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Abstract 

Nasal swabs are non-invasive testing methods for detecting diseases by collecting samples from the nasal cavity 
or nasopharynx. Dysosmia is regarded as an early sign of coronavirus disease 2019 (COVID-19), and nasal swabs are 
the gold standard for the detection. By nasal swabs, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
nucleic acids can be cyclically amplified and detected using real-time reverse transcriptase-polymerase chain reaction 
after sampling. Similarly, olfactory dysfunction precedes the onset of typical clinical manifestations by several years 
in prion diseases and other neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, dementia 
with Lewy bodies, and multiple system atrophy. In neurodegenerative diseases, nasal swab tests are currently being 
explored using seed amplification assay (SAA) of pathogenic misfolded proteins, such as prion, α-synuclein, and tau. 
These misfolded proteins can serve as templates for the conformational change of other copies from the native form 
into the same misfolded form in a prion-like manner. SAA for misfolded prion-like proteins from nasal swab extracts 
has been developed, conceptually analogous to PCR, showing high sensitivity and specificity for molecular diagnosis 
of degenerative diseases even in the prodromal stage. Cyclic amplification assay of nasal swab extracts is an attractive 
and feasible method for accurate and non-invasive detection of trace amount of pathogenic substances for screening 
and diagnosis of neurodegenerative disease.
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Graphical Abstract

Background
Neurodegenerative diseases are a heterogeneous group 
of disorders characterized by progressive degeneration 
of neuron structure or function, such as Alzheimer’s dis-
ease (AD), Parkinson’s disease (PD), amyotrophic lateral 
sclerosis (ALS), Huntington’s disease (HD), and prion 
diseases [1]. Accurate diagnosis of a neurodegenerative 
disease is vital for the screening, diagnosis, and subse-
quent management of patients. However, a definite diag-
nosis of neurodegenerative diseases is tricky and requires 
brain biopsies or autopsies. These disorders are mainly 
diagnosed clinically [2]. Due to the complexity and het-
erogeneity of neurodegenerative disorders and a large 
number of overlapping clinical manifestations, an exact 
diagnosis is often challenging [3, 4]. Even experienced 
clinicians may misdiagnose them. A non-invasive and 
accurate strategy for the diagnosis of neurodegenerative 
diseases is warranted [5].

Nasal swabs are non-invasive testing methods for 
detecting diseases by collecting samples from the nasal 
cavity or nasopharynx. Olfactory dysfunction is an 
early sign of most neurodegenerative diseases [6, 7], 
and a growing body of research indicates that the olfac-
tory pathway may be one of the initially affected areas 
in patients with neurodegenerative diseases [8–11]. 
Nasal swab tests, analogous to PCR, are currently being 
explored using seed amplification assays (SAA) of patho-
genic misfolded proteins in neurodegenerative diseases.

Neurodegenerative diseases are characterized by the 
accumulation of disease-related misfolded proteins, 
such as α-synuclein, Aβ, and tau, which are known 
for their prion-like self-amplifying capacity. Protein-
misfolding cyclic amplification (PMCA) and  real-time 
quaking-induced conversion  (RT-QuIC) assays are 
legacy names from the prion field and we will use the 

name SAA to refer to the assay for non-prion proteins 
in the present review. SAA has been developed to diag-
nose neurodegenerative diseases in accessible biospeci-
mens, such as cerebrospinal fluid (CSF) [12–38], skin 
[33, 34, 39–42], and olfactory mucosa [17, 26, 43–50]. 
SAA of nasal swab extracts is the most prominent for 
its simple, rapid and non-invasive sampling, and shows 
very high sensitivity and specificity in detecting neuro-
degenerative diseases, even at the prodromal stage [17].

In this review, we discuss the anatomy of the nasal 
cavity and olfactory system, summarize the sample col-
lection and testing process of nasal swabs, and high-
light the clinical application of nasal swabs in prion 
diseases, synucleinopathies and tauopathies, focusing 
on the early and non-invasive diagnosis of neurodegen-
erative diseases via SAA of nasal swab extracts.

