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Abstract

elderly subjects.

late life.

Background: Previous studies have shown that expression levels of miR-181c are downregulated by amyloid-f3 (AB)
deposition and chronic cerebral hypoperfusion, both factors largely associated with the development of AD.
Moreover, reduced 2-[18F]fluoro-2-deoxy-D-glucose (FDG)-PET brain metabolism and volume loss of regions of the
medial temporal lobe have been generally recognized as hallmarks of AD. Based on this evidence, we have here
investigated potential associations between serum levels of miR-181c-5p and these AD signatures in asymptomatic

Methods: Ninety-five normal elderly subjects underwent clinical, cognitive, structural MRI, and FDG-PET
explorations. Serum expression levels of miR-181c-5p and plasma AR concentrations were further analyzed in this
cohort. Regression analyses were performed to assess associations between serum miR-181c-5p levels and cognitive
functioning, plasma A, structural and metabolic brain changes.

Results: Decreased serum expression of miR-181c-5p was associated with increased plasma levels of AB;_4,, deficits
in cortical glucose metabolism, and volume reduction of the entorhinal cortex. No significant associations were
found between lower miR-181c-5p levels and cognitive deficits or cortical thinning.

Conclusions: These findings suggest that deregulation of serum miR-181c-5p may indicate cerebral vulnerability in
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Background

Aging is an extremely complex and inexorable process
characterized by gradual accumulation of biological
damage that leads to impaired cell homeostasis, de-
creased organ mass, and loss of functional reserve of the
body’s systems [1]. Aging is not exactly a disease but has
the capacity to increase the risk for developing a wide
range of chronic non-communicable conditions [2].
Most importantly, experimental manipulations aimed at
slowing down aging have shown to improve survival,
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delay disease onset, and reduce the rate of aging-related
chronic disorders [3-5], suggesting that intervening in
aging could prevent chronic diseases and extend health-
span [6, 7].

With the unprecedented aging population, the burden of
dementia has increased substantially. Alzheimer’s disease
(AD), the most common cause of dementia among older
people, is rapidly becoming a major public health problem
in developed countries. Identifying AD vulnerability in
asymptomatic individuals is a challenging endeavor due to
the remarkable variability in aging phenotypes, lifestyles,
and environmental exposures. Considering that AD is be-
coming a healthcare burden of epidemic proportion, there
is an urgent need for identifying biomarkers of susceptibil-
ity to developing AD before cognitive symptoms arise.
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Ideally, these biomarkers should be minimally invasive and
cost-effective, uncover aspects of AD pathology, and correl-
ate with subclinical changes in AD-related brain regions.

MicroRNAs (miRNAs) are small, non-coding RNAs that
regulate gene expression and protein synthesis by indu-
cing degradation or suppressing translation of the target
messenger RNA (mRNA) [8]. Evidence suggests that miR-
NAs are released from neurons into the bloodstream,
where they are highly stable over time and can be detected
non-invasively [9, 10]. Consequently, blood miRNA ex-
pression levels may reveal dysregulation of brain-enriched
miRNAs due to different aspects of AD pathogenesis, in-
cluding inflammation, lipid metabolism, oxidative stress,
and proteinopathy [11]. Many recent studies have identi-
fied blood miRNA expression profiles in AD patients, sug-
gesting that they are able to differentiate clinical AD from
normal aging with reasonable accuracy [12—18]. However,
there is a lack of research on AD-related miRNAs com-
bined with neuroimaging markers in asymptomatic indi-
viduals, who may be selected for timely interventions to
reduce the risk of developing dementia.

