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Abstract 

Background:  Microbiome-gut-brain axis may be involved in the progression of age-related cognitive impairment 
and relevant brain structure changes, but evidence from large human cohorts is lacking. This study was aimed to 
investigate the associations of gut microbiome with cognitive impairment and brain structure based on multi-omics 
from three independent populations.

Methods:  We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) with both gut 
microbiome and cognitive assessment data available as a discovery cohort, of whom 272 individuals provided fecal 
samples twice before cognitive assessment. We selected 208 individuals with baseline microbiome data for brain 
magnetic resonance imaging during the follow-up visit. Fecal 16S rRNA and shotgun metagenomic sequencing, tar‑
geted serum metabolomics, and cytokine measurements were performed in the GNHS. The validation analyses were 
conducted in an Alzheimer’s disease case–control study (replication study 1, n = 90) and another community-based 
cohort (replication study 2, n = 1300) with cross-sectional dataset.

Results:  We found protective associations of specific gut microbial genera (Odoribacter, Butyricimonas, and Bac-
teroides) with cognitive impairment in both the discovery cohort and the replication study 1. Result of Bacteroides 
was further validated in the replication study 2. Odoribacter was positively associated with hippocampal volume (β, 
0.16; 95% CI 0.06–0.26, P = 0.002), which might be mediated by acetic acids. Increased intra-individual alterations in 
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Background
The number of elderly people living with dementia is 
rising especially in low- and middle-income countries 
[1]. Alzheimer’s disease (AD) is the most dominant 
type of dementia with cognitive impairment (also called 
“cognitive decline”) and brain structural alterations [1]. 
AD patients typically undergo several stages of cogni-
tive impairment (preclinical, mild cognitive impair-
ment [MCI], and dementia) before diagnosis, and the 
time delay between initial biochemical and cellular 
changes in the brain and clinical diagnosis can be more 
than 10 years [2]. A Lancet report in 2020 claimed that 
about 40% of dementias worldwide are related to modi-
fiable risk factors [3]. Thus, early detection and preven-
tion is quite important for improving the prognosis and 
alleviating the progression of AD, particularly for the 
preclinical stage or MCI [3].

Gut microbiome is essential for human health and 
accumulating evidence supports that gut microbial 
dysbiosis contributes to the pathogenesis of various 
neurodegenerative disorders (e.g., Parkinson’s disease 
and AD) [4]. Reduction of amyloid-β pathology has 
been observed in APP (amyloid precursor protein)/
PS1 (presenilin) transgenic AD mice in the absence of 
intestinal microbiota, which indicates a potential role 
of gut microbiota in the pathogenesis of AD [5]. Several 
case–control studies have reported altered microbiota 
in both MCI and AD patients compared to normal 
controls [6–8]. A recent small study (n < 120) explored 
the links between microbiota profile and brain volume 
in people with and without obesity [9]. These findings 
conjointly emphasize possible effects of gut microbi-
ome on cognitive function and brain structure, which 
might be further linked to the occurrence and develop-
ment of dementia [10]. Nevertheless, direct evidence 
from large human cohorts is still lacking, leaving a 
research gap in this field.

Here we performed a multi-omics analysis to explore 
the associations of gut microbiome with age-related cog-
nitive impairment in three independent populations. 
We also examined the associations of the identified gut 
microbial features with brain structure and volumes, as 
well as associations with circulating metabolites and 
inflammatory markers.

Methods
Study populations and design
Discovery cohort
The main analyses were based on the Guangzhou Nutri-
tion and Health Study (GNHS), a community-based pro-
spective cohort study in southern China. Briefly, a total of 
4048 individuals aged 45–72 years were enrolled during 
2008–2013 and followed up every 3 years [11]. In the pre-
sent study, we included 1430 participants who provided 
stool samples and completed cognitive screening using 
the Mini‐Mental State Examination (MMSE) [12] (dur-
ing 2014–2019). Prior to the cognitive examination, we 
had collected stool samples from 272 of the included par-
ticipants. During the further follow-up visit, brain images 
were collected via 3.0  T magnetic resonance imaging 
(MRI) in a subset of 208 individuals with available base-
line gut microbiome data.

Replication studies
To validate the results discovered with cognitive scores, 
we performed the same analysis in an AD case–con-
trol study (replication study 1; 30 AD patients, 30 MCI 
patients, and 30 healthy controls) which was published 
recently [8]. In addition, we included a total of 1300 par-
ticipants with gut microbiome and cognitive assessment 
data (≥ 55  years) from the China Health and Nutrition 
Survey (CHNS) covering 15 provinces and megacities 
across China as replication study 2 [13].

Detailed information about the three populations was 
provided in the Additional file 1.