Basic anatomy of olfaction and the olfactory pathway
The olfactory epithelium consists of three types of cells 
with different morphology and functions: olfactory sen-
sory neurons (OSNs), supporting cells, and basal cells 
[51]. OSNs are bipolar neurons and exist in the mucosa 
of the upper nasal cavity. The dendritic processes of 
OSNs cross the mucosa at the top of the nasal cavity, 
the upper part of the nasal septum, and the medial 
part of the superior nasal nail to form olfactory recep-
tors. The central processes of OSNs form the olfactory 
nerve, which transmits the olfactory impulse to the 
olfactory bulb. Basal cells can differentiate into OSNs 
[52]. The olfactory bulb is the first relay station of an 
olfactory pathway that transmits and processes olfac-
tory information, where the central processes of OSNs 
form synapses with the dendrites of mitral and tufted 
cells. Then, the axons of mitral and tufted cells transmit 
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olfactory information to the olfactory cortex through 
the olfactory tract [53] (Fig. 1).

Distribution of aggregates in the nasal cavity
Misfolded protein aggregates commonly deposit in the 
olfactory system in patients with neurodegenerative 
diseases [54]. AD and PD, two most common neurode-
generative diseases, both exhibit olfactory dysfunction 
early in disease course despite different phenotypes and 
pathologies [6, 7]. Beach et  al. found the presence of 
Lewy bodies in the olfactory bulb of patients with PD 
by immunohistochemical staining for α-synuclein [54]. 
Braak et al. proposed the pathological staging of PD, in 
which α-synuclein aggregates propagate from the olfac-
tory bulb to the central nervous system [11, 55]. Con-
sistent with observations in humans, animal studies 
injecting preformed α-synuclein fibrils into the olfac-
tory bulb of mice have shown appearance of preformed 
α-synuclein fibrils in other brain regions after a period 
of time [56–59]. Ohm et  al. reported that neurofibril-
lary tangles and neuropil threads occur in the anterior 
olfactory nucleus and olfactory bulb in AD cases [60]. 
This finding has been repeatedly confirmed, suggest-
ing that this pathology starts very early [61–63]. Sub-
sequently, Arnold et  al. found tau aggregates in the 
olfactory epithelium of patients with AD [64]. In the 
early stages of AD and PD, the pathological involve-
ment of anosmia and olfactory pathways has led to the 
hypothesis that AD and PD are caused by substances 
entering the brain through olfactory pathways [65]. 

However, so far, there is no direct evidence to support 
this hypothesis.

Nasal swabs and SAA of nasal swab extracts
Nasal swabs are a non-invasive testing method that 
detects diseases by collecting samples from the nasal 
cavity or nasopharynx. Currently, nasal swabs are being 
used to diagnose neurodegenerative diseases via collec-
tion of affected cells in the olfactory mucosa, from which 
misfolded proteins are detected. The misfolded proteins 
can serve as a template for proteins of the same type to 
misfold. The SAA technology was first described under 
the name PMCA [66] and later modified to use recombi-
nant protein (named rPrP-PMCA) [67], shaking (named 
QuIC) [68], and finally thioflavin T (ThT) readings (final 
name RT-QuIC) [13]. SAA is a representative technique 
to amplify trace amounts of misfolded protein aggregates 
in tissues and biofluids to detect the seeding activity of 
pathological proteins, in the aim of diagnosing neurode-
generative diseases [13, 69]. Misfolded proteins aggre-
gate into oligomers that are further elongated into fibrils 
detected using ThT fluorescence. Shaking breaks down 
the fibrils into shorter oligomers (seeds), which can com-
bine with other natural proteins to facilitate transforma-
tion and continuous cyclic amplification (Fig.  2) [70]. 
Thus, SAA is based on cyclic amplification, which is dif-
ferent from other detection methods such as cell culture 
and antigen detection.

