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between tauopathies and synucleinopathies: 
a duet of neurodegeneration
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Abstract 

Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one 
of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer’s 
disease (AD), and synucleinopathies, represented by Parkinson’s disease (PD), show similarities in multiple aspects. 
AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other research‑
ers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies 
between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared 
pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly 
appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear 
understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling 
the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared 
and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifesta‑
tions, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim 
to provide a timely update for setting the scheme of disease classification and provide novel insights into the thera‑
peutic development for neurodegenerative diseases.
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Background
Tauopathies are defined as a spectrum of neurodegen-
erative diseases with pathological features of intracellular 
(neuronal or glial) deposition of hyperphosphorylated 
tau, forming neurofibrillary tangles (NFTs) [1]. So far, 
more than 26 neurological diseases have been identified 

as tauopathies, including Alzheimer’s disease (AD), 
Pick’s disease, and progressive supranuclear palsy (PSP), 
manifesting symptoms of dementia and motor deficits 
[2]. Tauopathies can be classified as primary or second-
ary depending on whether other proteinopathies are 
involved, such as extracellular Aβ plaque formation. For 
example, frontotemporal dementia (FTD), in which tau 
is the dominant composition of protein aggregates, is a 
primary tauopathy [3, 4]. On the contrary, AD is a sec-
ondary tauopathy, possessing both NFTs and Aβ plaques 
[2, 5].

Certain series of neurodegenerative diseases can be 
pathologically characterized by their common “driving-
force” proteins, such as tauopathies by tau [6]. Simi-
larly, synucleinopathies including Parkinson’s disease 
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(PD), Lewy body dementia (DLB) [7] and multiple sys-
tem atrophy (MSA) are characterized by aggregation of 
α-synuclein (α-syn) [8]. Based on the cellular deposition 
of α-syn, synucleinopathies can be categorized into Lewy 
body diseases with α-syn inclusions in neurons form-
ing Lewy bodies (LB) and Lewy neurites (LN), and MSA 
with α-syn aggregation in glia forming glial cytoplasmic 
inclusions [9]. Synucleinopathies mainly manifest motor 
deficits appearing as parkinsonism, such as tremor, 
rigidity, and bradykinesia in PD. However, in the early 
stages of diseases, non-motor symptoms such as rapid 
eye movement sleep behavior disorder are also present. 
Meanwhile, cognitive decline is also observed in synucle-
inopathies such as DLB [10].

Genome-wide association studies have revealed that 
synucleinopathies and tauopathies share genetic risks 
such as MAPT (encoding microtubule-associated pro-
tein tau) mutations [11–15]. Also, association between 
SNCA (α-syn-encoding gene) polymorphism and 
increased risk of AD has been reported [16]. A known 
risk locus of AD, apolipoprotein E (APOE), is also a 
genetic risk factor for DLB [17, 18]. The APOE allele 
status has been associated with both PD onset and its 

progression to Parkinson’s disease dementia (PDD) [19, 
20]. Clinically, familial FTD (FTDP-17) exhibits motor 
symptoms of parkinsonism, while 83% of PD cases pro-
gress into PDD in the late stage [8, 21–23]. Pathologi-
cally, tau and α-syn have been shown to cross-seed each 
other in the progression of aggregation formation [24]. 
In summary, tauopathies and synucleinopathies have 
overlapping characteristics in etiology, pathology and 
clinical manifestations. The interacting and independ-
ent features of both pathological proteins and groups of 
diseases may indicate the possibility of developing dif-
ferential diagnosis and pathology-targeting therapeutic 
interventions.

In this review, we summarize the overlapping and the 
divergent features of tauopathies and synucleinopa-
thies, from perspectives of genetic risk to pathological 
development, with a special focus on pathology con-
tinuum between tau and α-syn aggregation. Further-
more, we discuss possible immunotherapies targeting 
pathology spreading that can be used for both tauopa-
thies and synucleinopathies. A summary of examples of 
tauopathies and synucleinopathies and their pathologi-
cal features is presented in Table 1.