Cognitive assessment
The MMSE, established by Folstein in 1975 [14], is one 
of the most widely used instruments for cognitive screen-
ing in clinical settings and epidemiologic surveys. The 
MMSE contains five domains, each with an assigned 
point value totaling 30: orientation (10 points), regis-
tration (3 points), attention and calculation (5 points), 
delayed recall (3 points), and language (9 points). A 
higher score indicates better cognitive performance [14]. 
In the GNHS, the participants were classified with cor-
responding degrees of cognitive impairment (also known 
as the staging model): ‘normal’ (score 30); ‘questionable’ 

gut microbial composition were found in participants with cognitive impairment. We also identified several serum 
metabolites and inflammation-associated metagenomic species and pathways linked to impaired cognition.

Conclusions:  Our findings reveal that specific gut microbial features are closely associated with cognitive impair‑
ment and decreased hippocampal volume, which may play an important role in dementia development.
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(score 26–29); ‘mild’ (score 21–25); ‘moderate’ (score 
11–20); and ‘severe’ (score 0–10) according to a validated 
standard [15]. As there were only 10 participants with 
MMSE score < 21, we assigned the participants into three 
groups for further statistical analyses: ‘Normal’ (score 
30), ‘Questionable’ (score 26–29), and ‘Mild’ (score ≤ 25).

In the CHNS, we applied the cognitive screening items 
from part of the Telephone Interview for Cognitive Sta-
tus–modified [16], which is a telephone adaptation of the 
MMSE. Cognitive performance was quantified as global 
cognitive score (ranging from 0 to 27 points), which was 
calculated as the sum of all cognitive testing items.

Fecal microbiota DNA extraction, 16S rRNA gene 
sequencing, and shotgun metagenomic sequencing
In the GNHS, fecal DNA of 1430 participants was 
extracted according to the protocol [17]. We used the 
341F (CCT​ACG​GGNGGC​WGC​AG)/805R (GAC​TAC​
HVGGG​TAT​CTA​ATC​C) primers for polymerase chain 
reaction (PCR) amplification of the V3–V4 regions of the 
16S rRNA gene. We applied MiSeq Reagent Kits v2 (Illu-
mina Inc., San Diego, CA) to perform amplicon sequenc-
ing on the Illuimina MiSeq System (Illumina Inc.), which 
generated 2 × 300  bp paired-end sequencing data with 
dual-index reads. Shotgun metagenomic sequencing was 
carried out among 1264 fecal samples from 992 individu-
als. Fecal samples were sequenced as one library through 
Illumina HiSeq machines using the 2 × 150 bp paired-end 
read protocol.

In the AD case–control study, fecal DNA was extracted 
and used for the amplification of V3–V4 regions of the 
16S rRNA gene as described [8]. In the CHNS, fecal 
DNA extraction and 16S rRNA gene sequencing have 
been described in detail previously [18]. The primers 
515F/806R (5′-GTG​CCA​GCMGCC​GCG​GTAA-3′/5′-
GGA​CTA​CHVGGG​TWT​CTAAT-3′) were applied to 
amplify the V4 region of 16S rRNA gene.

We excluded genera (of 16S rRNA sequencing) or spe-
cies (of metagenomic sequencing) that were present in 
< 10% of the samples or had average relative abundance 
< 0.01% in each dataset for further analyses. Bioinfor-
matic analysis of gut microbiota is shown in the Addi-
tional file 1.

Measurements of targeted serum metabolome 
and inflammatory cytokines in the GNHS
We performed targeted metabolomics to quantify the 
concentrations of 199 serum metabolites among 820 
participants using an ultra-performance liquid chroma-
tography coupled to tandem mass spectrometry system 
(ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, 
MA).

Besides, we conducted electrochemiluminescence-
based immunoassays to quantify the levels of six serum 
cytokines (interferon-gamma [IFN-γ], interleukin [IL]-
2, IL-4, IL-6, IL-8 and IL-10) among 357 participants, 
using the MSD V-Plex Proinflammatory Panel 1 (human) 
kit (Meso Scale Diagnostics, Rockville, MD; Cat. #: 
K15049D-2).

MRI acquisition, image pre‑processing and voxel‑based 
morphometry analysis in the GNHS
In the GNHS participants, 3D T1-weighted structural 
images were acquired with the magnetization prepared 
rapid acquisition gradient echo sequence on a 3.0  T 
scanner (MAGNETOM Skyra, Siemens Healthineers, 
Erlangen, Germany). We processed and analyzed 3D T1 
images using MATLAB version R2020b (The MathWorks 
Inc, Natick,  MA) and Statistical Parametric Mapping 
software (SPM12; The Welcome Department of Imaging 
Neuroscience, London). We focused on cognition-related 
regions of interest (ROIs) including hippocampus, supe-
rior and middle frontal lobe, and insular opercula (oper-
cularis, orbitalis, and triangularis) [19, 20], which were 
identified by the Automated Anatomical Labeling atlas 
[21]. More information is provided in the Additional 
file 1.