Nasal swab sampling from patients with neurodegen-
erative diseases is performed at the olfactory mucosa, 
and the sampling method is slightly complicated and 

Fig. 1  The olfactory conduction pathway. The olfactory epithelium comprises three cell types: olfactory sensory neurons (OSNs), supporting cells, 
and basal cells. After OSNs capture odor molecules, the axons of neurons expressing the same odorant receptors converge to several well-defined 
glomeruli in the olfactory bulb (OB), where they transmit signals to mitral cells. The axons of the mitral cells leave the OB and project to the higher 
olfactory cortex, including the piriform cortex, hippocampus, and amygdala, to generate the sense of smell. Misfolded protein aggregates transfer 
between the olfactory system and the central nervous system via olfactory pathways. The red dots represent seeds
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relatively non-invasive. The position of the olfactory 
mucosa is first located using a nasal scope and then nasal 
swab sampling is performed [17, 71]. A detailed tuto-
rial video on olfactory mucous sampling is accessible at 
https://​www.​youtu​be.​com/​watch?v=​wYb9W​3u6uMY 
[26].

Application of nasal swabs in neurodegenerative diseases
Similar to COVID-19, olfactory dysfunction is an early 
symptom of most neurodegenerative diseases. Olfactory 
dysfunction is related to the deposition of pathological 
proteins, such as misfolded α-synuclein and tau protein, 
identified in a post-mortem study [72]. In recent years, 
researchers have combined nasal swabs with SAA to 
diagnose neurodegenerative diseases, and reported high 
sensitivity and specificity. The main results of perfor-
mance of SAA in olfactory mucosa samples in diagnosing 
different neurodegenerative diseases are summarized in 
Table 1.

Application of nasal swabs in prion diseases
Prion diseases are a group of progressive, incurable, 
and fatal neurodegenerative diseases that can affect 
both humans and animals. The infectious agent caus-
ing prion disease is known as the scrapie isoform of the 
prion protein (PrPSc). Prion diseases are related to PrPSc 

accumulation in the central nervous system, caused by 
the autocatalytic conversion of normal cellular prion 
protein (PrPc) to repeated misfolded isoforms. Confirma-
tion of the diagnosis of Creutzfeldt–Jakob disease (CJD) 
requires the detection of PrPSc in biopsy specimens; how-
ever, this method poses a risk to healthcare workers and 
also is invasive for patients [73].

In 2001, Saborio et  al. reported a procedure involv-
ing cyclic amplification of protein misfolding that allows 
rapid conversion of large excess PrPC into a protease-
resistant, PrPSc-like form in the presence of minute quan-
tities of PrPSc template, a process called PMCA [66]. In 
2007, Atarashi et  al. used recombinant hamster PrPC to 
replace brain-derived PrPC, which greatly accelerated the 
rate of seed polymerization and facilitated the develop-
ment of rapid, ultrasensitive prion assays and diagnostic 
tests. This method is called rPrP-PMCA [67]. In 2008, 
Atarashi et al. developed a new prion assay, abbreviated 
QuIC for quaking-induced conversion, which uses auto-
mated tube shaking rather than sonication. This assay 
is faster and simpler than the PMCA and rPrP-PMCA 
assays [68]. In 2011, Atarashi et al. further improved the 
rapidity and practicality of this method by combining it 
with ThT fluorescence to monitor amyloid fibril forma-
tion. This assay is called RT-QuIC. They evaluated the 
technique in a blinded study of CSF samples in patients 

Fig. 2  Schematic presentation of RT-QuIC mechanism and process of nasal swab extracts. a Seed transformation in the RT-QuIC process. The 
misfolded proteins (orange, seeds) trigger conformational changes of native proteins (green, substrates) to form new misfolded seeds. This switch 
results in conformational modification into misfolded oligomers, which are then elongated into fibrils. After detection of fibrils, longer fibrils are 
broken down into shorter reactive seeds by quaking, which further facilitate the conversion of native proteins. b RT-QuIC procedure using nasal 
swab extracts. Sample homogenate from the patient’s olfactory mucosa is mixed with the reaction buffer containing recombinant protein and 
Thioflavin T (ThT, a fluorescent amyloid probe), loaded into a multi-well microplate, and then incubated with alternating cycles of shaking and 
rest in a fluorescence microplate reader. This device records ThT fluorescence emission throughout the incubation, thus revealing the kinetics of 
aggregate formation. Sigmoidal growth in ThT fluorescence indicates a positive diagnosis