Previous studies have revealed that miR-181c regulates
amyloid-f (AP) deposition through changes in mem-
brane ceramide levels and lipid rafts [19]. Expression of
miR-181c, especially miR-181c-5p, has found to be cor-
related with increased AP levels [20], and deregulated in
brain [21-23] and blood of AD patients [12, 17, 24, 25].
Based on this evidence, we have here investigated poten-
tial associations between serum expression levels of
miR-181c-5p and plasma AP, cognitive and brain
changes in asymptomatic elderly subjects. Our hypoth-
esis is that lower levels of miR-181c-5p should parallel
changes in plasma AP concentrations, deficits in AD-
related brain regions, and impaired cognition, likely re-
vealing greater cerebral vulnerability in late life.

Methods

Participants

Ninety-five normal elderly subjects, recruited from senior
citizens associations, health screening programs, and hos-
pital outpatient services, participated in the study. They
showed normal cognitive performance in the neuropsycho-
logical tests relative to appropriate reference values for age
and education level. Individuals with medical conditions
and/or history of conditions that may affect brain structure
or function (e.g., neurodegenerative diseases, stroke, head
trauma, hydrocephalus, and/or intracranial mass) were not
included in the study. All subjects showed a global score of
0 (no dementia) in the Clinical Dementia Rating (CDR),
normal global cognitive status in the Mini Mental State
Examination (MMSE) (scores >26), and normal independ-
ent function —assessed by the Spanish version of the Inter-
view for Deterioration in Daily Living Activities [26].
Depression was excluded (scores <5) by the Geriatric
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Depression Scale [27]. All participants gave informed con-
sent to the experimental protocol approved by the Ethical
Committee for Human Research at the University Pablo de
Olavide according to the principles outlined in the Declar-
ation of Helsinki.

Neuropsychological assessment

A neuropsychological battery covering memory, executive
functioning and language was administered to all partici-
pants. Subjective memory was evaluated with the Memory
Functioning Questionnaire (MFQ), while objective mem-
ory was assessed with the Free and Cued Selective
Reminding Test (FCSRT). The Tower of London (TOL)
and the Boston Naming Test (BNT) were administered to
evaluate executive function and naming, respectively.

Total RNA isolation and miRNA quantification by qRT-PCR
Venous blood samples were collected in serum-gel 9 ml
tubes (Sarstedt S-Monovette®) after overnight fasting, cen-
trifuged at 1900 g for 10 min (4 °C) followed by a second
centrifugation at 16000 g for 5 min (4 °C), and stored at —
80°C. Total RNA was isolated from 200 ul aliquots of
serum in each sample using the miRNeasy Serum/Plasma
kit (Qiagen, Germany). Synthetic miRNA cel-miR-39-3p
(3.5 ul, 1.6 x 10° copies/ul) was used for sample-to-sample
normalization in RNA isolation. Both concentration
(range: 8-25ng/pl) and purity (260/280 ratio: 1.5-2) of
RNA were measured using the NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific), and RNA samples
were stored at — 80 °C until use.

RNA was reverse transcribed with the TagMan® miRNA
Reverse Transcription Kit and miRNA-specific stem-loop
primers (Applied Biosystems), according to the manufac-
turer’s instructions. The reverse transcription (RT) reaction
(15 ul) was composed of 5 pl of RNA (at a concentration of
10 ng/pl), 7 pl of master mix, and 3 ul of miRNA-specific
stem-loop RT primer. Reactions were performed in tripli-
cate for the miR-181c-5p, incubated at 16 °C for 30 min,
42 °C for 30 min, 85°C for 5min, and then maintained at
4°C. The complementary DNA (cDNA) products were
stored at — 80 °C until further analysis.