Table 1  Examples of tauopathies and synucleinopathies- clinical manifestation and pathological features

Type of proteinopathy Disease Clinical manifestation Protein/cell type/ 
pathology

Main affected regions in the 
CNS and PNS

Synucleinopathy Parkinson’s disease  [25] Non-motor symptoms, 
tremor, rigidity, bradykinesia

α-syn/neurons/Lewy bodies 
(LBs) and Lewy neurites (LNs)

Substantia nigra, basal ganglia

Lewy body dementia  [26, 
27]

Visual hallucinations, cogni‑
tive decline, difficulty walk‑
ing, rigidity

α-syn/neurons/LBs and LNs Cortical and subcortical region

Multiple system atrophy  
[28, 29]

Slowness of movement, 
stiffness, cerebellar ataxia, 
autonomic failure

α-syn/oligodendrocytes/GCIs Basal ganglia, cerebellum, 
pons, spinal cord

Pure autonomic failure [30] Orthostatic hypotension, 
autonomic failure, RBD

α-syn/neurons/LBs and LNs Autonomic nerves and gan‑
glia, nigra, locus coeruleus

Primary tauopathy Cortiobasal degeneration 
[31]

Apraxia, dystonia, lack of bal‑
ance, stiffness, dementia

4R tau/glia and neurons/bal‑
looned neurons, pretangles, 
coiled bodies

Cortex and basal ganglia

Pick’s disease  [32] Dementia with frontotempo‑
ral degeneration

3R tau/glia and neurons/Pick 
bodies, ballooned neurons

Cortex and hippocampus

Progressive supranuclear 
palsy  [33]

Ocular motor dysfunction, 
postural instability, akinesia, 
dementia

4R tau/glia and neurons/
NFTs, globose tangles, tufted 
astrocytes, coiled bodies

Cortex, basal ganglia, brain‑
stem

Chronic traumatic encepha‑
lopathy [34, 35]

“Dementia pugilistica”
Headaches, dementia, abnor‑
mal gait, depression, related 
to TBI

3R/4R tau/neurons and glia/
NFTs

Cortex, basal ganglia, brain‑
stem, depths of cerebral sulci

Primary age-related tauopa‑
thy [36]

“Tangle-only dementia” 3R/4R tau/neurons/NFTs Cortex, brainstem, olfactory 
bulb

Secondary tauopathy Alzheimer’s disease  [37] Dementia, with random 
motor deficits and personal‑
ity changes

3R/4R tau/neurons/NFTs, 
plaques, neuropil threads

Hippocampus, limbic, entorhi‑
nal cortex, neocortex
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Genetic overlap between tauopathies 
and synucleinopathies
MAPT in tauopathies
The MAPT gene is located on chromosome 17q21.31 
and consists of 15 exons. MAPT has two haplotypes due 
to the inversion of the sequence on the 17q21 chromo-
some [38]. The H1 haplotype is more frequent in humans 
[39]. The alternative splicing of MAPT exons gives rise 
to six isoforms of tau protein depending on the num-
ber of microtubule-binding repeat domains (MTBD) 
(3R, 4R) and N-terminal inserts (0N, 1N, 2N) [40, 41] 
(Fig.  1). Over 50 mutations in MAPT have been identi-
fied to be related to neurodegenerative diseases, most of 
which are missense mutations [42, 43]. Around 30% of 
primary tauopathy cases are associated with pathogenic 
mutations of MAPT [43]. In the coding regions of MAPT, 
the P301L mutation on exon 10 is the most prevalent. 
It has been shown to cause an inherited form of FTD, 
and induce pathogenesis in FTD, corticobasal syndrome 
(CBS) and globular glial tauopathies [44, 45]. In addi-
tion to the autosomal dominant mutations, MAPT vari-
ants also serve as a risk factor for primary tauopathies. In 
sporadic PSP, MAPT mutations such as P301L, R5L and 
S285R are the strongest genetic risk factors [46–48]. In 

CBS, MAPT is the second most common genetic risk fac-
tor, only next to the progranulin-coding gene [49]. MAPT 
mutations mainly induce downstream MAPT mRNA 
splicing deficiency and structural changes in tau protein, 
leading to weak binding of tau to microtubule, alterations 
of the 4R/3R ratio and the sequential tau aggregation 
[50].