https://www.youtube.com/watch?v=wYb9W3u6uMY
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with CJD, achieving over 80% sensitivity and 100% 
specificity [13]. Later, the CSF RT-QuIC technique was 
increasingly used to diagnose CJD, with diagnostic sensi-
tivity and specificity ranging 77%–100% and 98%–100%, 
respectively [14, 17, 19, 20, 74]. In view of the high sen-
sitivity and specificity, CSF RT-QuIC has been included 
in the diagnostic criteria for CJD [75, 76]. Additionally, 
PMCA has been described for the detection of CJD in 
blood [77, 78] and urine [79].

Based on the existence of PrPSc in the olfactory neu-
roepithelium [80], olfactory mucosal sampling provides 
another promising strategy for the diagnosis of CJD. 
Compared with CSF, the collection of olfactory mucosa 
samples is simple, rapid, and non-invasive. In 2014, Orrú 
et  al. used RT-QuIC to detect PrPSc in the olfactory 
mucosa of patients with CJD, with sensitivity and speci-
ficity of 97% and 100%, respectively, while testing CSF 
samples from the same group had a sensitivity of 77% 
and specificity of 100%. The olfactory mucosa can elicit 
a faster and stronger RT-QuIC response than the CSF 
[17]. Subsequently, Bongianni et  al. combined results 
from RT-QuIC assays of CSF and olfactory mucosa sam-
ples to achieve an antemortem diagnosis of sporadic 
CJD with 100% specificity and sensitivity [26]. Fiorini 
et al. also showed that the combination of CSF and olfac-
tory mucosa RT-QuIC testing led to 100% sensitivity 
and specificity, proving that it is feasible to include RT-
QuIC detection of target proteins from CSF and olfactory 
mucosa samples in the diagnostic criteria of CJD [46]. 

And then, Orrú et  al. developed "second-generation" 
RT-QuIC assays to detect PrPSc in the olfactory mucosa 
of CJD patients, with 100% sensitivity and 100% speci-
ficity [45]. In addition, Cazzaniga et al. used the PMCA 
technology to detect prions in the olfactory mucosa of 
CJD patients with 79.3% sensitivity and 100% specific-
ity [50]. Fatal familial insomnia (FFI) is a genetic prion 
disease caused by a point mutation in the prion pro-
tein gene (PRNP). In 2017, Redaelli et  al. demonstrated 
that the olfactory mucosa of patients with FFI contains 
PrPSc detectable by PMCA and RT-QuIC [43].

Application of nasal swabs in other neurodegenerative 
diseases
A growing body of evidence supports that the pathogen-
esis of neurodegenerative diseases is caused by the mis-
folding, aggregation, and spread of disease-associated 
proteins, as observed in prion diseases. Some of these 
proteins include misfolded α-synuclein in synucleinopa-
thies and tau in tauopathies [81].

Application of nasal swabs in synucleinopathies
Synucleinopathies are a group of diseases caused by mis-
folding and aggregation of α-synuclein, including PD, 
dementia with Lewy bodies (DLB), and multiple system 
atrophy (MSA) [82]. Compelling evidence suggests that 
in synucleinopathies, abnormally folded α-synuclein pro-
teins are present in trace amounts in the CSF and periph-
eral tissues, such as the olfactory mucosa [83]. In 2016, 

Table 1  Performance of seed amplification assays of olfactory mucosa samples in different neurodegenerative diseases

CJD Creutzfeldt–Jakob disease, FFI Fatal Familial Insomnia, PD Parkinson’s disease, MSA multiple system atrophy, MSA-P MSA patients with the parkinsonian 
phenotype, MSA-C MSA patients with the cerebellar phenotype, RBD Isolated REM sleep behaviour disorder, PSP Progressive supranuclear palsy, CBD Corticobasal 
degeneration, AD Alzheimer’s disease

Disease Number of cases Number of controls Sensitivity (%) Specificity (%) References

CJD 31 43 97 100 [17]