For quantitative real-time PCR (qRT-PCR), the reac-
tion (20 pl) for each sample was composed of 1.33 pl of
c¢DNA products, 1 ul of TagMan® Small RNA Assay (Ap-
plied Biosystems), 10 pl of TagMan® Universal PCR Mas-
ter Mix II (2X), and 7.67 pl of nuclease-free water. Each
PCR reaction was performed in triplicate with a StepO-
nePlus real-time PCR system (Applied Biosystems) on a
96-well plate, and incubated at 4 °C for 2 min, 95° for 10
min, followed by 40 cycles at 95 °C for 15 s and 60 °C for
1 min. Before analysis, individual cycle threshold (Ct)
values were examined to detect outliers. Replicas show-
ing Ct differences higher than 0.5 were systematically
repeated. Validated Ct values were averaged and
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normalized to the mean of the spiked cel-miR-39-3p in
each sample (Additional file 1: Figure S1). The relative
expression of miR-181c-5p was calculated with the fold
change method [28], and used for statistical purposes.
We measured the amplification efficiency of the qPCR
reactions based on the slope of the standard curve. PCR
efficiency was 97% (for cel-miR-39-3p) and 96% (for
miR-181c-5p). TagMan® miRNA Assays (hsa-miR-181c-
5p and cel-miR-39-3p) for qRT-PCR experiments were
purchased from Applied Biosystems. RNA isolation and
miRNA quantification methods have been reported else-
where [29].

Plasma AR levels

Blood samples for miRNA quantification and AP analysis
were collected at the same time in all participants. Plasma
AP levels were determined by a double-antibody sandwich
ELISA (human Af;_4 and high sensitive AB;_4,, Wako
Chemicals, Tokyo, Japan). Briefly, venous blood samples
were collected after overnight fasting in 10 mL K2-ethyl-
enediaminetetraacetic acid (EDTA) coated tubes (BD
Diagnostics), and immediately centrifuged (1989 g) at 4°C
for 5 min. Supernatant plasma was collected into polypro-
pylene tubes containing 250 uL of plasma mixed with
8.32 uL of a protease inhibitor cocktail (cOmplete Ultra
Tablets mini, Roche). Plasma samples were stored at —
80 °C and thawed immediately before assay.

Samples and standards were incubated overnight at 8 °C
with antibodies specific for AB;_49 or AP;_4» peptides, and
the wells were read for absorption at 450 nm on a Victor 3
system (PerkinElmer, Waltham, MA), according to the
manufacturer’s instructions. Plasma Af levels were mea-
sured in duplicate (50 uL), and the average of the two
measurements (pg/ml) was used for statistical purposes.
Both inter-assay and intra-assay coefficients of variation
were below 10%. The detection limit for these assays was
1.04 pg/ml for APB;_40 and 0.54 pg/ml for AP;_4o.

MRI and FDG-PET acquisition
Structural brain images were acquired on a Philips
Achieva 3T MRI scanner equipped with a body transmit
coil and an 8-channel receive head coil (Philips, Best,
Netherlands). T1-weighted magnetization-prepared rapid
gradient echo (MP-RAGE) cerebral images were obtained
for each participant. Acquisition parameters were empiric-
ally optimized for gray/white matter contrast (repetition
time = 2300 ms, echo time = 4.5 ms, flip angle = 8°, matrix
dimensions = 320 x 320, voxel size=0.8 mm isotropic
resolution, no gap between slices, acquisition time =9.1
min). Head motion was controlled using a head restraint
system and foam padding around the subject’s head.
FDG-PET brain images were acquired on a whole-
body PET-TAC Siemens Biograph 16 HiREZ scanner
(Siemens Medical Systems, Germany). Subjects fasted
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for at least 8 h before PET examination, and they were
scanned at the same time of the day (8:00-9:00 am).
Intravenous lines were placed 10-15 min before tracer
injection of a mean dose of 370 MBq of 2-[18F]fluoro-2-
deoxy-D-glucose (FDG). PET scans lasted approximately
30 min. All PET images were corrected for attenuation,
scatter and decay, smoothed for uniform resolution, and
reconstructed with 2.6 x2.6 x2mm voxel resolution
using back-projection filters. MRI-based correction of
FDG-PET data for partial volume effects was performed
with the PMOD software v3.208 (PMOD Technologies
Ltd., Switzerland) using the Miiller-Gartner approach.