SNCA in synucleinopathy
The SNCA gene is mapped to chromosome 4q22.1 
and consists of 6 exons with the last 5 translatable to 
α-syn protein, which is pathologically responsible for 
synucleinopathies [51]. The SNCA gene plays a promi-
nent role in the onset of synucleinopathies especially 
PD, both as a causative gene and as risk variants [52]. 
Similar to MAPT, exon splicing of SNCA gives rise to 
alternative transcripts. Both missense mutation and 
gene multiplication of SNCA play important roles in 
pathology initiation. In the 1990s, the A53T autoso-
mal dominant mutation was found to be related to the 
early onset of PD in the Contursi Kindred [53]. SNCA 
genetic variants such as E46K [54], H50Q [55], G51D 
[56] and A30P [57], have been revealed to be associated 
with the familial forms of synucleinopathies, especially 

Fig. 1  A schematic showing mutations of MAPT and composition of tau isoforms. The H1 and H2 haplotypes are formed by the 900 kb inversion 
in the q21.3 region of chromosome 17. The H1 haplotype is often the one contributing to disease initiation due to multiple missense mutations 
from exon 1 to 13, especially on exon 10. The tau protein can be classified into 6 isoforms depending on the number of amino inserts (0N, 1N, 2N) 
on exons 2 and 3 and the number of microtubule-binding domains (3R, 4R). Exon 10 encodes the R2 domain, and its alternative splicing produces 
3R or 4R tau isoforms. The microtubule-binding domain contains hexapeptide motifs VQIINK in R2 and VQIVYK in R3. Interactions between the two 
motifs promote dimer formation of tau [1, 2, 73]
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PD. Point mutations such as G51D and multiplication 
of SNCA can promote formation of the amyloid struc-
ture of α-syn and facilitate the progression of pathology 
in synucleinopathies [54, 56, 58, 59]. Thus, gene coding 
dosage mutations play an important role in the pro-
gress of synucleinopathies. SNCA triplication leads to 
early-onset PD with symptoms of dementia [59], while 
SNCA duplication is associated with late-onset PD [58].

MAPT and SNCA correlate in the onset of proteinopathies
MAPT and SNCA gene variants have been shown to 
be correlated with each other in the etiology of various 
proteinopathies. First, synucleinopathy and tauopathy 
have been detected with overlapping presence of muta-
tions of the two genes. Meta-analyses of genome-wide 
association studies have repeatedly spotted MAPT H1 
haplotype as a risk locus for PD onset [60]. Although 
not among the entire spectrum of diseases, certain 
tauopathies and synucleinopathies have been shown to 
share genetic risks. AD and DLB, while both presenting 
dementia as the main clinical symptom, share APOE 
and BIN1 (bridging integrator-1) as risk genetic loci 
[18]. Genome-wide analysis revealed  that the global 
genetic correlation between AD and DLB is as high as 
0.578, while that between PD and AD is 0.08 [61]. The 
correlation between genetic risks of AD and ALS is also 
significant, with shared locus of TSPOAP1-AS1 [62]. 
The MAPT inversion polymorphism increases the risk 
of PD and is strongly associated with the development 
of dementia among PD patients [63]. Carriers of LRRK2 
(leucine-rich repeat kinase 2) mutations, which are the 
most common cause of familial PD, show abundant tau 
deposition [64]. There are also cases of MAPT mutation 
working independently of SNCA to cause Parkinson-
ism, showing the possibility that some tauopathies may 
share pathogenic pathways with synucleinopathies [65, 
66].