Statistical analysis
Statistical analysis was performed using Stata 15 (Stata-
Corp, College Station, TX) or R software (version 4.0.4). 
To estimate the associations between α-diversity indices 
and cognitive impairment, we conducted multinomial 
logistic regression in the GNHS and linear mixed-effect 
model which contained a random intercept and ran-
dom coefficient on the provinces or megacities to adjust 
the geographic regions in the CHNS. The covariates 
included age, gender, body mass index (BMI), educa-
tion, and income in both the GNHS and CHNS. We per-
formed sensitivity analysis by additionally adjusting for 
Bristol scale, time lag between stool sampling and cogni-
tive assessment, and history of stroke in the GNHS. For 
β-diversity, we conducted principal coordinates analysis 
(PCoA) and permutational multivariate analysis of vari-
ance (PERMANOVA) (vegan function ’adonis’; 999 per-
mutations) based on Bray–Curtis dissimilarities at the 
genus level in both discovery and validation cohorts.

To identify potential taxonomic biomarkers, we con-
structed least absolute shrinkage and selection operator 
(LASSO) logistic regression model (‘R’ package “glmnet”) 
to identify taxa that could distinguish the mild group 
from the normal group in the GNHS. To validate our 
findings, we further performed LASSO analysis between 
AD patients and normal controls in the case–control 
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dataset (replication study 1). The microbes with non-
zero β-coefficients achieved in both the GNHS and the 
AD case–control study were regarded as key genera for 
further validation analysis in the CNHS (replication 
study 2). Ratios between absolute β-coefficient of each 
genus and the sum of all absolute β-coefficients were 
calculated to quantify the contribution of each selected 
genus to the LASSO model. Relative abundance of genera 
was standardized as z-scores for the LASSO models for 
comparability. Considering the influence of geographic 
regions on gut microbiome [18], we further validated 
the relationships between the identified key genera and 
global cognitive scores using linear mixed-effect models 
in the CHNS, containing a random intercept and random 
coefficient on the provinces or megacities. In the GNHS, 
we then explored the association between identified key 
genera and cognition-related ROIs using linear mixed-
effect models (False discovery rate [FDR] corrected, 
FDR < 0.05, adjusted for age, gender, BMI, education, 
income, and total intracranial volume [TIV]). Regions 
in the resultant T-map with FDR < 0.05 and cluster > 10 
voxels were considered significant. We also extracted 
volumetric information of white matter (WM), grey mat-
ter (GM), cerebrospinal fluid (CSF) and each individual 
ROI to explore associations between key genera and the 
volumes using multiple linear regression adjusted for age, 
gender, BMI, education, income, and TIV. As short-chain 
fatty acids (SCFAs) might exert neuroprotective effects 
as prior studies reported [22], we tended to reveal latent 
connections between SCFAs (log-transformed) and 
microbiome-gut-brain axis by performing multiple linear 
regression analysis to investigate associations of: (1) the 
identified key genera with serum SCFAs adjusted for age, 
gender, BMI, education, and income; and (2) the SCFAs 
with the brain area volumes adjusted for age, gender, 
BMI, education, income, and TIV.

Based on the repeated measurements of gut metagen-
omics in the GNHS, we performed PCoA and PER-
MANOVA to illustrate microbial structure alterations 
(quantified by Bray–Curtis dissimilarities) at the species 
level over time across different cognitive groups. Multi-
nomial logistic regression was used to examine the asso-
ciations of intra-individual alterations in gut microbial 
composition with cognitive impairment. We fitted two 
statistical models: model 1 included age, gender, BMI, 
education, and income; and model 2, which was as model 
1 plus Bristol scale and history of stroke.

Kruskal–Wallis test was used to compare concentra-
tions of serum metabolite between the mild and the nor-
mal groups (or between the questionable and the normal 
groups). To identify metagenomic and metabolomic bio-
markers that could distinguish participants with cogni-
tive impairment from healthy controls, we constructed 

two LASSO models: (1) the separated models which 
were based on metagenomic species only, metagenomic 
pathways only or serum metabolites only; and (2) the 
combined model which was based on these three kinds 
of  features selected in the separated models to obtain 
more consolidated results. We applied the semi-partial 
correlation [23] adjusting for age, gender, BMI, educa-
tion, and income to estimate correlations between the 
LASSO-identified features and MMSE domains (i.e., 
orientation, registration, attention and calculation, 
delayed recall, and language); between the LASSO-iden-
tified bacterial features and the LASSO-identified serum 
metabolites; and between the LASSO-identified bacterial 
features and serum inflammatory cytokines. FDR using 
Benjamini–Hochberg method was calculated to correct 
the multiple testing.