CJD 69 17 94 100 [26]

FFI 2 26 100 100 [43]

PD 18 18 56 17 [44]

MSA 11 18 82 17 [44]

CJD 9 19 100 100 [45]

CJD 35 7 91 100 [46]

PD 13 11 69 100 [47]

MSA-P 20 11 90 100 [47]

MSA-C 10 11 0 100 [47]

RBD 63 59 44.4 89.8 [48]

PD 41 59 46.3 89.8 [48]

PD 43 29 74 90 [49]

CJD 29 34 79.3 100 [50]

PSP 4 0 50 – [93]

CBD 2 0 50 – [93]

AD 2 0 0 – [93]
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Fairfoul et  al. first developed a novel SAA assay for the 
detection of α-synuclein in the CSF of patients with DLB 
and PD, with sensitivities of 92% and 95%, respectively, 
and an overall specificity of 100% [84]. To date, research-
ers from various countries have used the SAA technology 
to detect α-synuclein in the CSF of patients with synu-
cleinopathies, and obtained similarly high sensitivity and 
specificity [29, 85, 86].

Olfactory dysfunction is considered one of the earliest 
symptoms of PD, at least 4 years preceding classic motor 
deficits [6]. As in PD, olfactory dysfunction is common 
in DLB [87]. Rey et al. found that the olfactory bulb may 
be an entry site for prion-like transmission in neurode-
generative diseases [88]. The success of nasal swab SAA 
in diagnosing prion diseases promoted the application of 
nasal swab SAA in synucleinopathies. In 2019, De Luca 
et al. first applied the SAA technique to detect the seed-
ing activity of α-synuclein in the olfactory mucosa of 
patients with PD and MSA, and reported a sensitivity of 
55.6% and 81.8%, respectively, and an overall specificity 
of 83.3% [44].

More importantly, olfactory mucosa samples from 
patients with PD or MSA induce the formation of 
α-synuclein aggregates with different biochemical and 
structural characteristics, which is promising for differ-
entiating between the two diseases. In detail, α-synuclein 
SAA products seeded with the olfactory mucosa of 
patients with MSA show stronger proteinase K resistance 
than the SAA products seeded with the olfactory mucosa 
of PD patients. In addition, the α-synuclein SAA prod-
ucts seeded with the olfactory mucosa of patients with 
PD and MSA also differ in structure. As observed with 
transmission electron microscopy, the distance between 
overtwists in α-synuclein fibrils acquired from SAA 
seeded with the MSA olfactory mucosa is greatly differ-
ent from that acquired from SAA seeded with the PD 
olfactory mucosa [44]. These studies using nasal swabs 
are supported by similar studies in CSF samples where 
the different structures produced by PD and MSA are 
studied in more details [89].

Moreover, α-synuclein SAA with olfactory mucosa 
samples can not only be used to identify PD and MSA 
but also to identify different subtypes of MSA. MSA is an 
adult-onset sporadic neurodegenerative disease, which 
mainly includes two types: the parkinsonian (MSA-
P) and the cerebellar (MSA-C) [90]. Bargar et  al. found 
that efficient α-synuclein SAA seeding activity could be 
observed in the olfactory mucosa of MSA-P patients but 
not of MSA-C patients. The lack of α-synuclein seeding 
activity in MSA-C patients indicates that MSA-P and 
MSA-C may be caused by different strains of α-synuclein 
with different affinities to the olfactory mucosa [47].

Additionally, Perra et  al. found that the consistency 
between SAA and clinical diagnoses was 86.4% for the 
olfactory mucosa and 93.8% for the CSF of patients 
with DLB. Interestingly, the research team performed a 
“dual-tissue α-synuclein SAA test” on the same patient, 
first testing the olfactory mucosa and then the CSF. The 
combined SAA detection of olfactory mucosa and CSF 
improved the consistency with clinical diagnosis to 
100%. Perra et al. proposed a novel diagnostic approach 
in which the non-invasive nasal swabs can be used as a 
first-line screening procedure for patients with suspected 
DLB, and CSF analysis can be performed as a confirma-
tory test when the results of the olfactory mucosa are 
inconsistent with the initial clinical diagnosis [91].