Besides the direct overlaps between MAPT and SNCA, 
tauopathies and synucleinopathies also share common 
pathogenic pathways [67]. SNCA gene point mutations 
are associated with impairment of key cellular func-
tions, such as tubulin binding, as some point mutations 
of SNCA map to the putative tubulin-binding site, pav-
ing the way to tauopathies [68]. In addition, two genes, 
MAPT and HLA (human leukocyte antigen), and 10 
pathways such as proteolytic signatures, overlap between 
AD and PD [69, 70]. Studies have shown that the tauop-
athy-related MAPT variants and the synucleinopathy-
associated SNCA mutation may make neurons more 
vulnerable to cellular dysfunction such as mitochondrial 
deficits, setting similar mechanistic paths towards neuro-
degenerative cell death [71].

Structural basis for the formation of tau and α‑syn 
pathology
Structural basis for tau aggregation
The six tau protein isoforms produced by alternative 
mRNA splicing of MAPT range from 352 to 441 amino 
acids [72]. Tau has physiological functions of stabilizing 
microtubules and maintaining axonal transport in highly 
polarized neurons [73]. The N-terminus of tau directly 
binds to the microtubules, laying the structural basis for 
tau physiological function [74]. The central domain of tau 
is highly disordered and rich in proline [75]. The C-termi-
nus of tau contains three (3R) or four (4R) MTBD due to 
the splicing of MAPT on exon 10. The number of MTBDs 
affects the microtubule-binding affinity and the propen-
sity of tau to aggregate [76]. Under physiological condi-
tions, the protein structure of tau possesses a large range 
of variation. A previous study showed that the soluble 
native tau has multiple conformations in cytoplasm [77]. 
The initiation of tau aggregation lies in its own structure, 
i.e., the two hexapeptide sequences in the second and 
third MTBDs, laying the foundation for fibrilization [78].

Pathological assembly of soluble tau and post-trans-
lational modification (PTMs) of tau may result in the 
formation of insoluble NFTs, leading to neuronal dys-
function such as synaptic dysfunction and altered mito-
chondrial trafficking [43, 79]. The starting point of tau 
aggregation is the dimerization through interactions 
between the two hexapeptide motifs VQIVYK (located at 
the beginning of the third MTBD, thus present in both 
3R and 4R isoforms) and VQIINK (located at the begin-
ning of the second MTBD, thus present only in 4R iso-
forms) [78, 80]. Dimerization of tau serves as the core 
for sequential nucleation and elongation [81]. Elongated 
oligomers further serve as the template for amyloid for-
mation with β-sheet structure, which eventually forms 
paired helical filaments (PHFs), giving rise to highly 
structured polymorphs seen in NFTs [82]. Genetic muta-
tions such as P301L [83], and PTMs such as multi-site 
hyperphosphorylation [84, 85], are believed to facilitate 
tau aggregation. For example, the P301L tau mutation 
results in alterations of the hexapeptides, making tau 
more susceptible to aggregation [83]. A diagram of muta-
tions in MAPT and tau isoforms is illustrated in Fig. 1.

Structural basis for α‑syn aggregation
α-Syn contains 140 amino acids encoded by the SNCA 
gene [86]. Little is known about the physiological func-
tions of the protein. α-Syn has been shown to play a role 
in regulating synaptic neurotransmitter release [87]. The 
protein contains a N-terminal amphipathic region, a cen-
tral amyloidal region and a C-terminal acidic domain 
(Fig. 2). The N-terminus of α-syn has lipid-binding prop-
erties and facilitates the initiation of aggregation. The 
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central region is also named as the non-amyloid-β com-
ponent core, which contains an amyloidogenic domain 
(61-95) [88]. The C-terminus is the structural basis for 
the unfolded nature of the protein [89]. α-Syn aggrega-
tion is partly due to its own natively unfolded structure 
and various pathogenetic SNCA mutations, as mentioned 
above [90]. Physiologically, the protein executes its neu-
rological function in the cytoplasm in the forms of mon-
omers and oligomers. Genetic instability, introduction of 
external amyloid seeds, dys-homeostasis of membrane 
structure, etc., can disrupt the equilibrium of α-syn mon-
omers and oligomers, induce abnormal membrane bind-
ing and cause initiation of aggregation [91]. During the 
process of α-syn aggregate formation, PTMs play impor-
tant roles (Fig. 2). Phosphorylation of α-syn at serine 129 
is considered as a pathological marker of LB formation. 
About 90% of the α-syn extracted from synucleinopathy 
patient brains is phosphorylated at serine 129 [92]. Under 
pathological conditions, α-syn converts from the mono-
meric or oligomeric forms to the β-sheet structures. The 
β-sheets serve as the template and seed soluble mono-
mers to generate protofibrils and eventually amyloid 
fibrils [91, 93]. The processes of tau and α-syn aggrega-
tion are illustrated in Fig. 3. 