To examine associations across multi-omics datasets, 
we first performed logistic regression (Mild vs. Normal) 
to identify significant (P < 0.05) genus-level features, 
metagenomic pathways, and serum metabolites, adjusted 
for age, gender, BMI, education, income, history of stroke, 
and time lag between stool sampling and cognitive assess-
ment. Then we performed Spearman correlation analysis 
to estimate interactions among the identified multi-omics 
features stratified by disease state. The results were visual-
ized in an interaction network using Gephi 0.9.2 [24]. On 
the other hand, we applied Spearman correlation to esti-
mate relationships of the aforementioned significant path-
ways and illustrated significant (FDR < 0.05) correlations 
as subsets of the network.

Results
The overviews of the study design and multi-omics 
datasets are shown in Fig.  1 and Additional file  1: Fig. 
S1. A total of 1430 participants from the GNHS aged 
63.4  years (SD, 5.6) were enrolled in the present study, 
with a median MMSE score of 28 (interquartile, 26–29) 
(Additional file  1: Table  S1). Generally, the character-
istics were comparable among the subgroups stratified 
by cognitive function, except that the participants with 
lower levels of education and income were more likely to 
have worse cognitive performance. The mean ages were 
65.2  years (SD, 6.0) in the AD case–control study [8], 
and 64.7 years (SD, 6.7) in the CHNS participants (Addi-
tional file 1: Table S2). In the GNHS, we finally obtained 
36,149.6 paired-end reads for 16S rRNA gene sequencing 
and 42.4  M paired-end reads for shotgun metagenomic 
sequencing on average.

Microbial features generated by 16S rRNA gene 
sequencing and cognitive function
We identified no significant associations between 
α-diversity and cognitive impairment based on 16S rRNA 
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gene sequencing data of 1430 participants in the GNHS 
(Additional file 1: Table S3), which were consistent with 
previously reported results [8]. We found a weak signifi-
cance between Faith’s phylogenetic diversity and global 
cognitive scores in the CHNS (P = 0.04, Additional file 1: 
Table S4). Distinct variances of β-diversity were observed 
between groups with different cognitive status in the 
GNHS and the AD case–control study (Fig. 2a, b), while 
no difference was found in the CHNS (Fig. 2c).

The phylum-level compositions of gut microbiota 
among the mild, questionable, and normal groups were 
illustrated in the circular layout (Fig.  3a). The top three 

abundant phyla were Firmicutes, Bacteroidetes, and 
Proteobacteria. We found that the relative abundance of 
Firmicutes (P = 0.034) and Bacteroidetes (P = 0.0004), 
as well as the ratio of Bacteroidetes to Firmicutes 
(P = 0.001) varied significantly across the three groups. 
Firmicutes was more abundant in the mild group and 
Bacteroidetes was relatively more abundant in the nor-
mal group (Fig.  3b, c). These findings were also accord-
ant with the previous AD case–control study [8]. Besides, 
the results revealed that Odoribacter, Butyricimonas, 
and Bacteroides were inversely associated with cognitive 
impairment in the GNHS and the AD case–control study 

Fig. 1  Overview of study design and analyses. We included 1430 participants from the Guangzhou Nutrition and Health Study (GNHS) as a 
discovery cohort, all of whom had cognitive assessment and at least one stool sample collection (272 individuals collected stool samples twice). 
A subset of 208 individuals underwent magnetic resonance imaging (MRI) with availability of both gut microbiome and the cognitive assessment 
data. Replication datasets came from the AD case–control study (n = 90) and the China Health and Nutrition Survey (CHNS, n = 1300). Image 
created with BioRender.com. AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal control
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Fig. 2  Alterations in the gut microbial structure in participants with cognitive impairment. a–c Scatterplots from principal coordinates analysis 
(PCoA) and permutational multivariate analysis of variance (PERMANOVA), based on Bray–Curtis distances at genus level from the GNHS, the AD 
case–control study and the CHNS, respectively. In the GNHS, participants were classified into corresponding degrees of cognitive impairment 
according to their MMSE scores: ‘Mild’ (score ≤ 25); ‘Questionable’ (score 26–29) and ‘Normal’ (score 30). GNHS Guangzhou Nutrition and Health 
Study, AD Alzheimer’s disease, MCI mild cognitive impairment, NC normal control, CHNS China Health and Nutrition Survey, T tertile
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Fig. 3  Altered phylum- and genus-level taxonomies in participants with cognitive impairment. a The circular layout illustrates the mean relative 
abundance of phyla (16S rRNA gene sequencing) among the mild, questionable, and normal groups in the GNHS. Colors in upper and lower halves 
of the outermost circle represent different groups of participants and microbial phyla, respectively. Width of each track highlights mean relative 
abundance of each phylum contained in different groups of participants. b and c The relative abundance of Firmicutes and Bacteroidetes (b), and 
the ratio of Bacteroidetes to Firmicutes (c) among the GNHS participants with different degrees of cognitive impairment are presented by the violin 
plot with included boxplot. The boxplots show median and interquartile ranges (IQR). Whiskers specify ± 1.5 × IQR. (ns, P > 0.05; *0.005 < P < 0.05; 
**P < 0.005; two-sided Mann–Whitney U test). d Key gut microbial genera that contribute to distinguishing participants with different levels of 
cognitive impairment (Mild vs. Normal in the GNHS; AD vs. NC in the AD case–control study) using LASSO models. The bars are colored according 
to the direction of association between the genera and cognitive impairment (orange for positive correlation [harmful]; dark green for negative 
correlation [beneficial]). #Key genera selected in both populations. e Validation of the relationships between key genera and cognitive performance 
using linear mixed-effect models in the CHNS. The forest plot shows the result of the association between Bacteroides and global cognitive scores. 
The completed result is provided in the Additional file 1: Table S6. In the GNHS, participants were classified into corresponding degrees of cognitive 
impairment according to their MMSE scores: ‘Mild’ (score ≤ 25), ‘Questionable’ (score 26–29) and ‘Normal’ (score 30). In the CHNS, the participants 
were classified into T1, T2 and T3 groups according to the tertiles of their global cognitive scores. GNHS Guangzhou Nutrition and Health Study, AD 
Alzheimer’s disease, LASSO least absolute shrinkage and selection operator, CHNS China Health and Nutrition Survey, T tertile
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(Fig. 3d and Additional file 1: Table S5), which were con-
sidered as key genera. Among the 3 identified key genera, 
we found that enrichment of Bacteroides was associ-
ated with better cognitive performance quantified by the 
global cognitive scores (β = 0.14, 95% CI 0.00–0.27) in the 
CHNS (Fig. 3e and Additional file 1: Table S6).