Estimation of surface-based cortical thickness and cortical
glucose metabolism

MRI data were processed using the analysis pipeline of
Freesurfer v6.0 (https://surfer.nmr.mgh.harvard.edu/)
that involves intensity normalization, registration to
Talairach, skull stripping, white matter (WM) segmenta-
tion, tessellation of the WM boundary, and automatic
correction of topological defects [30]. Pial surface mis-
placements and erroneous WM segmentation were
manually corrected on a slice-by-slice basis to enhance
the reliability of cortical thickness measurements. Cor-
tical thickness maps were smoothed using non-linear
spherical wavelet-based de-noising schemes [31].

To map the FDG uptake onto cortical surfaces, we
first co-registered individual FDG-PET images to T1-
weighted images using PMOD tools. Next, partial vol-
ume corrected cortical FDG-PET images were sampled
onto the subject’s cortical surface, transformed to the
Freesurfer standard surface space, and smoothed with
non-linear spherical wavelet-based de-noising schemes
[31]. Finally, FDG activity assigned to each cortical sur-
face vertex was normalized by the FDG activity of the
entire cortex using an iterative vertex-based statistical
method that excludes group-dependent vertices from
calculation of global activity [32].

Anatomical ROIs of AD-related regions were created
using a semiautomatic approach implemented in Free-
surfer. Briefly, segmented brain images were parcellated
into different brain regions according to the Destrieux
atlas [33] and the Freesurfer automatic subcortical seg-
mentation (aseg), respectively. This allowed us to obtain
volume measurements of hippocampus, entorhinal cor-
tex and parahippocampal gyrus, regions that have shown
to be affected at early stages of AD [34].

Statistical analyses

We first assessed whether serum expression of miR-
181c-5p, plasma AP, and cognitive scores deviated from
normality by applying the Kolmogorov-Smirnov test
with the Lilliefors correction. Next, linear regression
analyses were conducted to evaluate whether miR-181c-
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5p was associated with AP levels (AB;_40 and AP;_4o,
separately) and/or cognitive performance. Regression
analyses were adjusted by age, sex and/or ApoE4 if these
factors showed an statistically significant effect on any of
the dependent variables. The alternative A peptide was
included as a confounding factor to mitigate its potential
influence on the relationship between the A peptide of
interest and miR-181c-5p levels. We also investigated
the impact of sex on regression coefficients by including
the product of the dummy variable for sex and the miR-
181c-5p as an interaction term in the regression model.
These analyses were performed with SPSS v22 (SPSS
Inc. Chicago, IL).

Vertex-wise linear regression analyses adjusted by age,
sex and/or ApoE4 were further performed to determine
whether serum expression levels of miR-181c-5p were
associated with variations in cortical thickness/cortical
glucose consumption. Results were corrected for mul-
tiple comparisons using a previously validated hierarch-
ical statistical model [35]. This procedure first controls
the family-wise error rate at the level of cluster by apply-
ing random field theory over smoothed statistical maps;
and next controls the false discovery rate within signifi-
cant clusters at the level of vertices over unsmoothed
statistical maps. A significant cluster was defined as a
contiguous set of cortical surface vertices that met the
statistical threshold criteria (p < 0.05 after correction for
multiple comparisons) and whose surface area was
greater than 40 mm?>.

Finally, linear regression analyses, adjusted by intracra-
nial volume (ICV), as well as by age, sex and/or ApoE4
if necessary, were conducted to evaluate whether serum
expression levels of miR-181c-5p were correlated with
volume changes in the hippocampus, entorhinal cortex
and/or parahippocampal gyrus. Regression analyses were
also conducted for women and men separately. If at least
one of the two groups showed significant results, we
evaluated the effect of sex on regressions coefficients.