Tau and α‑syn pathology spreading
Postmortem studies of AD and PD have revealed the 
possibility of intercellular spreading of tau and α-syn, 
either to adjacent cells or between brain regions and 
peripheral organs [94–96]. Pathological staging using AD 
patient brain tissues has outlined a path of NFT deposi-
tion, beginning in the locus coeruleus and spreading to 

the entorhinal region and hippocampus, and eventually 
to the neocortex. The predictable manner of tau spread-
ing correlates with the progress of cognitive decline [97, 
98]. α-Syn spreads from the periphery to the brain fol-
lowing the Braak staging [99]. Typically, misfolded and 
aggregated α-syn in the dorsal motor nucleus of vagus 
can spread to other brain regions. Enteric deposition of 
LBs in early PD and incidental LB disease (iLBD) cases 
has also been reported [100], suggesting the propagat-
ing pathway from the peripheral enteric nervous system 
to the central nervous system (CNS) via the vagal nerve 
[101].

The cell-to-cell transfer of both tau and α-syn are 
hypothesized to follow a “prion-like” manner [102–107]. 
The molecular mechanisms by which the external aggre-
gated seeds from donor cells enter recipient cells are still 
unknown. In the recipient cells, the seeds provoke the 
unfolding of the native monomeric proteins and initiate 
sequential aggregate formation. This is rather a process of 
dissemination than simple endocytosis and exocytosis.

The processes of tau and α-syn release and uptake are 
not fully understood. It is speculated that tau mainly 
spreads between cells through synaptic connectivity, 
rather than being predicted by proximity [98, 99]. Tau 
and α-syn both enter and exit cells through endocyto-
sis, exosomes [91] and tunneling nanotubes [108, 109]. 
In addition, receptor proteins that mediate cell-to-cell 
transmission of both tau and α-syn have been reported. 
Lipoprotein receptor-related protein 1 (LRP1) has been 
shown to regulate the cellular entry of α-syn mono-
mers and oligomers. Knock-out of LRP1 in mice signifi-
cantly reduces the uptake of α-syn [110]. LRP1 is also a 

Fig. 2  Structure, mutations and PTMs of α-syn protein. α-Syn has three domains: the amphipathic N-terminus, the non-amyloid-β component 
(NAC) which is prone to aggregate, and the acidic C-terminus. Common point mutations of α-syn are A30P, E46K, H50Q, G51D, A53T and A53E. The 
PTMs of α-syn mainly include phosphorylation, nitration, acetylation, ubiquitination and SUMOylation [43, 162]
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receptor for tau endocytosis, as blocking LRP1 signifi-
cantly reduces tau uptake in neuroglioma cells and stem 
cell-derived neurons [111]. Lymphocyte activation gene 3 
(LAG3) is necessary for receptor-mediated α-syn endo-
cytosis [112]. Meanwhile, depletion of LAG3 can also 
decrease the uptake of tau by primary neurons [113].