Associations between cognition‑related genera and brain 
structure in the GNHS
After adjustment for potential confounders, the relative 
abundance of Odoribacter was positively associated with 
the volumes of WM (β = 0.14, 95% CI 0.07–0.22) and the 
right hippocampus (β = 0.16, 95% CI 0.06–0.26), while 
inversely associated with CSF volume (β = − 0.11, 95% 
CI − 0.18 to − 0.04, Fig.  4a). Figure  4b illustrates the β 
coefficient between Odoribacter and the volume of the 
right hippocampus (FDR < 0.05, cluster size > 10). We also 
found that Odoribacter was positively associated with 
acetic acid (β = 0.07, 95% CI 0.02–0.12, Additional file 1: 
Table S7). The acetic acid further had a positive associa-
tion with the volume of the right hippocampus (β = 0.14, 
95% CI 0.01–0.27, Additional file 1: Table S8). These find-
ings indicated a potential role of acetate in mediating the 
gut microbiota–hippocampus association.

Distributions and alterations of fecal metagenome 
in the GNHS
A broad overview of the metagenomic taxonomy and 
pathways from the mild and normal groups is shown in 
Additional file  1: Fig. S2a (Additional file  1: Table  S9). 
Additional file 1: Figure S2b shows significant differences 
in serum metabolites across the three groups (mild, ques-
tionable, and normal). Based on the repeated measure-
ments of gut microbiome, we found that the microbial 
composition at the species level had a substantial altera-
tion among individuals with cognitive impairment, but 
not among those with normal cognition (Fig. 5a–c). After 
controlling the potential covariates, we found a signifi-
cantly positive association between microbial alteration 
(quantified by Bray–Curtis dissimilarities across the two 
time points) and cognitive impairment (Mild vs. Normal, 
odds ratio [OR] = 1.94, 95% CI 1.23–3.06, Additional 
file  1: Table  S10), with the largest changes in the mild 
group and the smallest in the normal group (Fig.  5d). 
These findings demonstrated that participants with cog-
nitive impairment may have more alterations in gut 
microbial composition than their normal counterparts.

Multi‑omics interactions and cognitive impairment 
in the GNHS
We identified 5 microbial species, 3 functional pathways, 
and 4 serum metabolites in LASSO models, which had 
potential links with age-related cognitive impairment 