Results

Relationship between serum miR-181c-5p, plasma Ap
levels, and cognitive performance

Serum miR-181c-5p, AP levels and cognitive scores were
normally distributed, allowing the use of parametric statis-
tical tests. Table 1 shows demographic, neuropsycho-
logical, blood, and cerebral markers of the study sample.
While cognitive performance was not associated with
miR-181c-5p levels, regression analyses adjusted by age
and AP;_4o levels revealed that lower levels of miR-181c-
5p were significantly correlated with higher AB;_40 (r=-
0.49, F39, =9.52, p=10""% (Fig. 1a), but not with AB;_4,
concentrations (Fig. 1b). When these analyses were segre-
gated by sex (Additional file 2: Figure S2A-B), AP;_4o was
related to mir-181c-5p levels only in women (r=- 0.37,
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Table 1 Demographic, neuropsychological, blood, and cerebral
markers of the study sample

Sample (N=195)
Age 688+ 4 (62-78)
Sex (M/W) 54/41
ApoE €4 (yes/no) 21/74
CDR 0
MMSE 293+ 1.2 (26-30)
MFQ 36.8£10.5 (16-66)
FCSRT 13.7£2(8-16)
TOL 413 £139 (132-824)

Boston naming test

miR-181¢-5p (fold change)

523 +45 (40-59)
0.66 +0.37 (0.07-1.5)

AB1-40 (pg/mi) 2288+326 (167.7-316)
AB1_4 (pg/ml) 24+74 (76-59)

L hippocampus (mm?) 3140 + 328 (2450-4043)
R hippocampus (mm3) 3242 + 330 (2487-4080)
L entorhinal (mm?) 1144 + 124 (862-1499)
R entorhinal (mm?) 1670+ 199 (1131-2162)
L parahippocampal (mm?) 3355+ 635 (2046-5411)
R parahippocampal (mm?3) 3154 + 539 (2090-4488)

Results are expressed as mean + standard deviation for each group,

range (min-max)

M Men, W Women, CDR Clinical dementia rating, MMSE Mini mental state
examination, MFQ Memory functioning questionnaire, FCSRT Free and cued
selective reminding test, TOL Tower of London, L Left and R Right

F33,=4.51,p=10" 2). However, the regression coefficients
did not significantly differ between women and men.

Relationship between serum miR-181c-5p levels and
volume of AD-related brain regions

Table 1 contains mean volume of hippocampus, entorhi-
nal cortex and parahippocampal gyrus of the study sam-
ple. Regression analyses adjusted by age and ICV
showed that decreased serum levels of miR-181c-5p
were significantly correlated with volume reduction of
the entorhinal cortex (r=0.59, F30; = 16, p=10~7). This
relationship was mainly evident for the left entorhinal
cortex (r=0.57, F39, = 14.6, p=10"") (Fig. 1c) although
a trend to significance was also observed in the right en-
torhinal cortex (Fig. 1d). Changes in miR-181c-5p levels
were unrelated to volume variations of either hippocam-
pus or parahippocampal gyrus. Neither did we find sex
differences in regression coefficients for any of the corre-
lations performed with mir-181c-5p and AD-related
brain regions (Additional file 2: Figure S2C-H).

Relationship between serum miR-181c-5p levels, cortical
thickness, and cortical glucose consumption

We next sought to investigate whether changes in serum
levels of miR-181c-5p were correlated with variations in



Manzano-Crespo et al. Translational Neurodegeneration

(2019) 8:34

Page 5 of 10

>

AB1-40 residuals (pg/ml)

-3 T T T T T T T T
0 02 04 06 08 1.0 12 14
miR-181c-5p (fold change)
B
r=-0.09
3 -
=04
= e P
£ 2 o
2 o e® o
0 1 ® @ e
© Geoo .& ® ®
.g @ 1) ®
I @ © =
o )
X 0o098e & AP
11 e 8 0oy %o
< oo
-2 1 ®
43 T

0 02 04 06 08 1.0 12 14
miR-181c-5p (fold change)