Isolated rapid eye movement sleep behavior disor-
der (iRBD) and pure autonomic failure (PAF) are cur-
rently recognized to be prodromal for synucleinopathies 
[92, 93]. In 2020, Rossi et  al. first used SAA to detect 
α-synuclein seeding activity in the CSF of patients with 
iRBD and PAF, and reported sensitivity of 100% and 
92.9%, respectively. The specificity was 98% in 101 neg-
ative controls [32]. In 2021, Iranzo et  al. reported simi-
larly high sensitivity and specificity for SAA in detecting 
α-synuclein in the CSF of iRBD patients [37]. Subse-
quently, Stefani et al. analyzed olfactory mucosa samples 
from 63 patients with iRBD and 41 patients with PD in 
a blinded manner by α-synuclein SAA, and the sensitiv-
ity was 44.4% and 46.3%, respectively, but the specificity 
for iRBD plus PD versus controls was high (89.8%). The 
different sensitivities and specificities obtained in differ-
ent studies could be largely due to the distinct SAA pro-
tocols used, which may outweigh the intrinsic differences 
on the samples. These results suggest that nasal swabs are 
attractive non-invasive tests for screening patients in the 
early stages of synucleinopathies [48].

Plenty of studies have conducted SAA analysis of 
α-synuclein using samples from the olfactory mucosa 
of PD, MSA and DLB patients. While the relative diag-
nostic accuracy for MSA and DLB was 81.8% and 86.4%, 
respectively in these studies, the relative diagnostic accu-
racy for PD was low, ranging from 46.3% to 55.6% [44, 48, 
91]. In PD, the accuracy of SAA detection of pathologi-
cal α-synuclein in the olfactory mucosa is inferior to that 
in other synucleinopathies. To investigate whether this is 
related to the distribution of pathological α-synuclein in 
the olfactory mucosa, Bongianni et  al. performed nasal 
swab sampling in different areas covered by olfactory 
neuroepithelium, such as the agger nasi (AN) and mid-
dle turbinate (MT), and then performed SAA detection 
of α-synuclein. Two cohorts were analyzed in this study, 
and the results showed that the sensitivity of α-synuclein 
SAA in AN and MT were 78%–84% and 43%–45%, 
respectively. Subsequently, the nasal swab samples from 
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PD patients were subjected to immunocytochemistry 
with an antibody for β-tubulin III, a phenotypic marker 
of olfactory neurons and their precursors. Immuno-
fluorescence showed that the β-tubulin III-positive cells 
were more abundant in AN than in MT, consistent with 
the SAA results. These results reveal a new mechanism, 
where the deposition of abnormal α-synuclein in PD may 
preferentially occur in the AN and eventually spread to 
the entire olfactory mucosa. Consistent with previous 
findings in MSA, combined testing for CSF and nasal 
swab samples from PD patients increased the diagnostic 
accuracy to nearly 100% [49].

Application of nasal swabs in tauopathies
Tauopathies are a group of heterogeneous diseases char-
acterized by intracellular deposition of abnormally folded 
forms of the microtubule-associated protein tau. Tauopa-
thies include Pick’s disease (PiD), corticobasal degen-
eration (CBD), progressive supranuclear palsy (PSP), and 
AD [10]. Several ultrasensitive cell-free tau SAAs have 
been developed to preferentially detect tau aggregates in 
the post-mortem brain tissues and CSF of patients with 
PiD, PSP, CBD and AD [25, 94–96]. However, these stud-
ies are limited in that the samples were derived from 
autopsy. The use of SAA in human antemortem diagnosis 
will largely depend on the ability to detect tau seeds in 
accessible tissues, such as the olfactory mucosa [96].