(Fig. 6a and Additional file 1: Table S11). In the combined 
LASSO model, species Dorea longicatena, methylglu-
taric acid, hyodeoxycholic acid, as well as the pathways of 
glycogen biosynthesis I (from ADP-d-Glucose), formal-
dehyde oxidation I, and petroselinate biosynthesis were 
enriched in individuals with impaired cognition, while 
glyceric acid and L-phenylalanine were elevated in the 
normal controls (Fig. 6b and Additional file 1: Table S11). 
We further found that these cognition-related bacterial 
and metabolic features were significantly correlated with 
MMSE domain scores (Additional file  1: Fig. S3a and 
Additional file 1: Table S12). The species Dorea longicat-
ena, the pathways of formaldehyde oxidation, and meth-
ylglutaric acid were correlated with poor scores on the 
MMSE domain of language. Meanwhile, hyodeoxycholic 
acid was negatively correlated with the scores on delayed 
recall domain, and glyceric acid and L-phenylalanine 
were positively associated with scores on the language 
domain. We found significant correlations between the 
identified serum metabolites (e.g., hyodeoxycholic acid 
and glyceric acid) and cognition-related metagenomic 
pathways, which may confirm readouts of the altered 
metagenomic pathways (Additional file  1: Fig. S3b and 
Additional file  1: Table  S13). Moreover, these identified 
bacterial features also had significant correlations with 
serum inflammatory cytokines (Fig.  6c). Remarkably, 
highly abundant Dorea longicatena and the pathway of 
glycogen biosynthesis I (from ADP-d-Glucose) were cor-
related with elevated level of serum IFN-γ (FDR < 0.05).

After adjusting for potential confounders, we found 
that the pathways of formaldehyde assimilation II 
(RuMP Cycle) and formaldehyde oxidation I, as well as 
the methylglutaric acid, were enriched in samples from 
subjects with impaired cognition (Additional file 1: Fig. 
S4). Additionally, several pathways (e.g., L-glutamate 
degradation V [via hydroxyglutarate] and pentose 
phosphate pathway) were enriched in the normal group 
(Additional file  1: Fig. S4a). Individuals with normal 
cognition had higher levels of L-valine, isovelarylcarni-
tine, and L-phenylalanine (Additional file  1: Fig. S4b). 
As shown in Fig. 6d, the integrated network contextu-
alizes relationships of multiple types of measurements 
which were associated with cognitive impairment. Both 
distinct and common features were found between the 
mild and normal groups. For example, the significant 
edges of the network were fewer in the mild group than 
in the normal group (125 vs. 186). A total of 51 and 53 
nodes were included in the mild and normal groups, 
respectively. CSF volume  was significantly associated 
with several metabolites including L-valine and isove-
larylcarnitine among individuals with cognitive decline, 
while other brain structures (e.g., the opercular part 
of right inferior frontal gyrus [F rontal_Inf_Oper_R], 
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triangular part of left inferior frontal gyrus [Frontal_
Inf_Tri_L], right middle frontal gyrus [Frontal_Mid_R], 
and left superior frontal gyrus [Frontal_Sup_L]) were 
positively associated with genus Butyricimonas and 

Odoribacter in normal people. The degrees of amino 
acids had a substantial change between the mild and 
normal groups (16 and 60, respectively). Of note, the 
mild group contained six amino acids and the normal 

Fig. 4  Associations between cognition-related genera and brain structure in the GNHS. a Linear regression was used to estimate associations 
between cognition-related genera and brain structure. The β-coefficients indicate the corresponding changes in standardized volumes of different 
brain areas for per 1-standardize unit (in SD unit) increase of the bacterial relative abundance. False discovery rate (FDR) was calculated using 
the Benjamini–Hochberg method. *FDR < 0.05. b β-Value maps of linear mixed-effect model show a positive association between the relative 
abundance of Odoribacter and the right hippocampal volume (one-way T test, FDR < 0.05, voxel > 10). GNHS Guangzhou Nutrition and Health Study, 
GM grey matter, WM white matter, CSF cerebrospinal fluid, L left, R right, Frontal_Sup superior frontal gyrus, dorsolateral, Frontal_Mid middle frontal 
gyrus, Frontal_Inf_Oper inferior frontal gyrus, opercular part, Frontal_Inf_Tri inferior frontal gyrus, triangular part, Frontal_Inf_Orb inferior frontal gyrus, 
orbital part
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group contained eight, with six overlapping, includ-
ing L-threonine, L-serine, L-glutamine, L-leucine, 
L-methionine, and L-valine. Additionally, the path-
ways of glycogen biosynthesis I (from ADP-D-Glucose) 
and formaldehyde oxidation I were found to play cen-
tral roles in the interaction network among the nor-
mal participants, but none of the dominant pathways 
were found in the interaction network among the mild 
group. Detailed connections among cognition-related 
pathways are presented in Additional file  1: Fig. S5. 
There was a total of 15 nodes and 88 edges in the net-
work. C4 photosynthetic carbon assimilation cycle 
(PEPCK type), C4 photosynthetic carbon assimilation 
cycle (NADP-ME type), and glycogen biosynthesis I 
(from ADP-D-Glucose) contributed to most of the 
interactions with other pathways.

Discussion
In the present study, we found significant differences in 
the gut microbial composition among people with dif-
ferent cognitive status and revealed that increased intra-
individual alterations in gut microbial composition was 
associated with cognitive decline. We further identified 
three genera including Odoribacter, Butyricimonas, and 
Bacteroides which were depleted in participants with 
cognitive impairment compared with normal controls. 
Moreover, higher abundance of Odoribacter was associ-
ated with several important features of brain structure, 
including larger volumes of WM and the right hippocam-
pus as well as smaller CSF volume. We then revealed that 
chronic inflammation might underlie the associations of 
gut microbial features with cognitive impairment.