AB1_40 and left entorhinal cortex yielded significance
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cortical glucose consumption, after removing the effects of
age and sex. Results indicated that decreased serum expres-
sion of miR-181c-5p was associated with lower glucose con-
sumption in superior parietal regions bilaterally (left: p =
107% right: p = 107°), right inferior parietal areas (p = 10”°),
and right precuneus (p=10"°). Decreased FDG uptake
within bilateral insula was also related to lower miR-181c-5p
levels (left: p =10~ % right: p = 10™°). Reduced serum levels
of miR-181c-5p further predicted hypometabolism in the
left entorhinal (p =10~ °), right lingual gyrus (p = 10~ %), left
superior frontal (p = 10™?), and medial aspects of the right
orbitofrontal cortex (p=10"%. These results are summa-
rized in Table 2 and illustrated in Fig. 2. No significant asso-
ciations were found between miR-181c-5p levels and
changes in cortical thickness.

Discussion
There is an urgent need for inexpensive and reliable bio-
markers able to identify individuals at greatest risk of

developing AD. While blood molecules are ideally suited
for this endeavor [41], lack of standardization of pre-
analytic conditions and poor reproducibility of results pre-
clude their use as first-line diagnostic tools in clinical
settings. miRNAs are stable circulating molecules that have
shown to be deregulated in the prodromal and clinical
phases of AD [42]. However, their usefulness for detecting
at-risk subjects for developing AD remains to be deter-
mined. In the present study, we have shown that decreased
serum expression of miR-181c-5p was associated with
higher plasma AP;_4 levels, deficits in cortical glucose me-
tabolism, and volume reduction of the entorhinal cortex in
asymptomatic elderly subjects. Overall, these results are
likely revealing aging-related cerebral vulnerability linked to
altered expression of miR-181c-5p, which has previously
been associated with AP regulation [19] and cerebral ische-
mia/hypoxia in both humans and animal models [43, 44],
and has been found to be deregulated in the brain [21-23]
and blood [12, 17, 24, 25] of AD patients.
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Table 2 Significant correlations between decreased serum
levels of miR-181c-5p and lower cortical glucose uptake
measured by FDG-PET

Cortical region CS (mm?) r P

L insula 3891 029 107
L entorhinal 1588 03 107
L superior parietal 431 0.39 107
L superior frontal 245 031 107
L anterior cingulate 174 033 107
R inferior parietal 1531 0.38 107°
R insula 839 037 107
R medial orbitofrontal 819 034 107
R superior parietal 583 035 10°°
R lingual gyrus 160 039 107
R precuneus 144 037 10°°

CS Cluster size; it refers to the extent of significant correlation between serum
levels of miR-181c-5p and cortical glucose uptake. L Left and R Right cortical
hemisphere. Regression analyses were adjusted by age and sex. r: Pearson
correlation coefficient; p: exact p-value (corrected for multiple comparisons)

Recent studies have assessed the role played by serum/
plasma expression of miR-181c as AD biomarker. Most of
them evaluated the miR-181c-5p [12, 17, 25], except for
one that employed the miR-181c-3p [24]. Here we found
that decreased serum levels of miR-181c-5p were associated
with higher concentrations of plasma AP;_40. Previous
studies have revealed that plasma AB;_4 is increased in fa-
milial AD with mutations in the genes encoding presenilin
or the amyloid precursor protein [45, 46], in patients with
Down’s syndrome [47, 48], and in first-degree relatives of
AD patients who are at increased risk of developing the dis-
ease [49]. Moreover, elderly subjects with higher plasma
AB1_40 levels have shown slower processing and poorer
memory together with bilateral thinning of the prefrontal
cortex compared with those who had lower AB;_4 levels,
suggesting that higher plasma AP; 4o may signal acceler-
ated aging [50]. Plasma AP; 4 levels have also shown to be
elevated in cerebral small vessel disease, a frequent aging-
related pathology that contributes to the development of
dementia [51, 52]. Recent evidence indicated that miR-
181c-5p is downregulated in plasma of acute stroke patients
[43] and in the hippocampus of rat models of cerebral is-
chemia/hypoxia [44]. These studies have also shown that
miR-181c agomir exacerbates brain ischemia-reperfusion
injury [43] and improves cognitive deficits induced by
chronic cerebral hypoperfusion [44]. Based on this evi-
dence, we speculate that associations between miR-181c-5p
and AP;_4 are likely instigated by chronic cerebral hypo-
perfusion and altered neurovascular coupling that lead to
increased AP;_y levels in aging conditions.