When acting on cells, both tau and α-syn induce neu-
roinflammation and oxidative stress, which are common 
pathogenic features of neurodegeneration [114, 115]. For 
example, in primary microglial culture, preformed tau 
fibrils activate microglia in an NF-κB-dependent manner 
[116]. In addition, P301S tau transgenic mice show acti-
vation of astrocytes [117]. In synucleinopathies, longi-
tudinal gene profiling studies have revealed the essential 
role of microgliosis in the early stages of PD, preced-
ing the course of neurodegeneration [118]. Moreover, 
impairment in mitochondrial function [119, 120], synap-
tic transmission [121] and autophagy [122, 123] has been 
revealed in both proteinopathies.

The intercellular propagation of tau and α-syn patholo-
gies follow preferential routes and share mechanisms 
such as exosomes and receptor-mediated endocytosis 
[124]. The similar spreading pathways and cellular toxic-
ity between synucleinopathy and tauopathy may serve as 
a reference for developing pathology-targeting therapeu-
tic interventions.

Pathological continuum between tauopathies 
and synucleinopathies
Co‑occurrence of tau and α‑syn pathology
Both tau and α-syn have a structural basis that confers 
an aggregation-prone property, leading to the typical 

pathological progress of tauopathy and synucleinopa-
thy [86]. Co-presence of tau and α-syn has been shown 
in various diseases and models of neurodegeneration. 
Brain deposition of α-syn is found in more than 50% of 
AD patients [125, 126]. α-Syn was first identified in the 
AD brain in 1993 by Ueda et al., which then was iden-
tified as a non-Aβ peptide fragment in the isolated Aβ 
plaques [127]. However, in later studies, the co-locali-
zation of α-syn was found to a greater extent with tau 
than with Aβ in AD brains [125]. Lippa et  al. demon-
strated that the insoluble forms of α-syn were present 
mainly in the amygdala of familial AD patients, some 
of which co-localized with tau NFTs [128]. In 145 spo-
radic AD patients examined in the study by Hamilton 
et  al., LBs were found in the brains of more than 60% 
patients, predominantly in the amygdala, rarely in the 
substantia nigra [126]. Uchikado et  al. found that in 
260 AD patients 62 cases had amygdala LBs, and in 
most of these cases, NFTs and LBs were found in the 
same cells [129]. The distribution pattern of LBs in 
AD patients differs significantly from that in PD, with 
absence of LBs in the brainstem, but more in the lim-
bic and olfactory regions [130]. Tau fibrilization was 
also observed in PD patients carrying the A53T muta-
tion [131]. Colocalization of tau and α-syn epitopes has 
been detected in LBs in multiple studies [132, 133]. In 
80% cases of AD and diffused LB disease, tau immuno-
reactivity, especially phosphorylated tau, was spotted in 
LBs in the medulla [132]. In familial PD and DLB cases, 
PHF tau antibody can partially label LBs in the same 
neuronal cell, suggesting the co-occurrence of tau and 
α-syn in synucleinopathy brains [133]. The co-existence 

Fig. 3  Processes of tau and α-syn aggregation. Under pathological conditions, α-syn accumulates and forms the β-sheet structure in the cytoplasm, 
which then becomes an amyloid fibrillary structure, the main component of LBs. On the other hand, tau monomers become hyperphosphorylated 
and form numeric molecules, which then aggregate into protofilaments and form PHFs, eventually becoming NFTs
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of tau and α-syn indicates the overlapping of pathology 
formation in both groups of disease.