AD is the most common neurodegenerative disease 
leading to dementia. The symptoms of AD may be simi-
lar to those of other dementias, which can lead to mis-
diagnosis [97]. Approximately 85% of patients with AD 
develop anosmia in the early stage, before cognitive 
impairments appear [98]. Previous studies have shown 
that abnormal tau proteins can accumulate in the olfac-
tory epithelium of patients with AD [64, 99]. Rossi et al. 
analyzed olfactory mucosa samples collected from sev-
eral tauopathies, and reported that tau seeding activity 
was observed in some olfactory mucosa samples from 
PSP and CBD patients, but not in samples from AD 
patients. The detection may be influenced by substrate 
proteins, as PSP and CBD are 4R tauopathies and AD is 
3R/4R tauopathy. This is in accordance with the results 
from previous studies, which showed poor tau seeding 
in AD under 3R tau SAA conditions[25] and 4R tau SAA 
conditions [94]. “3R + τ306” [95] or “K12” (residues 244–
275 and 306–400 of the full-length human tau sequence) 
[96] tau SAA has been developed for brain homogen-
ates and CSF for detection of AD. Thus, with the cur-
rent available data, it is not possible to say whether these 
results reflect biological differences between diseases or 
just technical problems to detect different isoforms of 
tau seeds. The tau-SAA technique needs to be further 

optimized to effectively detect tau seeding activity in bio-
logical samples (e.g., CSF and olfactory mucosa) collected 
from living patients.

Despite moderate overall sensitivity, nasal swab SAA 
is attractive and more easily accepted by patients as a 
simple, fast, and non-invasive approach compared with 
other specimen detection methods. Nasal swab SAA 
could be considered as a first-line screening procedure 
in patients suspected of neurodegenerative diseases. Fur-
ther research is required to enhance the detection sensi-
tivity and understand the role of the olfactory mucosa in 
neurodegenerative diseases.

Conclusions and future directions
The SAAs in nasal swab extracts are simple, rapid, and 
non-invasive. When compared with lumbar puncture, 
nasal swabs can be performed in people taking anticoag-
ulants. The olfactory mucosa can elicit a fast and strong 
SAA response with 97% sensitivity and 100% specific-
ity in prion diseases. SAAs in nasal swab extracts from 
patients with PD, DLB and MSA show high sensitivity 
and specificity and could also detect α-synuclein seeding 
activity in prodromal-stage synucleinopathies, such as 
iRBD and PAF. Moreover, α-synuclein SAA in the olfac-
tory mucosa could be used to distinguish between PD 
and MSA by discriminating α-synuclein strains. The sen-
sitivity of nasal swab SAA may be improved by adjusting 
the sampling site, which needs to be confirmed by further 
studies.

Anosmia is also common in other neurodegenerative 
diseases, such as ALS, frontotemporal dementia (FTD), 
and Huntington’s disease, which also involve prion-like 
misfolded proteins. Although not mentioned above, 
the SAA assay can detect TDP-43 seeds. The pathologi-
cal deposition of TDP-43 occurs in most cases (~ 97%) 
of ALS and in approximately 45% of FTD cases. Scialò 
et al. used SAA to detect TDP-43 seeding activity in the 
CSF of patients with ALS and FTD, with an overall sen-
sitivity and specificity of 94% and 85%, respectively [10]. 
Research is urgently needed to identify the sensitivity of 
nasal swab SAA in detecting these diseases. In addition, 
Kurihara et  al. demonstrated that high-field magnetic 
resonance imaging and diffusion tensor tractography can 
be used to visualize olfactory sensory neurons, and fur-
ther development of this technique may advance its clini-
cal use for the diagnosis of olfactory dysfunction [100].

In summary, SAA in nasal swab extracts is a sim-
ple, fast, and non-invasive method that is more eas-
ily accepted by patients compared with other specimen 
detection methods. Combined testing of the olfactory 
mucosa and other samples can improve the diagnos-
tic accuracy. Nasal swabbing can be considered as a 
first-line screening procedure in patients suspected of 
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neurodegenerative diseases, followed by CSF detection as 
a confirmatory test when the results of olfactory mucosa 
SAA are inconsistent with the clinical diagnosis. Further 
neuropathological studies are crucial for understand-
ing the pathology initiation of prion-like proteins in the 
olfactory mucosa and the role of the olfactory pathway in 
the development of neurodegenerative diseases.
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