Contrary to what might be expected, especially consid-
ering previous evidence linking miR-181c to increased
ABi_4 levels [20] and regulation of AP deposition in
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hippocampal cultures [19], we found no significant asso-
ciations between serum mir-181c-5p and plasma AfB;_4»
concentrations. It may happen that the relationship be-
tween mir-181c-5p and AP, 4, is specifically linked to
AD, whereas cerebral changes associated with decreased
serum levels of mir-181c-5p is signaling aging-related
cerebral vulnerability of unspecified origin. On the other
hand, our results differ from those reported in [25].
Siedlecki-Wullich and colleagues [25] showed significant
upregulation of miR-92a-3p, miR-181c-5p and miR-210-
3p in the plasma of both MCI and AD subjects. In our
study, performed in cognitively normal elderly subjects,
we found significant associations between decreased
serum expression of miR-181c and increased plasma
levels of AP;_40, deficits in cortical glucose metabolism,
and volume reduction of the entorhinal cortex. We
speculate that both studies are likely revealing different
phenomena (AD vs. aging-related cerebral vulnerability)
associated with deregulation of miR-181c-5p. However,
it should be mentioned that the two studies employed
different blood compartments in miR-181c-5p experi-
ments (serum vs. plasma). Although both plasma and
serum are commonly used for extracellular miRNA de-
tection, we selected serum to avoid sample hemolysis
and to obtain higher miRNA concentrations [53].

To our knowledge, only a few studies have specifically
evaluated the significance of combining serum expres-
sion of specific miRNAs and macroscopic brain changes
as AD biomarkers. In a seminal work, Cheng and collab-
orators [54] identified an AD-specific serum 16-miRNA
signature that was validated with amyloid-PET imaging,
showing high accuracy during early- to mid-AD stage.
Further research has revealed that associations between
serum miR-223 and magnetic resonance spectroscopy
markers of neuronal damage (i.e., N-acetylaspartate and
myo-inositol) are able to predict AD severity through in-
flammatory and apoptosis pathways [55]. A recent study
has also shown that lower serum expression of 5 AD-re-
lated miRNAs (miR-9-5p, miR-29b-3p, miR-34a-5p,
miR-125b-5p, and miR-146a-5p) was associated with
poorer cognitive functioning and structural and meta-
bolic cortical deficits in aging, indicating that these miR-
NAs are biologically meaningful in senescence and may
play a role as biomarkers of cerebral vulnerability in late
life [29]. Since lower miR-181c expression has been
tightly related to AD [19], our results linking decreased
miR-181c-5p levels and atrophy of entorhinal cortex
may be suggestive of accelerated aging and/or reveal cer-
tain susceptibility to developing AD. Further research is
definitely warranted to clarify if the link between miR-
181c-5p and entorhinal cortex may serve as a surrogate
marker of AD vulnerability.