Tau/α‑syn co‑aggregates in pathology spreading
Compared to a singular administration of tau or α-syn, 
the existence of co-pathology of α-syn and tau has 
stronger effects in facilitating pathological spreading of 
the proteins. In mice injected with both AD patient brain 
lysates and α-syn fibrils, phosphorylated tau aggregation 
was significantly elevated in the presence of α-syn, and 
spread to broader brain regions such as the retrosplenial 
cortex and the supramammillary nucleus [134]. In  vivo, 
transduction of tau and α-syn fibrils together induced 
a significant increase of insoluble tau pathology but not 
α-syn aggregates in neurons [134]. In addition, mice 
injected with tau-modified α-syn fibrils exhibited more 
severe α-syn pathology and faster spreading of α-syn in 
the striatum, compared with pure α-syn fibril injections. 
Knockout of tau attenuated the α-syn propagation and 
the accompanied mitochondrial toxicity [24]. In addition, 
PD patient-derived α-syn/tau oligomers administered 
in tau transgenic mouse brains accelerated tau oligomer 
formation and induced more severe neuronal loss, com-
pared to administration of tau oligomers alone [135]. 
Hippocampal injection of the tau/α-syn hybrid fibrils 
exacerbated tau pathology transmission in a tauopathy 

mouse model, compared with pure tau or α-syn fibril 
administration. Interestingly, when tau/α-syn co-pol-
ymers were administered   to synucleinopathy mouse 
brains, no elevation of α-syn pathology propagation was 
observed compared to pure α-syn injection. It seems that 
the effect of tau/α-syn hybrid oligomers on pathology 
transmission is much stronger in tauopathy models than 
in synucleinopathy models, suggesting a more thorough 
cooperation of the two proteins in the tau seeding pro-
cess, reflecting a more prominent effect of α-syn amyloi-
dogenicity compared to tau [136].

Possible mechanisms underlying the formation of tau 
and α‑syn co‑pathology
Several studies have repeatedly proven the continuum 
of pathology between tau and α-syn. However, how the 
tau and α-syn co-pathology occurs is still unclear. Here 
we propose three hypothesized models for the molecular 
mechanisms underlying the tau and α-syn co-pathology 
based on current literature (Fig. 4).

First, direct binding between tau and α-syn monomers 
promotes the co-aggregation of proteins and initiates 
fibrilization. The proline-rich domain and the MTBD-
containing region within the structure of tau protein 
directly interact with α-syn and presenilin-1, both regu-
lating the formation of pathology in synucleinopathy [81, 

Fig. 4  Mechanisms of co-pathology formation between tau and α-syn. We propose three possible models of tau and α-syn co-pathology 
formation in neurons. (1) Tau and α-syn monomers directly bind to each other and form co-aggregates (left), (2) tau or α-syn aggregates serve 
as the template and initiate elongation with monomers of the other protein, a process termed cross-seeding (middle); and (3) tau and α-syn 
aggregate independently from each other in the same neurons
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137]. A recent study using a bimolecular fluorescence 
complementation system, which allows direct visualiza-
tion of protein–protein interaction, revealed contacts 
between α-syn and tau at the molecular level, again lay-
ing the molecular basis for the formation of co-pathology 
[138]. Co-incubation of monomeric α-syn with tau vari-
ants promotes the amyloid formation of both tau and 
α-syn aggregates in  vitro. NMR spectroscopy revealed 
that α-syn binds to tau molecules through its negatively 
charged C terminal [86]. Despite the direct binding, there 
is  also a study showing co-aggregation of tau and α-syn 
through liquid–liquid phase co-separation, by forming 
electrostatic complex coacervates, explaining the mecha-
nisms of co-pathology formation from the biophysical 
perspective [139].

Second, tau and α-syn form co-polymers by means of 
templating and cross-seeding. The cross-seeding pro-
cess follows a nucleation-dependent pathway, where one 
type of protein aggregate serves as a template, recruit-
ing the monomeric, mutant or oligomeric form of the 
other [140]. From the biophysical perspective, oppositely 
charged proteins are more likely to cross-seed each other 
and the aggregation kinetics of co-aggregation is acceler-
ated [141]. α-Syn and tau can cross-seed each other [142]. 
Adding modified polymorphic α-syn oligomeric strains 
to tau aggregates results in co-polymers with stronger 
propensity in pathology spreading [143]. Cryo-EM and 
solid-state NMR evidence from the study of Hojjatian 
et al. revealed that the α-syn aggregation in the presence 
of tau cofactor is related to specific polymorphs in the 
core region [144]. Meanwhile, in in  vitro studies, α-syn 
fibrillary seeds induced intracellular inclusion formation 
of phosphorylated tau [145]. Studies in both neuronal 
culture and mice showed that distinct strains of α-syn 
preformed fibrils seed tau aggregation differently, sug-
gesting the close association between templating and the 
sequential co-aggregate formation [24, 86, 146].