Fig. 5  Associations between gut metagenomic alterations and cognitive function in the GNHS. a–c Principal coordinate analysis (PCoA) and 
permutational multivariate analysis of variance (PERMANOVA) plots of Bray–Curtis (BC) dissimilarities at the species level display the compositional 
alterations of gut microbiome over 3 years in groups with different cognitive status. d Comparison of microbial alterations quantified by Bray–Curtis 
dissimilarities of species among participants with different cognitive performance. P values were generated from multinomial logistic regression 
models. Boxplots show median and interquartile ranges (IQR). Whiskers specify ± 1.5 × IQR. Participants were classified into corresponding degrees 
of cognitive impairment according to their MMSE scores: ‘Mild’ (score ≤ 25), ‘Questionable’ (score 26–29) and ‘Normal’ (score 30). GNHS Guangzhou 
Nutrition and Health Study
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Fig. 6  Multi-omics interactions and cognitive impairment in the GNHS. a and b Metagenomic and metabolomic markers for distinguishing 
participants of the mild group from the normal group using the LASSO models based on metagenomic species, pathways or serum metabolites (a), 
or the combination of these three kinds of features selected from the separated models mentioned above (b). The x axis denotes the coefficients 
of the features in each model. c Semi-partial correlation of key metagenomic features selected from the combined LASSO model with serum 
inflammatory cytokines. The intensity of color represents correlation coefficients. False discovery rate (FDR) was calculated using Benjamini–
Hochberg method. d Significant associations among 4 aspects of multi-omics: genera of 16S rRNA gene sequencing, metagenomic pathways, 
serum metabolites, and brain structure. Spearman correlation was used to calculate pairwise correlations of all the measurements. Network shows 
significant correlations (FDR < 0.05) between each pair of measurement types. Size of nodes represents the number of connections with others. 
Orange edge, Spearman correlation coefficient > 0; blue edge, Spearman correlation coefficient < 0. Participants were classified into corresponding 
degrees of cognitive impairment according to their MMSE scores: ‘Mild’ (score ≤ 25), ‘Questionable’ (score 26–29) and ‘Normal’ (score 30). GNHS 
Guangzhou Nutrition and Health Study, LASSO least absolute shrinkage and selection operator, GM grey matter, WM white matter, CSF cerebrospinal 
fluid, L left, R right, Frontal_Sup superior frontal gyrus, dorsolateral, Frontal_Mid middle frontal gyrus, Frontal_Inf_Oper inferior frontal gyrus, opercular 
part, Frontal_Inf_Tri inferior frontal gyrus, triangular part, Frontal_Inf_Orb inferior frontal gyrus, orbital part
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The associations between gut microbial α-diversity and 
dementia or cognitive function have been controversial. 
In a U.S. cohort, gut microbial α-diversity was lower in 
dementia patients compared with healthy controls [6], 
while contradictory evidence was reported in a Japanese 
population [25]. Notably, the sample sizes of these stud-
ies were relatively small (n < 130). In the present GNHS 
study involving more than 1000 participants, we did not 
find significant correlations between α-diversity and 
cognitive function, which was consistent with a previ-
ous study conducted in European participants [26]. 
Microbial instability has been associated with a variety 
of disease outcomes such as metabolic diseases [27] and 
allergenic and autoimmune disorders [28]. To the best of 
our knowledge, our study is the first to report that the 
instability of gut microbial composition is correlated with 
cognitive impairment. We observed significant differ-
ences in β-diversity among participants with distinct cog-
nitive performance in two independent populations. We 
speculated that intra-individual alterations of microbial 
structure rather than α-diversity might play an important 
role in the cognitive maintenance.

Prior studies have demonstrated that the microbiome-
gut-brain axis might be involved in the development 
and progression of cognitive impairment and demen-
tia by altering permeability of the blood–brain barrier 
and inducing neuroinflammation [29]. SCFAs (including 
acetate, propionate, and butyrate) have been reported 
to decrease the permeability of the blood–brain bar-
rier and exert anti-neuroinflammatory effects [22]. Of 
note, the three cognition-related genera identified in our 
study, Odoribacter, Butyricimonas, and Bacteroides, are 
all putative SCFA-producing bacteria which have potent 
anti-inflammatory and immunomodulatory effects [30]. 
Previous studies demonstrated that Odoribacter and Bac-
teroides are decreased in AD patients [31, 32]. Odoribac-
ter has also been shown to be beneficial for hypertension 
prevention [33] and blood sugar regulation [34]. Butyrici-
monas, known as a protective bacterium, has the abil-
ity to produce butyric acid and isoacid salts [35]. Prior 
studies have reported that Butyricimonas is depleted in 
mice with spinal cord injury [36] and in patients with 
cystic fibrosis [37]. Butyricimonas is also associated with 
decreased adiposity and hepatic steatosis in mice [38]. 
Volumetric reduction of cognition-related brain areas is 
considered a pathological hallmark of neurodegenera-
tion [39]. Hippocampal atrophy has been robustly linked 
to cognitive performance and risk of dementia [40]. In 
comparison to normal controls, AD patients are found 
with smaller white matter volume [41], while a larger vol-
ume of CSF tends to be associated with higher dementia 
risk [42]. Here, the associations of Odoribacter with the 