We have further shown that decreased serum expres-
sion of miR-181c-5p was associated with widespread
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Fig. 2 Vertex-wise regression analysis, adjusted by age and sex, to evaluate correlations between serum levels of miR-181c-5p and cortical
glucose metabolism, measured with FDG-PET. a Significant patterns of correlations were represented on inflated cortical surfaces (L, left; R, right).
Color bars represent corrected p-values (p < 0.05) using a hierarchical approach based on sequential statistical thresholding [35]. b Significant
patterns of correlations displayed on flattened cortical surfaces. Squares with colored borders limit the location of significant regional changes. ¢
The surface of the square was zoomed on flattened cortical maps displaying cytoarchitectonic delimitation of affected regions [36-40]

Medial orbitofrontal

cortical hypometabolism rather than with patterns of
cortical thinning. Many studies have confirmed that
reduced FDG-PET brain metabolism precedes cortical
atrophy in early AD [56, 57]. In the present study, hypo-
metabolic cortical regions that correlated with lower
levels of miR-181c-5p are reminiscent of those that pre-
dict conversion to dementia in asymptomatic subjects
(i.e., temporo-parietal and prefrontal cortex) [58], which

may indicate certain susceptibility to developing AD in
individuals with decreased miR-181c-5p. Moreover,
previous studies have found that oxygen-glucose
deprivation downregulates miR-181c expression in pri-
mary microglia by targeting Toll-like receptor 4 (TLR4),
suggesting that miR-181c may also be involved in the
regulation of the inflammatory response to hypoxic in-
juries [59]. Therefore, we speculate that, initially, early
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soluble A oligomers lead to miR-181c deregulation [19]
and subsequently lower miR-181c expression levels con-
tribute to AD progression through deregulation of
inflammatory response to hypoxia [59]. In this context, a
deficient cortical glucose metabolism may reinforce
multiple feedback loops of disease progression [60] ac-
celerating the emergence of cognitive impairment. Alter-
natively, deregulation of miR-181c-5p may instigate the
pathogenesis of AD by targeting specific proteins at the
post-transcriptional level. This hypothesis is supported
by experiments showing that low expression of miR-
181c in the hippocampus of senescence-accelerated mice
increases the collapsin response mediator protein-2 [61],
a microtubule associated protein whose phosphorylation
is required for AB-induced memory deficits [62]. Future
experiments are required to determine whether miR-
181c-5p deregulation is the cause or the consequence of
cerebral vulnerability in aging and/or AD pathogenesis.

Accumulated research has highlighted the role played by
serum miRNAs as potential biomarkers for AD [12-18]. In
one of these studies, authors showed a significant upregula-
tion of miR-455-3p in serum of AD patients, which was val-
idated in postmortem AD brain tissues, AD cell lines, and
in the cerebral cortex of amyloid precursor protein trans-
genic mice [18]. These findings have been recently ex-
tended to AD fibroblasts cells [63]. miR-455-3p was further
related to genes directly associated with AD pathogenesis,
revealing possible molecular links between miR-455-3p and
AD progression [18, 63]. While these findings strongly sug-
gest that miR-455-3p may be a potential serum biomarker
for AD, its remains to be established its role in detecting
asymptomatic subjects at risk for developing AD.

The present study is subject to certain limitations that
should be mentioned. Participants were clinically normal
elderly subjects. Therefore, our results do not allow estab-
lishing the prognostic value for the development of AD.
Follow-up studies are necessary to determine to what ex-
tent lower serum expression of miR-181c-5p is a bio-
marker of AD, and whether cerebral markers reported
here contribute to validate that prediction. Moreover, sub-
jects lacked surrogate biomarkers to confirm AD path-
ology (e.g., CSF or PET-based biomarkers), impeding to
determine the risk for AD. Consequently, these findings
should be replicated in a well-characterized cohort with
AD biomarkers and compared with other neurodegenera-
tive diseases (e.g., vascular dementia, Parkinson disease,
fronto-temporal dementia) to further establish their speci-
ficity in AD.

Conclusions

In summary, our findings indicate that lower serum expres-
sion of miR-181c-5p is associated with higher plasma con-
centrations of AP; 4, widespread patterns of cortical
hypometabolism, and volume loss of the entorhinal cortex

(2019) 8:34
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in normal elderly subjects These results highlight the value
of serum miR-181c-5p at determining cerebral vulnerability
in normal aging.
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