by
mitochondrial transportation, one possible cause of abnor-
mal mitochondrial distribution in ALS is altered mito-
chondrial trafficking, which is increasingly recognized as
an important contributor in various neurodegenerative
diseases [52, 53]. Mitochondria are transported bidirec-
tionally in neurites along microtubules for fast movement
and along actin filaments for slow movement via different
motor-adaptor complexes [54]. Mitochondrial transporta-
tion is critical for newly generated mitochondria to move
from the cell body to reach the distal segments of neurites,
and for damaged mitochondria to move from distal neur-
ite compartments to the cell body for degradation [55, 56].
Mitochondrial anterograde movement is mediated by
kinesin motors whereas retrograde movement is regulated
by dynein motors [57]. Kinesin and dynein motors are in-
directly linked to mitochondria by Miro1-Milton adaptor
complex [57]. Interestingly, our most recent study found
that the expression of Miro 1, the only known mitochon-
drial outer membrane protein directly coupling mitochon-
dria and motor-adaptor complexes, was significantly
reduced in spinal cords of ALS patients, strongly suggest-
ing impaired mitochondrial trafficking in ALS [58]. Con-
sistently, the decreased expression of Miro1 was also
noted in spinal cords but not brains of transgenic mice ex-
pressing ALS-associated SOD1 G93A or TDP-43 M337V
mutant. In fact, we and other groups have provided evi-
dence showing altered axonal transport of mitochondria
in motor neurons expressing ALS-associated SOD1 mu-
tant [59, 60] or TDP-43 mutant [36, 33]. Therefore, it is
highly possible that Miro-1 deficiency is responsible for
mitochondrial movement deficits in ALS and ALS experi-
mental models. However, the possibility of direct inter-
action between SOD1 or TDP-43 and mitochondrial
trafficking machinery can not be ruled out.

Other mitochondrial dynamics in ALS
In addition to fission/fusion and movement, mitochondria
function is also sensitive to changes in other mitochon-
drial dyanmics such as mitochondrial biogenesis and qual-
ity control (mitophagy) [61]. Mitochondria biogenesis is
regulated by various factors, among which peroxisome
proliferation activator receptor gamma-coactivator 1α
(PGC-1α) has emerged as the master regulator. PGC-1α is
a transcriptional coactivator that regulates the transcrip-
tion of many genes including NRF1 and NRF2, which con-
trol the nuclear genes to encode mitochondrial protein,
and TFAM, which drives transcription and replication of
mtDNA [62]. It remains to be determined whether mito-
chondrial biogenesis is changed in ALS patients and experi-
mental models. One study showed there is a loss of
mitochondrial mass and reduced expression and activity of
SIRT1, a regulator of PGC-1α, in neurons expressing SOD1
G93A mutant [63], suggesting the possible impairment of
mitochondrial biogenesis. Damaged mitochondria are usu-
ally cleared by the process of mitophagy via mitochondrial
quality control systems to maintain a healthy mitochondrial
population within cells. The reduced expression of Parkin,
an ubiquitin ligase implicated in mitophagy, was observed
in transgenic mice expressing ALS associated mutant
TDP-43 [64]. An ALS-associated mutation in Optineurin
disrupts its function as a receptor for Parkin-mediated
mitophagy [65]. In addition, other proteins such as valosin
containing protein (VCP, or p97) or p62 were also re-
ported in impairing mitophagy [66, 67]. Along this line,
noteworthily, authophagy has been consistently implicated
in neuronal loss in transgenic mice expressing ALS associ-
ated mutant SOD1 [68–70]. Interestingly, in addition to
controlling mitochondrial morphology, previous studies
demonstrated that mitochondrial fusion regulator Mfn2
was directly involved in the autophagosome formation
[71] and the autophagosome-lysosome fusion [72]. There-
fore, further studies might be interesting to test the inter-
play between autophagy and mitochondrial dynamics in
the context of ALS.

Mitochondrial dynamics as therapeutic targets of ALS
The widely used drug for ALS, i.e. riluzole, extends the
life span of ALS patients by only three to six months
[73, 74] highlighting the need for truly effective treatment
options. Increasing evidence has revealed a prominent role
for mitochondrial dysfunction in the pathogenesis of ALS
and suggest mitochondria as promising therapeutic targets
for ALS [75]. For example, SOD1 G93A mice adminis-
tered CoQ10 in an effort to reduce oxidative stress and
improve mitochondria function, demonstrated signifi-
cantly increased survival [76]. Several chemicals specif-
ically targeting mitochondria such as Olesoxime,
Nortriptyline and Cyclosporine were reported as having
neuroprotective effects in ALS cell and mouse models
[77–80]. In fact, previous studies suggested that alter-
ing mitochondrial dynamics including fission/fusion,
biogenesis and mitophagy might be viable therapeutic
approaches for ALS. For instance, the inhibition of
mitochondrial fission by the expression of DLP1 K38A,
a dominant negative DLP1 mutant, was reported to
prevent ALS-mutant SOD1 induced motor neuronal
death [30]. Our recent study showed that the promo-
tion of fusion by overexpression of Mfn2 significantly
alleviated ALS-mutant TDP-43 induced mitochondrial
and neuronal dysfunction in spinal cord motor neurons
[36]. Moreover, resveratrol acting to promote mito-
chondrial biogenesis was found to significantly improve
motor neuron function and extend the lifespan of
SOD1 G93A mice [81, 63]. Finally, overexpression of
the key biogenesis regulator PGC-1α could also allevi-
ate ALS symptoms in SOD1 G37R transgenic mice
[82]. Since mitochondrial function is sensitive to not
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only mitochondrial fission/fusion dynamics and biogen-
esis targeted by these strategies, it will be beneficial to
investigate whether the manipulation of mitochondrial
trafficking or mitophagy will also have some beneficial
effect on mitochondria and neurons in ALS models.

Conclusion
In addition to regulating mitochondrial morphology,
mitochondrial fission and fusion are also involved in
mitochondrial distribution and movement [83–85]. Fur-
ther, changes in mitochondrial fission and fusion balance
also affect mitophagy [44]. Moreover, PGC-1α was re-
ported to affect mitochondrial morphology. Therefore,
these different aspects of mitochondrial dynamics are
not isolated but are in fact interrelated mechanisms.
This may explain why almost all aspects of mitochon-
drial dynamics have been reported to be changed in ALS
patients and/or ALS models. Notably, SOD1 and TDP-
43, the most studied proteins associated with ALS, are
found involved in the regulation of mitochondrial dynam-
ics. While it still remains to be determined how altered
mitochondrial dynamics contributes to the progression of
ALS, like mitochondrial dysfunction, mitochondrial dy-
namic abnormalities appear to be early features of ALS,
suggesting they play a critical role in the pathogenesis
of this devastating disease. Supporting this notion, a
most recent study showed that impaired mitochondrial
trafficking through Miro1 deficiency specifically caused
motor neuron degeneration and symptoms of motor
neuron diseases [86]. The important role of mitochon-
drial dynamics in the pathogenesis of a wide range of
neurological disorders including ALS, Alzheimer’s dis-
ease, Parkinson’s disease, brain ischemia and epilepsy
has been increasingly recognized [87, 3, 88]. Therefore,
it is likely that impaired mitochondrial dynamics might
be a common mechanism leading to mitochondrial dys-
function and motor neuron degeneration in multiple
forms of ALS.
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