Third, in the post-mortem study by Ishizawa et  al., 
phosphorylated tau was present at the periphery of LBs 
instead of in an intertwining distribution pattern, in the 
brains of patients with Lewy body disease [132]. Never-
theless, Uchikado et al. showed that α-syn formed a cen-
tral core surrounded by tau tangles in AD patient brains. 
Electron microscopy examination showed tightly packed 
tau filaments separated from the α-syn granule-patterned 
aggregates [129]. The finding of the co-pathology of tau 
and α-syn without cross-seeding of the two proteins sug-
gests that α-syn and tau can aggregate independently in a 
same neuron.

Perspectives
Despite the overlapping genetic risk factors and clinical 
manifestations, the co-pathology of protein aggregation, 

and the  mutual facilitation of pathology spreading and 
cellular toxicity, there are divergent features between 
tauopathies and synucleinopathies. Intracellularly, tau is 
distributed predominantly in neuronal axons associated 
with microtubule, while α-syn is rather restricted to syn-
aptic regions under physiological conditions [147, 148]. 
Moreover, transcriptomic studies have revealed that tau 
and α-syn variants have distinct cell type affinities. α-Syn 
is mainly present in neurons of the dopamine system, 
related to cellular functions such as synaptic transmis-
sion. Tau is predominantly located in the hippocampus 
and entorhinal cortex, related to cellular functions such 
as Ca2+ homeostasis [149, 150]. The propagation of tau 
aggregates is more limited to the CNS in contrast to the 
spreading pattern of α-syn from the periphery to the 
CNS [151]. However, studies by Beach et al. debated on 
the theory that α-syn pathology originates from periph-
eral organs. In their post-mortem analyses of synucle-
inopathy in iLBD, PD and normal elderly subjects, they 
found no presence of peripheral α-syn in subjects with-
out brain α-syn pathology. This revoked the “body-first” 
hypothesis of α-syn aggregation [152, 153]. Unlike α-syn, 
it is hypothesized that the tau protein is present in the 
peripheral nervous system more as the “Big tau”, with a 
higher molecular weight due to the additional exon 4a, 
which makes the protein more strongly bind the cytoskel-
eton and less likely to undergo conformational changes 
and aggregation [154–156].

Based on the pathological continuum of tauopathies 
and synucleinopathies, common therapeutic interven-
tions may be applied to both groups of diseases. Tau and 
α-syn share similar mechanisms of cell-to-cell trans-
mission, including exosome release, receptor-mediated 
endocytosis, etc. Blocking the propagation process of 
both amyloid proteins could be a potential way to halt 
pathology progression and delay the development of dis-
eases. Immunotherapies targeting extracellular tau and 
α-syn have been reported to be effective in clinical tri-
als for disease modification, such as the passive-immu-
nization antibody PRX002 [157] for α-syn and BIIB092 
for tau [158, 159]. Preclinical studies have also reported 
some immunotherapeutic antibodies and active peptides 
that can effectively decrease protein aggregation and pro-
tect neurons [160, 161].

Conclusion
We have summarized the clinical symptoms, genetic 
risks and pathological features of tauopathies and synu-
cleinopathies. More importantly, we have discussed 
recent findings on the aggregation, propagation and tox-
icity of tau and α-syn, with a special focus on the patho-
logical continuum of the two proteins and the two groups 
of proteinopathies. Tau and α-syn can cross-seed each 
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other in the process of aggregate formation and spread-
ing. The present review provides an update on disease 
classification of neurodegeneration and suggests niches 
of pathology intervention at early stages of tauopathies 
and synucleinopathies.
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