volumes of WM, right hippocampus, and CSF revealed 
potential neuro-protective effect of putative SCFA-pro-
ducing bacteria.

The present study indicated that increased Dorea longi-
catena was associated with worse cognitive performance. 
Dorea longicatena has been reported to be positively 
associated with BMI and waist circumference [43]. Mean-
while, higher abundance of Dorea longicatena exists 
in individuals with circadian rhythm disturbance [44]. 
Recent evidence suggests that Dorea might contribute to 
elevated intestinal permeability [45]. In general, Dorea 
longicatena or Dorea may have a negative effect on the 
maintenance of a healthy gut. Furthermore, the present 
study revealed that Dorea longicatena and the pathway of 
formaldehyde oxidation I were positively correlated with 
IFN-γ. IFN-γ is an AD-related pro-inflammatory cytokine 
[46] and elevated IFN-γ has been reported in AD and 
other neurologic disorders, such as stroke and multiple 
sclerosis [47–49]. These results suggest that inflamma-
tion activation plays a key role in the crosstalk between 
gut microbiome and the central nervous system (CNS). 
Although IFN-γ and microglial activation have been 
generally linked to inflammatory stimuli in the CNS, the 
presence of IFN-γ in the blood is not necessarily associ-
ated with chronic inflammation [50]. Thus, our findings 
need to be verified by more mechanistic studies.

Besides systemic inflammation, the pathways involved 
in glucose metabolism and mitochondrial dysfunction 
have also been related with AD pathology [51, 52]. Gly-
cogen is critical in energy and glucose metabolism [53]. 
Enrichment of microbial pathways of glycogen biosyn-
thesis and degradation among participants with poor 
cognition in the present study may reflect the essential 
role of these unbalanced metabolic processes in cogni-
tive disorders. Another pathway enriched in participants 
with cognitive impairment is the formaldehyde oxidation. 
Prior investigations have revealed that endogenous for-
maldehyde accumulation is mainly stimulated by aging, 
stroke, diabetes, and oxidative stress [54, 55]. Recent 
studies also support that formaldehyde exposure exhibits 
adverse effects on cognitive function [54]. Therefore, gut 
microbiota may be involved in the regulation of formal-
dehyde oxidation that eventually affects cognition.

In this study, we identified several key metabolites 
associated with cognitive impairment, of which meth-
ylglutaric acid is considered to be neurotoxic through 
early activation of an oxidative stress response [56] and 
increasing the potential for neurodegeneration in rats 
[57]. Another key metabolite (L-phenylalanine) identified 
is a precursor of catecholamines (including dopamine) 
and is essential for biosynthesis of these neurotransmit-
ters [58]. Moreover, the concentration of L-phenylalanine 
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has been found to be significantly lower in the plasma of 
AD patients compared to that of healthy controls [59].

There are several limitations in this study. First, the 
observational nature of this study makes the results 
subjected to the influence of potential residual con-
founders, and the statistically significant differences 
found in our analysis can only suggest associations of 
these multi-omics features with the outcomes. Further 
experimental studies or clinical trials are required to 
verify these findings and prove the causality. Second, 
this study includes only Chinese participants and thus 
the results may not be generalizable to other ethnic 
populations. Finally, although we have adjusted for the 
lag time (1.8 ± 1.6  years) between stool sampling and 
cognitive screening in the GNHS, we cannot completely 
rule out its potential influence on the results. A major 
strength of the present study is that our findings are 
replicated across three independent populations from 
different regions in China. Although the MMSE is rela-
tively insensitive to mild/early dementia [60], we used 
the staging model to improve the efficiency of MMSE in 
identifying different stages before dementia [15]. Fur-
thermore, the findings based on questionnaire informa-
tion (i.e., MMSE) were further validated by objectively 
measured MRI data and successfully replicated in an 
independent case–control study which applied stand-
ard clinical criteria for diagnosis.

Conclusions
Overall, the present study provides important evidence 
supporting the close association of gut microbiome 
with cognitive impairment and alterations of brain 
structure. The identified cognition-related gut micro-
bial taxonomies, pathways or serum metabolites may 
potentially contribute to the development of interven-
tions or drug targets for dementia and cognitive decline 
in the future.
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